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Open science, the replication crisis, and environmental 
public health
Daniel J. Hicks

University Of California, Merced, CA, USA

ABSTRACT
Concerns about a crisis of mass irreplicability across scientific 
fields (“the replication crisis”) have stimulated a movement for 
open science, encouraging or even requiring researchers to 
publish their raw data and analysis code. Recently, a rule at 
the US Environmental Protection Agency (US EPA) would have 
imposed a strong open data requirement. The rule prompted 
significant public discussion about whether open science prac-
tices are appropriate for fields of environmental public health. 
The aims of this paper are to assess (1) whether the replication 
crisis extends to fields of environmental public health; and (2) 
in general whether open science requirements can address the 
replication crisis. There is little empirical evidence for or against 
mass irreplicability in environmental public health specifically. 
Without such evidence, strong claims about whether the repli-
cation crisis extends to environmental public health – or not – 
seem premature. By distinguishing three concepts – reprodu-
cibility, replicability, and robustness – it is clear that open data 
initiatives can promote reproducibility and robustness but do 
little to promote replicability. I conclude by reviewing some of 
the other benefits of open science, and offer some suggestions 
for funding streams to mitigate the costs of adoption of open 
science practices in environmental public health.
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Introduction

Over the past decade, the scientific community has focused a great deal of 
attention on an ongoing epistemic crisis in which experimental studies fail to 
replicate much more often than would be expected. Often called “the replica-
tion crisis,” this crisis of mass irreplicability has unfolded primarily in social 
psychology and preclinical biomedical research (Spellman 2015; Harris 
2017); but researchers in many fields are concerned that the problem might 
extend to their own areas (Lash, Collin, and Van Dyke 2018). One common 
response to the replication crisis has been to call for open science. For 
example, the Transparency and Openness Promotion (TOP) Guidelines 
(Nosek et al. 2015) have been adopted by many major academic publishers, 
including the American Association for the Advancement of Science 
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(AAAS), Springer Nature, and the Public Library of Science (PLoS). (Lash 
2015 explains why the journal Epidemiology declined to adopt the TOP 
guidelines.) At the highest level of stringency, the TOP Guidelines require 
data, code, and study materials to be “posted to a trusted repository” and 
“reported analyses . . . reproduced independently before publication” (Nosek 
et al. 2015, 1424). While the term “open science” is understood in a variety of 
different ways (Levin et al. 2016), in this paper I focus on open science in the 
sense of the publication of a study’s data and code in a more-or-less publicly 
available venue and format.

In the fields of environmental public health, recent discussions of open 
science have precipitated around “Strengthening Transparency in Regulatory 
Science,” a rule first proposed by the US Environmental Protection Agency 
(US EPA) in 2018 (US EPA 2018b; henceforth Strengthening Transparency). 
This rule would have required US EPA to ensure that the “data and models 
underlying pivotal regulatory science are publicly available in a manner 
sufficient for independent validation” (US EPA 2018b, 18,773).1 The rule 
was highly controversial. Critics of Strengthening Transparency argued that 
the data from many public health studies cannot be made publicly available 
without violating the privacy of study participants, and so Strengthening 
Transparency would undermine the evidence base for numerous regulations 
(Cornwall 2018). These critics included editors of scientific journals as well as 
high-profile proponents of open science (Berg et al. 2018; Ioannidis 2018; 
Nosek 2019; Boronow et al. 2020).

Other critics of Strengthening Transparency noted that industry and its 
allies have long used calls for access to “raw data” to attempt to delay 
regulation (Lerner 2017; Dockery and Pope 2020).2 Readers may be familiar 
with the Six Cities study (Dockery et al. 1993), which provided key evidence 
used by US EPA to justify more stringent regulation of PM2:5 emissions. 
After pressure from industry, a third-party reanalysis of the Six Cities data – 
checking both reproducibility and robustness, in the terminology I introduce 
below – confirmed its findings (Kaiser 1997; Krewski et al. 2005b, 2005a). 
Nonetheless, decades later, critics affiliated with the fossil fuels industry 
continue to complain that the data are not publicly available (Milloy 2019). 
There has been similar controversy over an epidemiological study of chlor-
pyrifos (US EPA 2018a), which continued even after Columbia University 
offered to “allow EPA staff to review and/or re-analyze the original indivi-
dual-level data in a secure data enclave onsite at Columbia” (letter from Dean 
Linda Fried dated 18 May 2016). In the 2010s, these ad hoc industry efforts 
coalesced into a legislative strategy. Republican members of the US Congress 
repeatedly introduced a bill, variously called the Secret Science Act or 
HONEST Act, that would have imposed a strong open data requirement 
on US EPA. After these bills repeatedly failed, in January 2018 Representative 
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Lamar Smith worked with Scott Pruitt, then administrator of US EPA, to 
develop Strengthening Transparency (Waldman and Farah 2018).

Both the Notice of Proposed Rulemaking (NPR) for Strengthening 
Transparency and supportive commentary justified the need for a strong 
open science requirement at US EPA by appealing to the replication crisis 
(US EPA 2018b, 18,770; Lewis 2020; Richardson 2021). The NPR uses this 
phrase explicitly, giving citations to major commentaries on the crisis includ-
ing Munafò et al. (2017), Ioannidis (2005), McNutt (2014), and Goodman, 
Fanelli, and Ioannidis (2016). This argument for Strengthening Transparency 
involves two key claims: first, that there is a widespread crisis of mass 
irreplicability; and second, that open data requirements3 will help solve the 
crisis. Both claims were taken from the replication crisis discourse, and 
indeed proponents of Strengthening Transparency frequently cited major 
proponents of open science (including Nosek and Ioannidis, whose criticisms 
of Strengthening Transparency were cited above). However, despite talk of 
a general or widespread crisis in science, the evidence in the replication crisis 
discourse primarily comes from either social psychology or preclinical bio-
medical research. For example, Munafò et al. (2017) write that “Data from 
many fields suggests reproducibility is lower than is desirable” (Munafò et al. 
2017, 1, emphasis mine), supporting this claim with 8 citations. But 6 of the 8 
were published in the Lancet, 7 are specific to preclinical biomedical research, 
and the last was a survey of researchers’ perceptions of whether there was 
a replication crisis. Similarly, writing in support of Strengthening 
Transparency, Lewis (2020) cites an article in the Economist, which reviews 
findings of replication problems in social psychology and preclinical biome-
dical research along with a handful of individual cases in physics and 
economics. It’s hard to see how broad generalizations across scientific fields 
can be supported by such a narrow base of evidence. Specifically, evidence of 
mass irreplicability in the specific fields of social psychology and preclinical 
biomedical research doesn’t provide support for claims of mass irreplicability 
in environmental public health. Apparently overlooking this evidential gap, 
proponents of Strengthening Transparency rarely provided evidence that the 
replication crisis extends to environmental public health.

