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Spotted owl populations are analyzed 
using matrix models (Exercise 8.5.22).

The fitness of a garter snake is a function 
of the degree of stripedness and the 
number of reversals of direction while 
fleeing a predator (Exercise 9.1.7).

The project on page 297 asks how birds 
can minimize power and energy by 
flapping their wings versus gliding.

The population size of some species, like this 
sea urchin, can be measured by evaluating a 
certain integral, as explored in Exercise 5.3.49.

The interaction between Daphnia 
and their parasites is analyzed in 
Case Study 2 (page xlvi).

Populations of blowflies are modeled 
by chaotic recursions (page 430).

The energy needed by an iguana to 
run is a function of two variables, 
weight and speed (Exercise 9.2.47).

Dinosaur fossils can be dated using 
potassium-40 (Exercise 3.6.12).

The project on page 222 illustrates how 
mathematics can be used to minimize 
red blood cell loss during surgery.

Jellyfish locomotion is modeled by a 
differential equation in Exercise 10.1.34.

The screw-worm fly was effectively 
eliminated using the sterile insect 
technique (Exercise 5.6.24).

The growth of a yeast population leads 
naturally to the study of differential 
equations (Section 7.1).

The doubling time of a population of the 
bacterium G. lamblia is determined in  
Exercise 1.4.29.

The Speedo LZR Racer reduces drag 
in the water, resulting in dramatically 
improved performance. The project 
on page 603 explains why.

In Example 9.4.2 we use the Chain 
Rule to discuss whether tuna biomass 
is increasing or decreasing.

The optimal foraging time for bumblebees 
is determined in Example 4.4.2.

The vertical trajectory of zebra finches is 
modeled by a quadratic function (Figure 1.2.8).

The size of the gray-wolf population depends 
on the size of the food supply and the 
number of competitors (Exercise 9.4.21).

Example 4.4.4 investigates the time 
that loons spend foraging.

The area of a cross-section of a human 
brain is estimated in Exercise 6.Review.5.

The project on page 479 determines 
the critical vaccination coverage 
required to eradicate a disease.

Natural killer cells attack pathogens and  
are found in two states described by a pair  
of differential equations developed in  
Section 10.3.

In Example 4.2.6 a junco has a choice 
of habitats with different seed densities 
and we determine the choice with 
the greatest energy reward.

The project on page 467 investigates 
logarithmic spirals, such as those 
found in the shell of a nautilus.
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7.1 Modeling with Differential Equations
PROJECT: Chaotic Blowflies and the Dynamics of Populations

7.2 Phase Plots, Equilibria, and Stability
PROJECT: Catastrophic Population Collapse: An Introduction to Bifurcation Theory

7.3  Direction Fields and Euler’s Method

7.4 Separable Equations
PROJECT: Why Does Urea Concentration Rebound After Dialysis?

7.5  Systems of Differential Equations
PROJECT: The Flight Path of Hunting Raptors

7.6  Phase Plane Analysis
PROJECT: Determining the Critical Vaccination Coverage

CASE STUDY 2c: Hosts, Parasites, and Time-Travel

Shown are otoliths from  

Atlantic redfish—they were used 

to estimate fish age when fitting 

the von Bertalanffy differential 

equation in Example 7.4.2.

Dr. Cristoph Stransky / Thuenen Institute of Sea Fisheries
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ONE OF THE MOST IMPORTANT applications of calculus is to differential equa- 
tions. A wide variety of biological processes can be modeled using differential 
equations, and such equations have provided enormous insight into our under-

standing of the dynamics of living organisms—how individuals and populations change 
over time.

420  CHAPTER 7 | Differential Equations

7.1 Modeling with Differential Equations

Many biological processes occur continuously through time. Examples include the 
change in concentration of a drug in the bloodstream of a patient, or the growth in mass 
of individual organisms. Even the population dynamics of many species, from size of 
bacteria colonies to the size of the human population, are sometimes best modeled by 
assuming the quantity of interest (population size, in this case) changes continuously 
through time. (For example, see page 146.) As we will see in this chapter, differential 
equations provide a convenient and natural way to construct such models.

■ Models of Population Growth
A differential equation is an equation that contains an unknown function and one or 
more of its derivatives. Such equations arise in a variety of situations but one of the most 
common is in models of population growth.

Consider the growth of a population of yeast. Yeast are single-celled organisms used 
for a variety of purposes, including alcohol production and baking. Researchers col-
lected the data in Table 1 from a yeast population grown in liquid culture, measuring the 
population size (in number of individuals per mL of culture) at different points in time 
(in hours).1 Figure 1 is a scatter plot of these data.
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(h)
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( 3106ymL)

0  0.200 19 209
1  0.330 20 190
2  0.500 21 210
3  1.10 22 200
4  1.40 23 215
5  3.10 24 220
6  3.50 25 200
7  9.00 26 180
8  10.0 27 213
9  25.4 28 210

10  27.0 29 210
11  55.0 30 220
12  76.0 31 213
13  115 32 200
14  160 33 211
15  162 34 200
16  190 35 208
17  193 36 230
18  190

Table 1

1. B. K. Mable et al., “Masking and Purging Mutations following EMS Treatment in Haploid, Diploid, and 
Tetraploid Yeast (Saccharomyces cerevisiae),” Genetical Research 77 (2001): 9–26.

FIGURE 1 A scatter plot of the data in Table 1
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SECTION 7.1 | Modeling with Differential Equations  421

Although the population size in Table 1 was measured at one-hour intervals, the yeast 
themselves are replicating in a way that is nearly continuous in time. In other words, no 
matter how small we make the interval of time between successive measurements, some 
reproduction and death will likely have occurred.

How can we model such processes? Let’s start simply and assume that each indi-
vidual yeast cell produces offspring at a constant rate !. Thus the total rate of offspring 
production (that is, the total birth rate) at time t is !Nstd, where Nstd is the number of 
yeast cells present at time t. Likewise, suppose the total loss rate of yeast cells through 
death at time t is "Nstd, where " is a constant death rate per individual cell.

With the preceding assumptions, we see that the rate of change of the number of yeast 
cells at time t is the total birth rate minus the total death rate, !Nstd 2 "Nstd. And since 
the rate of change of Nstd, the number of yeast cells, can also be written as dNstdydt, 
we can write

(1) 
dNstd

dt
− !Nstd 2 "Nstd 

(See Figure 2.) Now if we define the constant r as

(2) r − ! 2 " 

then Equation 1 can be written more simply as

(3) 
dNstd

dt
− rNstd 

The quantity r in Equation 2 is called the per capita growth rate. It is the rate of 
growth of the population per individual in the population. Since dNydt is the rate of 
growth of the population, the rate of growth per individual is dNydt divided by Nstd. 
From Equation 3, we get

dNstd
dt

 
1

Nstd
− r

showing that r is indeed the per capita growth rate.
Equation 3 involves the unknown function Nstd along with its first derivative and 

is therefore a differential equation. The population size N is the dependent variable 
and time t is the independent variable. This differential equation tells us that the rate 
of change of the population size of yeast at any time is proportional to the size of the 
population at that time. Put another way, the rate of reproduction of each individual in 
the population (that is, the per capita rate of reproduction) is constant and equal to r.

The model given by Equation 3 is one of the simplest models for population growth. 
Let’s see how well it predicts the data in Table 1. First notice that if r . 0, then from 
Equation 3

dNstd
dt

− rNstd . 0

Biologically, if the per capita growth rate is positive (meaning that the birth rate ! is 
larger than the death rate "), then the yeast population will increase. On the other hand, 
if r , 0 (the birth rate ! is smaller than the death rate "), then from Equation 3

dNstd
dt

− rNstd , 0

and the yeast population will decrease.