The adoption of open science – whether as a recommendation or require-
ment – would not be a trivial undertaking for the environmental public 
health research community. Fields such as molecular biology and environ-
mental science have led the way in developing technologies to disseminate 
public data and code, and to create secure enclaves for sharing sensitive data. 
There are also well-developed standards for open data, such as FAIR (find-
able, accessible, interoperable, and reusable; Wilkinson et al. 2016). But many 
environmental public health researchers are not familiar with these novel 
technologies and standards, which have substantial learning curves. Simply 
posting files on a public repository is not sufficient: both data and code need 
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to be documented, so that others can understand how the data are organized, 
what the code is supposed to do and how to run it, what additional software 
needs to be installed first, and how outputs are intended to relate to the 
content of a paper. Specifically, Wilson et al. (2014) list 24 high-level prin-
ciples of software engineering that, they argue, should be adopted by 
researchers using computationally intensive methods. Recognizing that 
these principles are too advanced for many researchers, Wilson et al. 
(2017) provide a list of 28 practices comprising “a minimum set of tools 
and techniques” for computationally intensive research (2). Outside of soft-
ware engineering, I suspect that very few graduate programs teach their 
students any of these 52 principles, tools, or techniques. In addition, data 
and code repositories require regular maintenance, requiring other specific 
skills and resources (Leonelli 2016; Powell 2021). Without support for train-
ing and maintenance, strong open science requirements would likely signifi-
cantly slow environmental public health research, with downstream impacts 
on the ability of regulatory agencies to develop protective, science-based 
regulation. Given these substantial costs, it’s worthwhile to consider whether 
Strengthening Transparency or similar open science requirements would 
actually solve a genuine problem in environmental public health.

In this essay, I critically examine both key claims in the argument for 
Strengthening Transparency. I first introduce a distinction among three 
kinds of evidence for mass irreplicability – a priori mathematical models, 
and indirect vs. direct empirical evidence – and examine the state of available 
evidence that environmental public health might be afflicted by the mass 
irreplicability that has appeared in other scientific fields. I find that this 
evidence has not been systematically collected, and what evidence is available 
is weak and does not support claims that the replication crisis extends to 
environmental public health. Next, I distinguish three concepts – reproduci-
bility, replicability, and robustness – and consider generally whether open 
science requirements can effectively promote replicability. I argue that, while 
open science can promote reproducibility and robustness, it is unlikely to 
promote replicability. So, even if the replication crisis does extend to envir-
onmental public health, a strong open science requirement does not seem to 
be an appropriate response.

In the Conclusion, I step back from the debate over Strengthening 
Transparency. Proponents of open science have identified other benefits 
beyond (purportedly) addressing the replication crisis, and some critics of 
industry-sponsored science in environmental policy have argued that an 
open data requirement might address problems with industry-funded 
research and the misuse of confidential business information (CBI) designa-
tions. These points suggest that adopting open science practices in environ-
mental public health might have substantial benefits. After reviewing these 
arguments in favor of open science, I offer some recommendations for 
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funding streams to support open science practices within environmental 
public health that would mitigate the challenges and costs associated with 
open science.

A replication crisis in environmental public health?

In this section, I consider the first key claim in the argument for 
Strengthening Transparency: that there is a widespread crisis of mass irre-
plicability, and specifically that this crisis extends to environmental public 
health. I distinguish among three kinds of evidence for mass irreplicability, 
and argue that, for fields of environmental public health, this evidence has 
not been systematically collected, and what evidence is available is weak and 
does not support claims that the replication crisis extends to these fields.

It is worth considering at the outset that replication might not be an 
appropriate standard for many areas of environmental public health. 
Leonelli (2018) notes that, as an epistemic ideal, replication comes from 
19th-century laboratory-based physical sciences, such as chemistry and phy-
sics. In these fields, it’s relatively easy to design an experimental setup that 
includes the single causal process of interest, to isolate that process from 
external influences, and to expect that process to work in exactly the same 
way in every other appropriately equipped lab. Given these assumptions, it’s 
reasonable to expect the same experimental setup to produce similar results 
time after time. (Below, I’ll give more precise definitions of replicability, 
reproducibility, and robustness.) However, isolating a single causal processes 
from all outside influences is more challenging in fields of laboratory-based 
biology (e.g., toxicology), and still more challenging for observational studies 
that use “opportunistic” data – such as patient medical records – over which 
the researchers have little or no control. While randomized controlled trials 
(RCTs) are often regarded as the “gold standard” of biomedical research, they 
may be impractical or even epistemically suboptimal for some research 
questions in environmental public health (Naumova 2017; Fernández Pinto 
and Hicks 2019, 3). In addition, the complex interactions between environ-
mental, physiological, and social processes may mean that causal relation-
ships vary across time, space, or social groups. For example, accounting for 
interactions of mixtures of chemicals is a longstanding challenge in toxicol-
ogy (Rider et al. 2021); and structural racism may mean that communities of 
color have both greater exposure to pollutants and poorer access to health 
care, making race or ethnicity a statistical moderator of the relationship 
between exposures and outcomes (Chay and Greenstone 2003; Mohai, 
Pellow, and Roberts 2009, 423; Jorgenson et al. 2020).

If these kinds of complexities are common in environmental public health, 
and researchers have limited understanding of and ability to account for 
them, then rigorous and accurate studies in environmental public health 
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might appear to “fail to replicate” much more often than expected. That is, 
complexity could produce the appearance of a replication crisis. But this 
would be misleading. It’s not that the results of such “irreplicable” studies are 
false. Rather, the phenomena that they identify have a limited scope or 
generalizability, and it doesn’t make sense to talk about superficially similar 
studies conducted outside that scope as “replications” in the first place. In 
this sense, the concept of replication might be inappropriate. Instead of 
attempting “replication” after “replication,” a more appropriate aim for 
follow-up studies would be to delim the boundaries of this limited scope – 
where and why does this phenomenon appear or not? (Feest 2019 suggests 
this kind of approach for social psychology.)

However, I take it that typically both environmental public health 
researchers and policymakers who use their results expect research findings 
to be highly generalizable and replicable. So, for the remainder of this paper, 
I set aside the arguments of the last two paragraphs, and instead assume that 
mass irreplicability would be a serious epistemic problem for any field of 
environmental public health.