 BB  

∫N(t) mN(t)N(t)

dN(t)
dt =∫N(t)-mN(t)

Births Population
size

Deaths

FIGURE 2

Equation 3 can be derived directly by 
simply assuming that the yeast pop-
ulation grows at a rate proportional 
to its size. The rate of growth of the 
population is the derivative dNydt, and 
therefore we obtain Equation 3, where 
r is a constant of proportionality. See 
Equation 3.6.1, where it was called the 
law of natural growth.
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422  CHAPTER 7 | Differential Equations

To make more progress, we would like to obtain an explicit function Nstd that tells 
us exactly what the population size will be at any time. Such a function Nstd is called a 
solution of the differential equation. It is a function that, when substituted into both sides 
of the differential equation, produces an equality.

Equation 3 tells us that Nstd is a function whose derivative is equal to the function 
itself, multiplied by a constant, r. As we have seen in Chapter 3, exponential functions 
have exactly this property. In fact we can see that the function Nstd − Cert satisfies the 
differential equation. In particular, substituting this choice of Nstd into Equation 3, we 
obtain

N9std − Csrertd − rsCertd − rNstd

demonstrating that Nstd − Cert does, in fact, satisfy the differential equation. (We 
will see in Section 7.4 that there is no other solution.) Here C is an arbitrary constant. 
We can obtain a biological interpretation of this constant by setting t − 0: This gives 
Ns0d − Cers0d − C, revealing that C is the population size at t − 0. Figure 3 shows 
examples of the solution curves for different values of C when r . 0.   

N

0 t

We can already see from Figure 3 that Equation 3 does not capture all of the features 
of the data in Figure 1. For example, it appears to predict continued population growth. 
To obtain a more satisfying comparison, however, we should choose appropriate values 
for the constants C and r.

From the data in Table 1 we see that Ns0d − 0.200 and therefore C − 0.200. One way  
to obtain a suitable value for r is to consider the factor by which the population of yeast 
grew over some fixed period of time. For example, in the first hour the yeast population  
grew by a factor of

0.330
0.200

− 1.65

On the other hand, according to the model, the factor by which this population is pre-
dicted to have grown is

Ns1d
Ns0d

−
Cer ?1

Cer ?0 − er

Therefore a reasonable choice for r would be the value for which er − 1.65. Solving this 
equation for r gives r − ln 1.65 < 0.5. Thus, our final model is

Nstd − 0.2e 0.5 t

Figures 4(a) and 4(b) both plot this equation along with the data from Table 1, but 
on two different intervals of time. The model provides remarkably accurate predictions 

FIGURE 3
The family of solutions Nstd − Cert 

with r . 0, t > 0, and  
different values of C
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See Exercise 11.3.25.

SECTION 7.1 | Modeling with Differential Equations  423

over the first 13 or so hours, as shown in Figure 4(a), but its predictions are extremely 
inaccurate for later time points in the data [see Figure 4(b)].
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In retrospect, one obvious biological reason for this discrepancy is that the model 
assumes the per capita growth rate remains constant at r, regardless of the population 
size. In reality, as the population gets large, we might expect that crowding and resource 
depletion will cause the per capita growth rate to decline.

In fact, using the data in Table 1, it is possible to show that the per capita growth rate 
for the yeast population varies as a function of population size according to the equation

per capita growth rate < 0.55 2 0.0026N

In other words,

dNstd
dt

 
1

Nstd
< 0.55 2 0.0026Nstd

FIGURE 4

 BB  
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424  CHAPTER 7 | Differential Equations

Thus a better differential equation for modeling the yeast population is

dN
dt

− s0.55 2 0.0026NdN

We will learn how to analyze differential equations of this form in later sections. For 
now we simply note that these techniques can be used to show that the solution is

Nstd −
42e 0.55 t

209.8 1 0.2e0.55 t

(See Exercise 18.) This function is plotted in Figure 5 along with the data from Table 1. 
We see that this model provides quite accurate predictions over the entire time period 
of the experiment.
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Our revised yeast model is a specific example of a more general model for popula-
tion growth called the logistic differential equation. Suppose that the per capita growth 
rate of a population decreases linearly as the population size increases, from a value of 
r when N − 0 to a value of 0 when N − K. The positive constant K is referred to as the 
carrying capacity; it is the population size at which crowding and resource depletion 
cause the per capita growth rate to be zero. In Exercise 16 you are asked to show that this 
results in the differential equation

(4) 
dN
dt

− rS1 2
N
KD N 

Equation 4 is called the logistic differential equation, or more simply the logistic 
equation. In Exercise 17 you are asked to show that, for the yeast model, r − 0.55 and 
K < 210.