The first kind of evidence for mass irreplicability comes from a priori 
(non-empirical) mathematical models of scientific research. Sterne and Smith 
(2001), Ioannidis (2005), Lash (2017), and Bartell (2019) use slightly different 
versions of the same model, calculating the positive predictive value (PPV) of 
a statistically significant finding given a range of assumptions about study 
power and the “pre-study odds” or “prevalence” of true hypotheses. These 
authors conclude from this kind of model that, as Ioannidis titles one section, 
“Most Research Findings are False for Most Research Designs and for Most 
Fields” (Ioannidis 2005, 0699). Other examples of a priori models draw on 
mathematical models of biological evolution, including evolutionary game 
theory, to model various epistemic-social aspects of research communities 
(Smaldino and McElreath 2016; Zollman 2007; Bright 2017; Holman and 
Bruner 2017; Weatherall, O’Connor, and Bruner 2018).

It’s often not clear how well a priori models support claims about real- 
world scientific practice. These models might be more useful for characteriz-
ing potential causes of phenomena (“how-possibly” explanations) and sug-
gesting potential interventions, but less useful for supporting claims about 
the existence of phenomena (for example, that there is mass irreplicability in 
a particular scientific field). There are at least three challenges when trying to 
extrapolate from a priori models of research systems to real-world systems. 
First, the findings supported by these models depend on their parameter 
values, and these parameters are often not supported with any empirical 
evidence (Martini and Pinto 2016). For example, one PPV model paper 
(Bartell 2019) cites 4 different works to support 6 different estimates for 
the “prevalence” of true hypotheses in various areas. Two of these citations 
are for previous PPV studies that, in turn, provide no empirical justification 
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for the values they use (Ioannidis 2005; Lash 2017). The third citation 
justifies its choice of values simply by positing that “by 1985 nearly 300 
risk factors for coronary heart disease had been identified, and it is unlikely 
that more than a small fraction of these actually increase the risk of the 
disease” (Sterne and Smith 2001, 1465–66). The final citation is a brief 
summary of drug approvals made by the US Food and Drug 
Administration in 2016, and it is not clear what information in this summary 
is supposed to support the cited value (Mullard 2017). As Bartell puts it, 
“These are mostly educated guesses” (Bartell 2019). A second challenge with 
a priori models is that it might not clear how some parameters could be 
operationalized and measured empirically at all. For example, the specific 
model used in Ioannidis (2005) assumes that 30% of scientific research is 
produced only due to “bias,” defined as “the combination of various design, 
data, analysis, and presentation factors that tend to produce research findings 
when they should not be produced” (Ioannidis 2005, 0697; Goodman and 
Greenland 2007). A third difficulty is that, like all models, these models 
involve various simplifications and idealizations in the way they represent 
the research process (Potochnik 2017; Smaldino 2019). For example, models 
based on statistical hypothesis testing generally assume that every study is 
designed to test a single hypothesis (often itself simplified, such as 
a dichotomous effect/no effect hypothesis). Actual observational research 
may have other, more complex goals, such as estimating the strength of an 
exposure–outcome relationship or trying to understand heterogeneity in 
exposure–outcome relationships across space, time, or social groups. 
Whether a model’s idealizations are acceptable depends on the specific use 
being made of the model (Parker 2020); and researchers can reasonably 
disagree about the acceptability of particular idealizations. In short, an 
a priori mathematical model on its own does not provide much evidence 
that there is an actual crisis of mass irreplicability. Parameter values need to 
be supported with empirical evidence, and modelers need to address the 
question of whether their simplifying assumptions can survive extrapolation 
to complex real-world cases.

The second kind of evidence of mass irreplicability is indirect empirical 
evidence, based on statistical analyses of findings reported in primary studies 
and intended to detect “questionable research practices” such as low power 
or p-hacking. For example, Dumas-Mallet et al. (2017) examined meta- 
analyses for 10 diseases across three domains (neurological, psychiatric, and 
somatic diseases) to estimate the average power of primary studies in each 
domain, finding that median power was generally quite low, in the range of 
10–30%. When combined with publication bias, underpowered research 
tends to produce inflated false-positive rates and biased effects estimates 
(sometimes called the “winner’s curse”; Fraley and Vazire 2014; Romero 
2016; van Zwet and Cator 2020). Another example is the p-curve, 
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a graphical method developed to detect p-hacking by examining 
a distribution of p-values (Simonsohn, Nelson, and Simmons 2014). 
P-hacking – the practice of trying variant analyses until one passes the 
conventional threshold for “statistical significance” – is a common explana-
tion for mass irreplicability in behavioral science (Yong 2015; Munafò et al. 
2017). The relevance of p-curve analysis to observational studies is contro-
versial: Bruns and Ioannidis (2016) use a simulation study to show that the 
combination of p-hacking and omitted variable bias can produce a right- 
skewed p-curve (which would be interpreted as evidence that there was no 
p-hacking); Simonsohn, Nelson, and Simmons (2019) reply that in these 
cases the relationship of interest is certainly confounded (it would be incor-
rect to draw a causal conclusion) but also entirely replicable (we would 
expect similar associations to show up in similar studies with the same 
omitted variable bias). The upshot of this debate seems to be that, even if 
the p-curve cannot reliably detect p-hacking in observational research, it may 
still be able to detect problems of irreplicability.

There are also established techniques in meta-analysis – funnel plots, 
Egger’s test, trim-and-fill, and the p-uniform technique – for detecting and 
adjusting for publication bias (Egger et al. 1997; Peters et al. 2007; van Aert, 
Wicherts, and van Assen 2019). While publication bias is frequently identi-
fied as a major cause of the replication crisis, it does not necessarily lead to 
substantially biased estimates. For example, Anderson et al. (2005) use 
Egger’s test and trim-and-fill to examine the impacts of publication bias 
across 9 combinations of ambient particulate air pollution measures, short- 
term adverse health effects, and single-city vs. multicity designs. Egger’s test 
was statistically significant in 4/9 combinations (without accounting for 
multiple comparisons), but in 3/4 combinations the trim-and-fill adjustment 
did not substantially change the estimate; for example, one estimate went 
from a relative risk of 1.006 (95% CI 1.005–1.007) to 1.005 (1.003–1.006). 
Out of nine combinations, the only substantial change after using trim-and- 
fill was from 1.025 (1.011–1.039) to 1.015 (1.001–1.029). More broadly, in 
a large-scale analysis of meta-analyses in psychology and medicine, van Aert, 
Wicherts, and van Assen (2019) conclude that “Overestimation was minimal 
but statistically significant” (van Aert, Wicherts, and van Assen 2019, 22); 
while Mathur and Van der Weele (2020) find that publication bias can be 
mitigated in a meta-analysis so long as “a large number of studies (at least 
40)” are included.

These meta-analysis-based methods have some notable limitations. Lau 
et al. (2006) argue that study heterogeneity can lead to asymmetric funnel 
plots, for example, if smaller studies focus on high-risk patients or different 
studies work with different populations. Simonsohn (2017) argues that fun-
nel plot analysis depends on the assumption that there is no correlation 
between effect size and sample size, which is likely to be false if researchers 
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tend to use larger samples with smaller, more difficult to detect effects. Using 
simulation methods, van Aert, Wicherts, and van Assen (2019) find that 
publication bias tests can be severely underpowered with respect to moderate 
publication bias. And perhaps most importantly for claims of mass irreplic-
ability, typically a given meta-analysis paper examines at most a small num-
ber of associations. This might give us (indirect or direct) empirical evidence 
for the replicability of these associations; but not whether there is a problem 
of mass irreplicability across an entire field. A systematic review of meta- 
analyses – sometimes called a “meta-meta-analysis” – might provide such 
evidence (Dumas-Mallet et al. 2017; Mathur and Van der Weele 2020). 
A PubMed search for the query meta-meta-analysis (https://pubmed.ncbi. 
nlm.nih.gov/?term=meta-meta-analysis) returned 29 results, only one of 
which appeared to be specific to environmental public health (Spitzer 1991 
is a commentary on a critique of a meta-analysis of environmental tobacco 
smoke and lung cancer); though this lack of results might just be due to lack 
of adoption of the “meta-meta-analysis” term. Still, broader searches of 
PubMed and Google Scholar did not find any such systematic reviews or 
aggregates of meta-analyses that were specific to environmental public health.

The third kind of evidence for mass irreplicability that I will consider here 
is direct empirical evidence, produced by replication attempts. In social 
psychology, considerable effort has been put into several large-scale multi- 
lab replication projects (Open Science Collaboration 2015; Klein et al. 2014, 
2018). These projects are generally regarded as having provided strong direct 
evidence of mass irreplicability in social psychology. A similar project is 
currently underway with preclinical cancer biology (Errington et al. 2014), 
though as of 15 April 2021, results are available for only 17 out of 50 studies 
on the project’s website (https://elifesciences.org/collections/9b1e83d1/repro 
ducibility-project-cancer-biology). I was unable to find any similar project 
for fields of environmental public health.

A meta-analysis can also provide this kind of direct empirical evidence, 
insofar as the primary studies it aggregates can be understood as replications 
of each other. For example, Boffetta et al. (2008) give two examples of 
findings that, upon replication and meta-analytic synthesis, appeared to fail 
to replicate. (Presumably these two examples were chosen to illustrate this 
possibility, and so don’t necessarily generalize.) However, as with the provi-
sion of indirect evidence, meta-analyses are limited by their focus on a small 
number of associations. Again, “meta-meta-analysis” would be necessary to 
support claims about whole fields of research, and I was unable to find any 
such high-level studies specific to environmental public health.

All together, the available evidence for mass irreplicability in environmen-
tal public health appears to be extremely limited. While familiar methods, 
such as meta-analysis, could be used to aggregate and develop relevant 
evidence, it appears that this has not yet been done. Unless and until 
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evidence has been collected more systematically – and this evidence indicates 
that the replication crisis extends to environmental public health – there does 
not seem to be strong grounds for that thinking that the replication crisis 
extends to environmental public health policymaking.

This argument might seem to have committed the fallacy of appealing to 
ignorance – I was unable to find evidence of mass irreplicability in environ-
mental public health, and so there is no problem of mass irreplicability. That 
is, an absence of evidence isn’t the same thing as evidence of absence. As this 
paper has traversed the peer review process, several readers have raised this 
point, including reviewers at a major environmental public health journal 
who insisted that mass irreplicability was obviously a problem in the field. 
When I requested examples, reviewers either did not respond or provided 
citations to papers that were incorporated into the discussion above (includ-
ing Sterne and Smith 2001; Lash 2017; Bartell 2019). Every credible citation 
that I have found or been given as evidence of a replication crisis in 
environmental public health is discussed in the current version of this 
paper. (Hicks n.d.b. discusses some indirect empirical evidence that, 
I show, is not credible.) An appeal to ignorance is not a fallacy if there has 
been significant effort to search for the absent evidence.

In Bayesian terms, I began this project with a somewhat skeptical prior 
about claims of mass irreplicability in environmental public health. The 
evidence that I have found or been given is weak in the sense that, after 
Bayesian updating, my posterior is basically unchanged from my prior. 
However, some readers may have a more credulous prior, and have come 
into this section with a strong subjective probability that the replication crisis 
extends to environmental public health. The weak evidence that I have 
reviewed in this section probably did not do much to change their priors 
either. All of this is as it should be: weak evidence should not change 
anyone’s mind. But I do think it puts the burden of proof on those who 
believe that there is a problem of mass irreplicability for environmental 
public health: until they can provide some stronger empirical evidence, 
there is no reason for someone with my prior to think that the replication 
crisis does extend to these fields.

Proponents of Strengthening Transparency might respond that, as long as 
a problem of mass irreplicability is a live possibility, open science require-
ments can provide us with a kind of epistemic insurance: if there is 
a replication problem in environmental public health, then open science 
will help mitigate it. This leads us to the second key claim of their argument.

Definitions: Reproducibility is not the same as replicability

I turn now to the second key claim of the argument of Strengthening 
Transparency, namely, that an open data requirement will help solve the 
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replication crisis. In the next section, I will argue that open science require-
ments cannot address such concerns. To make that argument, in this section 
first we must distinguish three frequently confused ideas in the discourse 
surrounding the replication crisis: replicability, reproducibility, and 
robustness.

The National Academies consensus report Reproducibility and 
Replicability in Science (RRS; National Academies of Sciences, Engineering, 
and Medicine 2019) defines reproducibility as the capacity to “obtain[] con-
sistent results using the same input data, computational steps, methods, and 
code, and conditions of analysis” (National Academies of Sciences, 
Engineering, and Medicine 2019, 4, my emphasis). RRS notes that reprodu-
cibility “is synonymous with ‘computational reproducibility.’” By contrast, 
RSS defines replicability as the capacity to “obtain[] consistent results across 
studies aimed at answering the same scientific question, each of which has 
obtained its own data” (National Academies of Sciences, Engineering, and 
Medicine 2019, 4, my emphasis throughout). The primary differences 
between reproducibility and replicability are (1) whether the data used are 
the same or different, and (2) how the outcomes are compared.4

According to these definitions, a study is reproducible if, and only if, the 
outputs of the original analysis and the reproducibility check are quantita-
tively identical. Note that reproducibility means that both the data and the 
entire analysis pipeline – including data cleaning, handling missing or 
extreme values, and model specification – are held constant between the 
original study and reproducibility checks. While conducting a reproducibility 
check can be quite difficult – analysis outputs may depend on specific soft-
ware versions or even specific hardware – in principle the conclusions of the 
check are not controversial: either the outputs are quantitatively identical or 
they are not.