We can obtain some qualitative features of the solutions of Equation 4 by inspec-
tion. We first observe that the constant functions Nstd − 0 and Nstd − K are solutions 
because, in either case, the left side of Equation 4 is then zero (the derivative of a constant 
is zero), and the right side is zero as well. Such constant solutions are called equilibrium 
solutions. (A formal definition of an equilibrium solution will be given in Section 7.2.)

FIGURE 5

The logistic growth equation was first 
proposed by Dutch mathematical biolo-
gist Pierre-François Verhulst in the 
1840s as a model for world population 
growth.
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SECTION 7.1 | Modeling with Differential Equations  425

If the initial population Ns0d lies between 0 and K, then the right side of Equa-
tion 4 is positive, so N9std . 0 and the population increases (assuming r . 0). But if 
the population exceeds the carrying capacity sN . Kd, then 1 2 NyK is negative, so 
N9std , 0 and the population decreases. In either case, if the population approaches 
the carrying capacity sN l Kd, then N9std l 0, which means the population levels off.

■ Classifying Differential Equations
Differential equations involve an unknown function and its derivatives. The order of 
the differential equation is the order of the highest derivative appearing in the equa-
tion. For example, y9std 1 2ystd − 3 is a first-order differential equation, whereas 
5y0std 2 y9std − ystd is a second-order differential equation. The solution of a differen-
tial equation is a function that, when substituted into the equation, produces an equality. 
For example, we can verify that the function ystd − e t 2 2 is a solution of the differen-
tial equation dyydt − 2 1 ystd as follows: Substituting the function into the left side of 
this differential equation gives

dy
dt

−
d
dt

se t 2 2d − e t

and substituting it into the right side gives

2 1 se t 2 2d − e t

The right and left sides evaluate to the same expression, demonstrating that the function 
ystd − e t 2 2 is indeed a solution.

Typically, there are several solutions to a differential equation. In many problems 
we need to find the particular solution that satisfies an additional condition of the form 
yst0d − y0. This is called an initial condition. The problem of finding a solution of the 
differential equation that also satisfies an initial condition is called an initial-value prob-
lem. Graphically, when we impose an initial condition, we look at the family of solution 
curves and pick the one that passes through the point st0, y0d. For an example involving 
the logistic equation, see Figure 6. This corresponds to measuring the state of a system at 
time t0 and using the solution of the initial-value problem to predict the future behavior 
of the system.

Verifying a solution is relatively easy, but obtaining a solution in the first place  
may not be. The difficulty of this task—and indeed whether or not it is even possible— 
is determined by the type of the differential equation. We consider three types of first-
order differential equations: pure time, autonomous, and nonautonomous differential 
equations.

Pure-Time Differential Equations
Pure-time differential equations involve the derivative of the function but not the func-
tion itself. For example, if the rate of change of population size y depends on time only, 
this results in a differential equation of the form

dy
dt

− f std

We have already studied this type of equation in the context of antidifferentiation (in 
Section 4.6) and integration (in Chapter 5). We can obtain the solution ystd by calcu-
lating the antiderivative of f std. Although we refer to such equations as pure-time dif-
ferential equations, the independent variable need not be time.

N

t

N0

0

FIGURE 6
The family of solutions of the logistic 
equation. The solution curve satisfy-
ing the initial condition Ns0d − N0 is 
shown in red.
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426  CHAPTER 7 | Differential Equations

 EXAMPLE 1  | Spatial species distributions As we move up a stream from 
its mouth toward its source, suppose that the population size n of a species of insect at 
a fixed point in time changes over space according to

dn
dx

− 1 2 2e2 x

where 0 < x < 10 is the spatial location (in km) between the mouth (x − 0 km) and a 
dam (x − 10 km). (This situation is described in Figure 7.) Suppose the population size 
at the dam is ns10d − 20. Obtain an expression for the population size as a function of 
distance from the mouth.

Dam

x

10 km0 km

Mouth

SOLUTION We first seek a function nsxd that satisfies the given differential equation. 
This function can be obtained by integrating both sides of the differential equation 
with respect to x:

 
dn
dx

− 1 2 2e2 x

 y 
dn
dx

 dx − y s1 2 2e2 xd dx

 nsxd − x 1 2e2 x 1 C

The function nsxd − x 1 2e2 x 1 C is a family of solutions. We now need to choose 
the specific function from this family that satisfies the condition ns10d − 20. Substi-
tuting x − 10 into nsxd gives

ns10d − 10 1 2e2 10 1 C − 20

This tells us that we must choose C − 10 2 2e2 10. Therefore the population size as a 
function of x is nsxd − x 1 2e2 x 1 10 2 2e2 10. See Figure 8. ■

Autonomous Differential Equations
Autonomous differential equations arise when the equation involves both the deriva-
tive of the function and the function itself, but when there is no explicit dependence on 
the independent variable. Such equations have the general form

dy
dt

− tsyd

where y is the unknown function of the independent variable t. Equations 3 and 4 are 
examples of autonomous differential equations.

 EXAMPLE 2  | BB  Modeling intravenous drug delivery Often the rate at 
which the body metabolizes a drug is proportional to the current concentration of the 
drug. In other words, if ystd is the concentration of a drug in the bloodstream at time t 

FIGURE 7
Population density along a stream

n(x)
20

10

2 4 6 8 10 x0

(10, 20)

FIGURE 8
The family of solutions giving popula-
tion size along the stream. The solution 
curve satisfying the initial condition 
ns10d − 20 is shown in red.
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SECTION 7.1 | Modeling with Differential Equations  427

(measured in mgymL), then

outflow of drug through metabolism − ky

where k is a positive constant of proportionality (with units 1yhour).
For drugs administered through a constant intravenous supply, the concentration in 

the bloodstream will also be replenished at a rate that is determined by the drug con- 
centration in the supply:

inflow of drug through IV supply − A

where A is a positive constant with units mgysmL hourd. The total rate of change of 
concentration resulting from both processes (that is, dyydt) is therefore

dy
dt

− inflow 2 outflow

or

(5) 
dy
dt

− A 2 ky 

Equation 5 is an autonomous differential equation because it involves the dependent 
variable y but not the independent variable t. Figure 9 shows a family of solutions to 
differential equation (5), and suggests that the drug concentration is predicted to 
approach a limiting value of Ayk at time passes, regardless of the initial concentration.
 ■

Nonautonomous Differential Equations
Nonautonomous differential equations are a combination of pure-time and autono-
mous differential equations. They arise when the equation involves the function and its 
derivative, and the independent variable appears explicitly as well.

 EXAMPLE 3  | Administering drugs A drug is administered to a patient intra-
venously at a time-varying rate of Astd − 1 1 sin t mgysmL hourd, and is metabo-
lized at a rate of ystd mgysmL hourd, where ystd is the concentration at time t (in units 
of mgymL). Thus y obeys the differential equation

(6) 
dy
dt

− 1 1 sin t 2 y 

Verify that the family of functions ystd − Ce2 t 1 1
2s2 2 cos t 1 sin td satisfies the 

differential equation.

SOLUTION Substituting ystd into the left side of the differential equation (6) gives 
2 Ce2 t 1 1

2ssin t 1 cos td. Substituting it into the right side gives

 1 1 sin t 2 y − 1 1 sin t 2 Ce2 t 2 1
2s2 2 cos t 1 sin td

 − 2 Ce2 t 1 1
2ssin t 1 cos td

Since both quantities are the same, this family of functions y satisfies the differential 
equation. ■
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FIGURE 9
The family of solutions of Equation 5
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EXERCISES 7.1
 1.  Show that y − 2

3e x 1 e2 2x is a solution of the differential 
equation y9 1 2y − 2e x. Is this differential equation 
pure-time, autonomous, or nonautonomous?