By contrast, a study is replicable if, and only if, the design and findings of 
the original study and replication attempts are qualitatively similar. Because 
this qualitative similarity depends on substantive assumptions about which 
similarities and differences are important or unimportant; these assumptions 
apply to every element of the study, including the design, instruments, 
sampling frame, analytical plan, and so on; and these assumptions are 
often implicit and difficult to articulate explicitly, replicability is almost 
always ambiguous and can be highly controversial (Feest 2016).

Reproducibility and replicability are logically independent of each other. 
A study would be reproducible but not replicable if its original data and 
analysis code produce quantitatively identical results on different computers 
but new data lead to qualitatively different conclusions. And a study would 
be replicable but not reproducible if the original statistical analysis was not 
adequately documented (and so conducting exactly the same calculations in 
exactly the same order is impossible) but replication attempts that generate 
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and analyze new data support qualitatively similar conclusions. This logical 
independence means that measures that promote reproducibility do not 
necessarily promote replicability.

Despite this logical independence, as RSS notes, these terms are frequently 
used interchangeably, which leads to significant confusion in the discourse 
surrounding the replication crisis, open science, and Strengthening 
Transparency specifically. Consider Lutter and Zorn (2018), which has 
been frequently cited as evidence that “Posting study data has proven to be 
effective at improving the reliability of research in economics” (18). This 
report treats “reliability,” reproducibility, and replicability as synonymous, 
grouping together studies of different phenomena. For example, the first 
paragraph cites concerns about mass irreplicability (including a citation to 
Open Science Collaboration 2015, a replication study); while the second 
paragraph cites Dewald, Thursby, and Anderson (1988) and Moffitt and 
Glandon (2011), both of which – in the RSS terminology – studied reprodu-
cibility and state explicitly that they did not attempt to replicate any of the 
papers examined. Later, Lutter and Zorn (2018) argue that “Access to the 
data necessary to replicate scientific studies is essential because the results of 
so many peer-reviewed scientific publications have proven to be impossible 
to reproduce,” (Lutter and Zorn 2018, 15, my emphasis) supporting this with 
a mix of studies that examine either reproducibility or replicability but in no 
case both. Note that access to the original data is neither necessary nor 
obviously helpful when attempting to replicate a study, which by definition 
involves collecting new data.

The term “replication” is also sometimes used synonymously with “reana-
lysis,” which “allow[s] assessment of the robustness of the original analysis 
and conclusions by, for instance, showing the variability that can occur when 
a previously omitted variable is added to the statistical model, different 
functional form assumptions are made . . ., or different assumptions are 
made when estimating standard errors and drawing statistical inferences . . . 
” (US EPA 2020, 15,400, my emphasis). These kinds of checks are also called 
sensitivity analyses.

Michaels (2008) observes that reanalysis or robustness has repeatedly been 
used by industry to delay regulation (50–57, 69–78, 86–88). He describes 
a strategy that might be called reverse p-hacking. In p-hacking, researchers or 
analysts conduct variant analyses, attempting to find at least one that pro-
duces a statistically significant result. In reverse p-hacking, the aim is to find 
a variant analysis where the result is not statistically significant. Industry can 
then claim that the original analysis was flawed or not robust and so should 
be discounted or ignored for regulatory purposes. Michaels (2020) argues 
that, in the context of environmental public health, there is a crucial asym-
metry between p-hacking and reverse p-hacking (242–243). On the one hand, 
if there is no effect, then only a few variant analyses will yield statistical 
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significance, and so p-hacking amounts to searching for a needle in 
a haystack. It is possible, but difficult, especially for academic researchers 
with limited resources. On the other hand, unless the effect is quite large 
relative to the sample size (that is, the study has extremely high power), for 
a real effect a fair number of variant analyses will not be statistically sig-
nificant. This makes reverse p-hacking much easier, especially for analysts 
with substantial resources provided by industry. In addition, like other 
scientific fields environmental public health often (though not always; 
Hicks 2018) assumes that false positives (incorrectly accepting the hypothesis 
that there is an effect) are much worse than false negatives (incorrectly 
rejecting the hypothesis that there is an effect). For example, a statistical 
significance threshold of 5% and test power of 80% (when power is consid-
ered at all) implies that avoiding type I errors is four times more important 
than avoiding type II errors (Di Stefano 2001; Fernández Pinto and Hicks 
2019, 2). From this perspective, any reason to question a study’s findings – 
such as a single non-significant variant analysis – can become a reason to 
completely dismiss the study as a false positive.

Robustness requires qualitatively similar findings using the same data but 
different analytical methods. This makes it distinct from both reproducibility 
(same data; same analytic methods) and replicability (different data; same or 
similar analytic methods). Specifically, robustness checks are not informative 
about replicability. Alternative analyses of the same data do not tell us 
whether and to what extent similar conclusions would be supported if 
different data were gathered from a (more or less) different sample under 
(more or less) different conditions. In other words, replicability is a matter of 
generalizability and extrapolation, from the original study’s sample to 
another sample. Merely applying different statistical techniques to the origi-
nal study’s sample will not tell us whether and to what extent we can 
generalize its findings. This point is related to the distinction between inter-
nal and external validity. While robustness checks may give us some indica-
tions of the internal validity of a study, they tell us nothing about how 
broadly its conclusions can be generalized (Cartwright 2007).

It is important to recognize that the replication crisis is, using the RSS 
terminology, a replication crisis. The most high-profile empirical study in 
the replication crisis discourse, Open Science Collaboration (2015), 
reported the results of a collection of replication attempts, not reproduci-
bility or robustness checks. Failures of reproducibility are worrying – if the 
numbers reported in a study don’t match the output of the analysis script, it 
seems that something has gone significantly wrong – but are likely less 
important than whether a study’s results can be generalized – that is, 
replicated. Similarly, failures of robustness raise concerns about p-hacking 
and internal validity, but again these are likely less important than 
replicability.
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Open science and replicability