 2.  Verify that y − 2 t cos t 2 t is a solution of the initial-value 
problem

t 
dy
dt

− y 1 t 2 sin t  ys!d − 0

   Is this differential equation pure-time, autonomous, or 
nonautonomous?

 3.  Show that y − e2 at cos t is a solution of the differential 
equation y9 − 2 e2 atsa cos t 1 sin td. Is this differential 
equation pure-time, autonomous, or nonautonomous?

 4.  (a)  Show that every member of the family of functions 
y − sln x 1 Cdyx is a solution of the differential 
equation x 2y9 1 xy − 1.

 ;  (b)  Illustrate part (a) by graphing several members of the 
family of solutions on a common screen.

  (c)  Find a solution of the differential equation that satisfies 
the initial condition ys1d − 2.

  (d)  Find a solution of the differential equation that satisfies 
the initial condition ys2d − 1.

 5. (a)  What can you say about a solution of the equation 
y9 − 2 y 2 just by looking at the differential equation?

  (b)  Verify that all members of the family y − 1ysx 1 C d 
are solutions of the equation in part (a).

  (c)  Can you think of a solution of the differential equation 
y9 − 2 y 2 that is not a member of the family in part (b)?

  (d) Find a solution of the initial-value problem

y9 − 2 y 2  ys0d − 0.5

 6. (a)  What can you say about the graph of a solution of the 
equation y9 − xy 3 when x is close to 0? What if x is 
large?

  (b)  Verify that all members of the family y − sc 2 x 2 d2 1y2 
are solutions of the differential equation y9 − xy 3.

 ;  (c)  Graph several members of the family of solutions on a 
common screen. Do the graphs confirm what you pre-
dicted in part (a)?

  (d) Find a solution of the initial-value problem

y9 − xy 3  ys0d − 2

 7.  Logistic growth A population is modeled by the differ- 
ential equation

dN
dt

− 1.2NS1 2
N

4200D
   where Nstd is the number of individuals at time t (measured 

in days).
  (a) For what values of N is the population increasing?
  (b) For what values of N is the population decreasing?
  (c) What are the equilibrium solutions?

 8.  The Fitzhugh-Nagumo model for the electrical impulse in 
a neuron states that, in the absence of relaxation effects, the 
electrical potential in a neuron vstd obeys the differential 

 EXAMPLE 4  | Administering drugs (continued) What is the drug concen-
tration as a function of time for the model in Example 3 if the initial drug concentra-
tion at t − 0 is zero?

SOLUTION We seek the specific member from the family of functions, 
ystd − Ce2 t 1 1

2s2 2 cos t 1 sin td, that also satisfies ys0d − 0. Evaluating, we obtain

ys0d − Ce2 0 1 1
2s2 2 cos 0 1 sin 0d − C 1 1

2 − 0

and therefore C − 2 1
2. Thus the solution to the initial-value problem is 

ystd − 1
2s2 2 e2 t 2 cos t 1 sin td, as shown in Figure 10.

 

1.0

2.0

3.0

2 4 6 8 t

y

0  ■

FIGURE 10
The family of solutions giving drug 

concentration ystd. The solution curve 
satisfying the initial condition  

ys0d − 0 is shown in red.
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 12.  Von Bertalanffy’s equation states that the rate of growth  
in length of an individual fish is proportional to the differ-
ence between the current length L and the asymptotic length 
L ` (in cm).

  (a)  Write a differential equation that expresses this idea.
  (b)  Make a rough sketch of the graph of a solution to a typi-

cal initial-value problem for this differential equation.

  13–15 Drug dissolution Differential equations have been 
used extensively in the study of drug dissolution for patients 
given oral medications. The three simplest equations used are the 
zero-order kinetic equation, the Noyes-Whitney equation, and 
the Weibull equation. All assume that the initial concentration is 
zero but make different assumptions about how the concentration 
increases over time during the dissolution of the medication.