Observers of the replication crisis have proposed numerous possible causes. 
Some have argued that psychology draws on “theory” in a nebulous and 
imprecise way (Klein 2014; Muthukrishna and Henrich 2019; McPhetres et al. 
2021) or tends to work with underspecified conceptualizations of the variables of 
interest (Wolfgang Stroebe and Strack 2014; Redish et al. 2018; Feest 2019). 
Across fields, observers have raised concerns about statistical power (Fraley, 
Vazire, and Ouzounis 2014; Dumas-Mallet et al. 2017; Romero 2016; van Zwet 
and Cator 2020), the representatives of samples (Henrich, Heine, and Norenzaya 
2010), noisy measurement (Loken and Gelman 2017), and data mismanagement 
(Viglione 2020). With respect to statistical analysis, there have been concerns 
about p-hacking (Simmons, Nelson, and Simonsohn 2011; John, Loewenstein, 
and Prelec 2012), the overinterpretation of p-values (Amrhein, Trafimow, and 
Greenland 2018), coding errors and other software bugs (Herndon, Ash, and 
Pollin 2014), and reporting errors (Nuijten et al. 2016), along with longstanding 
debates over frequentist vs. Bayesian statistics (Lash 2017; Weinberg 2017). 
Beyond the scope of an individual study, some observers have pointed to 
publication bias (Gerber and Malhotra 2008; Scheel, Schijen, and Lakens 
2020), publish-or-perish incentive structures (Smaldino and McElreath 2016), 
and fraud and other forms of scientific misconduct (Stroebe, Postmes, and 
Spears 2012). It is highly plausible that many of these factors contribute to the 
problem of mass irreplicability, where it exists; interact with each other, either 
synergistically or antagonistically; and vary across scientific disciplines. Given 
this complexity, it is difficult to make claims about the relative importance of 
different factors or the relative effectiveness of different interventions.

Instead, my focus is on just one class of interventions, namely, open 
science requirements.5 As a preliminary point, publishing data and code is 
likely to be irrelevant to many of the proposed causes listed above. Open 
science is simply the wrong kind of intervention to increase sample sizes, 
improve the interpretation of p-values, or mitigate pernicious incentive 
structures; these factors require other kinds of interventions, such as using 
consortia to achieve large sample sizes (Kaufman et al. 2012), improving 
statistical standards in peer review (Smaldino, Turner, and Contreras Kallens 
2019), and reforming the criteria used for academic hiring, tenure, and 
promotion. Still, open science might be thought to improve replicability in 
at least two ways: by enabling peer reviewers (and others) to identify coding 
errors and by promoting robustness.

Coding errors

In some cases, coding errors in analysis scripts can lead to spurious conclu-
sions that are qualitatively different from the results of otherwise similar 
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studies. That is, coding errors might lead to replicability problems. One high- 
profile example was a macroeconomic study that, due to coding errors, 
inappropriately discarded some data and incorrectly concluded that high 
public debt stifles economic growth. This error was discovered when another 
team of researchers examined the working spreadsheet (including both data 
and code) used by the original researchers (Herndon, Ash, and Pollin 2014).

While open science is useful for catching these kinds of coding errors, this 
would make it useful for addressing concerns about mass irreplicability only 
insofar as these kinds of coding errors are a widespread problem. However, 
two recent reproducibility studies – one in psychology and the other in 
cognitive science – suggest that, while coding issues leading to reproducibility 
failures can be common, these issues do not frequently produce replicability 
failures.

First, Hardwicke et al. (2018) examined the effect of an open data require-
ment at the journal Cognition using a pre-post design. In the pre-intervention 
sample, only 23/417 (6%) of papers had data that was judged to be “acces-
sible, complete, and understandable”; this increased dramatically, to 85/174 
(49%), in the post-intervention sample (Hardwicke et al. 2018, 6). The 
authors then attempted a reproducibility check on 1324 values from 
a sample of 35 papers with adequate data. They developed a coding scheme 
with four types of reproducibility problems: “insufficient information error” 
when the study and supplemental materials did not include information 
necessary to conduct the reproducibility attempt; minor and major numerical 
errors, when the absolute difference between reported and reproduced values 
were less than or greater than, respectively, 10% of the reported value; and 
“decision errors” when the reproduced p-value “fell on the opposite side of 
the 0.05 boundary” to the reported p-value (Hardwicke et al. 2018, 9). The 
authors found two insufficient information errors, 146 minor numerical 
errors, 64 major numerical errors, and no decision errors. Furthermore, 
“There were major errors related to effect sizes in only five cases, and for 
four of these the magnitude of the error was low” (Hardwicke et al. 2018, 11). 
The authors also incorporated a qualitative assessment of “whether any non- 
reproducibility of target outcomes affected the corresponding substantive 
conclusions presented in the original articles” (Hardwicke et al. 2018, 10), 
which can be understood as an indicator for potential replicability problems. 
They concluded that “in almost all cases . . . it appeared unlikely that the 
reproducibility issues we encountered have substantial implications for the 
corresponding conclusions outlined in the original articles” (Hardwicke et al. 
2018, 11). That is, despite some irreproducible results, these authors did not 
find evidence that these results might lead to replication failures.

Next, Obels et al. (2020) conducted reproducibility checks of preregistered 
studies in psychology. Out of their sample of 62 studies, data and code were 
obtained for 36 studies (58%) and results were reproducible for 21 studies 
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(21/36 = 58%). They note that these rates are higher than previous reprodu-
cibility checks in psychology (Obels et al. 2020, 234), plausibly because of the 
association between preregistration and the open science movement. For the 
15 studies for which data and code were available but the results could not be 
reproduced, Obels et al. (2020) identified 3 main problems: “code to repro-
duce some values was missing,” “code gave errors (e.g., variables in the data 
set were missing, or functions did not run as expected),” and in one case the 
code ran but extremely slowly (Obels et al. 2020, 233). While the authors 
identify specific areas for improvement in making open data and code 
genuinely usable and reproducible, in no case did they find indications that 
coding errors might have rendered the studies irreplicable.

I was unable to find any similar large-scale reproducibility study in an 
environmental public health field. Page et al. (2018) examined a sample of 
systematic reviews from across the biomedical literature, to determine 
whether primary study details (such as effect estimates and standard errors) 
were reported with enough detail that one could, in principle, reproduce 
meta-analytic effects estimates. Sixty-five percent of the systematic reviews in 
the sample reported all the necessary data, and 33% included data or code 
accessibility statements. However, Page et al. (2018) did not attempt to 
actually reproduce any values.

Robustness

Open data certainly enables robustness checks, and thereby promotes robust-
ness. But, as I noted above, robustness checks are not informative about 
replicability. A study might be robust in one particular sample, but fail to 
generalize to other samples, and thus fail to be replicable. And a study might 
replicate well but only so long as one particular analysis strategy (such as 
choice of covariates) is used. This latter kind of case might seem to be 
concerning. But, in particular instances, there may be good reasons – based 
on well-established theory or background assumptions – for using only that 
particular analysis strategy. For example, suppose a researcher has good 
reasons for assuming a certain set of causal relations among an exposure, 
outcome, and other variables, as expressed by a directed acyclic graph 
(DAG). Given this DAG, causal inference theory might entail that any 
other choice of covariates would produce biased estimates (Pearl, Glymour, 
and Jewell 2016; Hernán and Robins 2019). This kind of case is probably 
uncommon, but is also far from impossible, especially as more researchers in 
observational fields adopt the causal inference framework.