 13.  The zero-order kinetic equation states that the rate of 
change in the concentration of drug c (in mgymL) during 
dissolution is governed by the differential equation

dc
dt

− k

   where k is a positive constant. Is this differential equation 
pure-time, autonomous, or nonautonomous? State in words 
what this differential equation says about how drug dissolu-
tion occurs. What is the solution of this differential equation 
with the initial condition cs0d − 0?

 14.  The Noyes-Whitney equation for the dynamics of the drug 
concentration is

dc
dt

− kscs 2 cd

   where k and cs are positive constants. Is this differential 
equation pure-time, autonomous, or nonautonomous? State 
in words what this differential equation says about how drug 
dissolution occurs. Verify that c − css1 2 e2 ktd is the solu-
tion to this equation for the initial condition cs0d − 0.

 15.  The Weibull equation for the dynamics of the drug concen- 
tration is

dc
dt

−
k
t b  scs 2 cd

   where k, cs, and b are positive constants and b , 1. Notice 
that this differential equation is undefined when t − 0. Is this 
differential equation pure-time, autonomous, or nonautono-
mous? State in words what this differential equation says 
about how drug dissolution occurs. Verify that

c − cs(1 2 e2 #t 12 b)

   is a solution for t ± 0, where # − kys1 2 bd. 

 16.  The logistic differential equation Suppose that the per 
capita growth rate of a population of size N declines linearly 
from a value of r when N − 0 to a value of 0 when N − K. 

   equation
dv
dt

− 2 vfv 2 2 s1 1 adv 1 ag

   where a is a constant and 0 , a , 1.
  (a)  For what values of v is v unchanging (that is, dvydt − 0)?
  (b)  For what values of v is v increasing?
  (c)  For what values of v is v decreasing?

 9.  Explain why the functions with the given graphs can’t be 
solutions of the differential equation 

dy
dt

− e tsy 2 1d2

y

t1

1

y

t1

1

(a) (b)

 10.  The function with the given graph is a solution of one of the 
following differential equations. Decide which is the correct 
equation and justify your answer.

0 x

y

  A. y9 − 1 1 xy B. y9 − 2 2xy C. y9 − 1 2 2xy

 11.  Match the differential equations with the solution graphs 
labeled I–IV. Give reasons for your choices.

  (a) y9 − 1 1 x 2 1 y 2 (b) y9 − xe2 x22 y2

  (c) y9 −
1

1 1 e x21 y2  (d) y9 − sinsxyd cossxyd
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■ PROJECT Chaotic Blowflies and the Dynamics of Populations BB

In Section 1.6 we explored the dynamics of the logistic difference equation. After some 
simplification, the population size in successive times steps was given by the recursion

(1) xt1 1 − Rmax xts1 2 xtd 

where Rmax is a positive constant. See Equation 1.6.7. For large enough values of Rmax the 
recursion exhibits very complicated behavior, as shown in Figure 1. In fact, Equation 1 is 
famous for being one of the simplest recursions that exhibits chaotic dynamics.1

The plots for the logistic differential equation that we have seen in Section 7.1 do not 
exhibit this type of complicated behavior. Here we explore why. To do so, we will derive 
the logistic differential equation from the logistic difference equation.

 1.   In Section 1.6 we obtained Equation 1 by starting with the equation

Nt1 1 − f1 1 rs1 2 NtyKdg Nt

   (See Equation 1.6.5.) If the time interval is of length h instead, where h , 1, then 
this equation becomes

Nt1 h − f1 1 rhs1 2 NtyKdg Nt

    Use this result to derive a differential equation for N by writing an expression for 

   
Nt1 h 2 Nt

h
 and then letting h l 0.

 2.   Show that with the change of variables y − NyK the differential equation from 
Problem 1 can be written as dyydt − rys1 2 yd.