Robustness might be considered valuable on its own, independent of both 
reproducibility and replicability. I agree that it’s good to understand how 
statistical estimates might vary across the range of reasonable analytical 
approaches. However, open science practices are not the only way to ensure 
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robustness, and strict open science requirements might not be preferable in 
a policy setting. For example, when evaluating study quality for inclusion in 
a systematic review, along with features such as the study design, US EPA 
might consider whether and to what extent robustness checks were con-
ducted and reported. Robustness checks and sensitivity analyses are already 
standard practice in many fields, including environmental public health; 
researchers frequently conduct and report robustness checks in the primary 
text of their papers, and sometimes include extensive details in the supple-
mental materials. Recently, methodologists have developed computational 
methods such as “multiverse analysis” and specification curve analysis to 
make robustness checks more rigorous and systematic (Steegen et al. 2016; 
Simonsohn, Simmons, and Nelson 2020). Work in this area has already 
developed software packages that simplify conducting such analyses in pop-
ular statistical programming languages, such as R (Masur and Scharkow 
2020) and Stata (Young and Holsteen 2021). So, insofar as robustness is 
valuable on its own, it seems that an agency, such as US EPA, could evaluate 
it without introducing a strong open data requirement. Insofar as robustness 
checks might be less burdensome than an open data requirement on 
researchers and agency staff, there may be a compelling cost-benefit argu-
ment against an open data requirement.

In short, while open data requirements, such as Strengthening 
Transparency, can enable robustness checks, these checks do not do much 
to address concerns about replicability, and might go beyond what would be 
required to encourage researchers to examine and report the robustness of 
their findings.

An easier critique of strengthening transparency?

It might be argued that the work that I have done in the last few sections is 
unnecessary.6 Instead, we might simply argue that the costs of a strong open 
science requirement like Strengthening Transparency – the delay in new 
science as researchers adopt open science methods; restricting policymakers 
from using certain kinds of observational studies; overturning established 
regulations because the studies used to support them have been disqualified – 
outweigh the benefits. However, if proponents of Strengthening 
Transparency are right, and there is a problem of mass irreplicability in 
environmental public health, then these costs are either negligible or impos-
sible to estimate. If certain kinds of observational studies really are irreplic-
able “junk science,” then there is no cost to excluding them from 
consideration in developing regulations. Indeed, excluding bad, unreliable 
studies might lead to better regulation in terms of overall human welfare. Or, 
suppose we have no reliable estimates of, say, the health impacts of PM2:5. In 
this case, it’s impossible for us to reliably estimate the costs and benefits of 

50 D. J. HICKS



PM2:5 regulation, and so impossible for us to reliably estimate the costs of 
overturning such regulation.

I agree with the argument that the costs of Strengthening Transparency 
would have far outweighed the benefits. But this is because I’m skeptical of 
the proponents’ claim that the replication crisis extends to environmental 
public health. So I think the “simple” cost-benefit argument assumes the kind 
of analysis that I am giving in this paper.

Conclusion: Moving forward with open science in environmental 
public health

In this paper, I have argued that the primary argument for Strengthening 
Transparency has two crucial weaknesses: there is no evidence of mass 
irreplicability in environmental public health; and even if there is 
a problem of mass irreplicability in these fields, an open data requirement 
would not address it. But there are a number of other arguments for open 
data, both generally and in the context of environmental public health 
specifically. In this final section, I first review these arguments, recall the 
discussion of the costs of open science from the introduction, and discuss 
how specific lines of funding might be used to promote the benefits of open 
science while reducing the costs to practicing researchers.

There are at least four general arguments for open science, and open data 
and code specifically. First, pedagogically, open science enables students to 
learn analysis techniques by examining and emulating how “real data” are 
analyzed in “real research,” well before they have the resources and skill to 
collect similar data on their own (Toelch and Ostwald 2018). Journal articles 
and statistical models necessarily simplify the details of working with data, 
especially activities such as data cleaning and exploratory data analysis that 
are not usually taught in traditional statistics courses (Peng and Dominici 
2008; Leonelli and Tempini 2020). Similarly, many researchers might find it 
easier to learn a new analytical technique by reproducing the analysis of 
a paper that uses the technique, rather than trying to implement the 
technique from scratch on their own based only on an abstract methods 
paper.

Second, in some cases open data sets produced by two or more sources can 
be linked, supporting the development of new insights (Leonelli and Tempini 
2018). For example, common approaches to studying the health impacts of 
air pollution combine air pollution monitoring data with medical records 
(either individual or aggregate) and perhaps census demographic data, linked 
using geographic identifiers (as in Tessum et al. 2021). Open science prac-
tices can promote these uses both by supporting the publication of data not 
available elsewhere or previously – for example, redacted medical records – 
and by making data more readily findable – for example, rather than 
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navigating a confusing government website, readers can download the data-
set using a link provided with the paper.

Third, open science can make scientific studies more accessible to com-
munity groups working outside of academia and government, such as envir-
onmental justice advocates. Consider an environmental justice coalition that 
does not have any members or partners who are trained epidemiologists; but 
does have one or two members who have undergraduate training in statistics 
using the open-source software R. Following the first point, these members 
might lack the background necessary to understand a scientific paper by 
reading the text alone; but might be able to understand it much better by 
reproducing its analysis. Then, following the second point, these environ-
mental justice advocates might be able to conduct analyses relevant to their 
own concerns by linking published datasets from one or more studies, 
government data, and so on. In this way, open science might promote 
environmental justice, a key aim of environmental public health 
(Bezuidenhout et al. 2017; Elliott and Resnik 2019; Fernández Pinto and 
Hicks 2019).

Fourth, open data and code do promote reproducibility and robustness 
checks. These checks can be informative about aspects of the reliability and 
relevance of a study even if they are less important than replicability.

There is also an argument for open science in environmental public health 
specifically. Michaels (2008) argues that regulated industries misuse protec-
tions for confidential business information (CBI) to protect data on the 
hazards of their products from public scrutiny (249–251) and that open 
data requirements should be applied equally to independent, government- 
sponsored, and industry-sponsored study data (253–255).7 Brock et al. (2021) 
develop this argument, arguing that various open science practices (including 
open data and code, as well as preregistration and open access publishing) 
“might help alleviate public skepticism and increase public involvement” in 
environmental policymaking “by making all value judgments (e.g., the defi-
nition of specific protection goals), data, and evaluation tools used in deci-
sion-making accessible and transparent for the public” (2). (Though Elliott 
et al. 2017 give some evidence suggesting that values disclosures, specifically, 
might decrease perceived trustworthiness.)

For these reasons, environmental public health researchers and policy-
makers might find open science practices compelling even if they cannot 
address concerns about irreplicability. But open science practices are not 
without cost. As discussed in the introduction, doing open data well requires 
significant infrastructure, training, and maintenance; without support for 
these components, a strong open science requirement is likely to be highly 
burdensome for scientists, especially those who work with sensitive data, 
such as patient medical records. In this scenario, many researchers would be 
likely to do open science poorly or simply ignore open science requirements 
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(the findings of Obels et al. (2020) suggest this has happened in psychology). 
Then, insofar as many observers continue to confuse replicability and repro-
ducibility, mass irreproducibility (due to code and data that are not available 
or properly prepared for reproducibility checks) might be taken incorrectly 
as evidence for mass irreplicability. In addition, as discussed above, there are 
epistemic concerns that “special interest groups [might] spread misleading 
reanalyses of [open] data” (Elliott and Resnik 2019, 075002–3).

Given the expense required to adopt open science practices – and do them 
well – I would recommend that Congress allocate substantial funds to US 
EPA, NIEHS, and other relevant research funding bodies to support infra-
structure development and training for open science in environmental public 
health. Specifically, I recommend four major areas of research funding. First, 
insofar as some researchers and observers are concerned about the possibility 
of mass irreplicability in environmental public health, one line of funding 
might be used to support efforts to close the evidence gaps that I identified 
above. Meta-analysts might be encouraged to use funnel plots or other 
techniques to detect publication bias and to conduct meta-meta-analyses. 
This line of funding might also be used to support large-scale reproducibility 
and replication checks (with the caveat that replication checks might not be 
feasible for some kinds of study designs).

A second line of funding would be for designing, constructing, and 
especially maintaining secure data enclaves and other infrastructure, with 
which environmental public health researchers can make their data available 
to other researchers in ways that will protect the privacy of participants (Lash 
and Vandenbroucke 2012 propose “a publicly available registry that describes 
data already collected for observational studies of human subjects”). Third, 
for training researchers in open science methods and technologies. Perhaps 
the most obvious target for such training is graduate students, who will not 
have to struggle with unlearning old practices and can become the leaders of 
their fields in the future. But I would suggest also providing training for 
interested members of the general public, such as environmental justice 
advocates, through workshops, weekend courses, and community-based par-
ticipatory research (CBPR) projects that incorporate a training component 
for community partners. Even if these kinds of efforts do not enable mem-
bers of the general public to conduct their own analyses of open environ-
mental public health data, it is likely to improve their ability to understand 
and constructively critique such analyses (Elliott and Resnik 2019; 
Garzón-Galvis, Richardson, and Solomon 2020).

While second and third lines of funding can do much to support the 
adoption of open science practices in environmental public health over time, 
they cannot do so overnight. So, fourth, I recommend funding long-term 
staff scientist positions, for data managers and other open science specialists 
who can provide support to established researchers who are not themselves 
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familiar with open science practices. It is unreasonable to expect a researcher 
who is approaching retirement to learn radically different ways of conducting 
and disseminating their science. These established researchers should have 
ready access to open science specialists who can do this work for them. 
Because staff scientists in these positions will be responsible for maintaining 
the integrity of open data and code over significant periods of time, it is 
important that their contracts are for relatively long durations, such as 5– 
10 years.

Notes

1. The rule was finalized in the closing days of the Trump administration in January 2021, 
but vacated and remanded in February 2021 for procedural violations (King 2021). The 
Biden administration declined to pursue further work on the rule and formally 
abandoned it a few months later.

2. Hicks n.d.a. examines the tension between the epistemic value of scrutinizing raw data 
and the pragmatic value of quickly enacting regulation to protect human health and the 
environment.

3. “Open science” is a broad label, covering numerous different practices (Munafò et al. 
2017 Table 1). Strengthening Transparency made no reference to preregistration, the 
practice of publishing a time-stamped analysis plan before beginning data collection. 
Preregistration is frequently discussed in the open science/replication crisis discourse, 
where it is widely regarded as essentially for addressing concerns about p-hacking and 
publication bias (Wagenmakers et al. 2012). However, preregistration is likely to be less 
appropriate for some key study designs in environmental public health, including long- 
term cohort studies – where research questions might not be formulated until decades 
after data collection has begun – and the use of administrative data – where the exact 
details of the analysis plan might depend on which variables turn out to be available 
(Blair et al. 2009, 1810; Lash and Vandenbroucke 2012). Because it was not included in 
Strengthening Transparency and is often inappropriate in environmental public health, 
I do not consider preregistration in my analysis of open science here.

4. Other authors give similar definitions, including Bollen et al. (2015), Patil, Peng, and 
Leek (2019), and Schöch (2021). Note that Schöch flips the definitions of replicability 
and reproducibility, relative to the RSS definitions. S. N. Goodman, Fanelli, and 
Ioannidis (2016) initially follow the definitions from Bollen et al. (2015), then complain 
that these “definitions do not provide clear operational criteria for what constitutes 
successful replication or reproduction”; they go on to distinguish three senses of 
replicability (in the RSS terminology), mostly using the term “reproducibility” but 
sometimes using “replicability” as a synonym. Penders, Holbrook, and de Rijcke 
(2019) review several alternative definitions of these terms, designed to get at different 
distinctions. Patil, Peng, and Leek (2019) offers perhaps the most general framework 
for precise definitions of reproducibility, replicability, and related terms. For my 
purposes here, it is not important exactly which term is associated with which defini-
tion. What is important for my purposes is the distinction between “repeating 
research” (to use Schöch’s general term) that uses old data vs. that which gathers 
new data. Open data is relevant to the former but not the latter. Thanks to an 
anonymous reviewer for suggesting some of these alternative definitions.
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5. Again, by “open science” I mean publishing data and code. I explicitly set aside 
preregistration because it is less appropriate for key study designs in environmental 
public health and was not included in the Strengthening Transparency requirements.

6. Thanks to an anonymous reviewer for suggesting this objection.
7. Notably, Michaels seems to favor the Health Effects Institute model, rather than 

publicly accessible data, calling for “a well-funded office with the power to review all 
of the science used by the regulators, including privately funded science, and to 
advocate for standards that would truly protect the public” (Michaels 2008, 255).
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