 3.   In Section 7.4 we will learn how to solve differential equations like the one in 
Problem 2. If ys0d − y0, the solution is ystd − y0yfe2 rt 1 y0s1 2 e2 rtdg. Sketch 
this solution for different choices of y0 and r. This solution can never exhibit the 
sort of behavior of Equation 1 that is displayed in Figure 1. Explain why from a 
biological standpoint.

The reason for the complicated dynamics in Figure 1 is the existence of a time-lag 
between the current population size xt and its effects on population regulation. This 
allows the population to overshoot its carrying capacity. Once an overshoot occurs, a dra-
matic population decline will ensue. The resulting low population size then sets the stage 
for a large population rebound and another overshoot of the carrying capacity. Some 

10 20

0.5

1.0

40 5030

xt

t0

FIGURE 1
x is plotted against time with x0 − 0.1 
and Rmax − 3.89.
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 18.  Modeling yeast populations (cont.) Verify that

Nstd −
42e 0.55 t

209.8 1 0.2e0.55 t

   is an approximate solution of the differential equation

dN
dt

− s0.55 2 0.0026NdN

   Show that the differential equation for N is

dN
dt

− rS1 2
N
KD N

 17.  Modeling yeast populations Use the fact that the per 
capita growth rate of the yeast population in Table 1 is 
0.55 2 0.0026N to show that, in terms of the logistic 
equation (4), r − 0.55 and K < 210.

1. R. May, “Simple Mathematical Models with Very Complicated Dynamics,” Nature 261 (1976): 459–67.
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7.4 Separable Equations

We have looked at first-order differential equations from a geometric point of view 
(phase plots and direction fields) and from a numerical point of view (Euler’s method). 
What about the symbolic point of view? It would be helpful to have an explicit formula 
for a solution of a differential equation. Although this is not always possible, in this sec-
tion we examine a commonly encountered type of differential equation that can be 
solved explicitly.

A separable equation is a first-order differential equation in which the expression 
for dyydt can be factored as a function of t times a function of y. In other words, it can 
be written in the form

dy
dt

− f std tsyd

The name separable comes from the fact that the expression on the right side can be  
sep arated into a function of t and a function of y. Equivalently, if tsyd ± 0, we could 
write

(1) 
dy
dt

−
f std
hsyd

 

where hsyd − 1ytsyd. To solve this equation we rewrite it in the differential form

hsyd dy − f std dt

so that all y’s are on one side of the equation and all t’s are on the other side. Then we 
inte grate both sides of the equation:

(2) y hsyd dy − y f std dt 

Equation 2 defines y implicitly as a function of t. In some cases we may be able to solve 
for y in terms of t.

We can verify that Equation 2 is indeed a solution using the Chain Rule: If h and f  
satisfy (2), then

 
d
dt

 Sy hsyd dyD −
d
dt

 Sy f std dtD
so  

d
dy

 Sy hsyd dyD dy
dt

 − f std  

and  hsyd 
dy
dt

− f std  

Thus Equation 1 is satisfied.
One of the simplest applications of the technique of separation of variables is to the 

differential equation for exponential growth introduced in Sections 3.6 and 7.1. In par-
ticular, if ystd is the value of some quantity at time t and if the rate of change of y with 
respect to t is proportional to its size ystd, then

dy
dt

− ky

The technique for solving separable 
differential equations was first used by 
James Bernoulli (in 1690) in solving a 
problem about pendulums and by Leibniz 
(in a letter to Huygens in 1691). John 
Bernoulli explained the general method 
in a paper published in 1694.
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where k is a constant. If y ± 0 we can write this equation in terms of differentials and 
integrate both sides as follows:

 y 
dy
y

− y k dt

 ln | y | − kt 1 C

 | y | − ekt1C − eCekt

 y − Aekt

where A s− 6eC d is an arbitrary constant. This is the solution presented in Sections 
3.6 and 7.1. If y − 0 we cannot divide the differential equation by y. However, we can 
readily verify that, in this case, y − 0 is also a solution. Therefore the constant A in the 
solution y − Aekt can also be 0. This corresponds to an equilibrium solution.

 EXAMPLE 1 

(a) Solve the differential equation 
dy
dx

−
x 2

y 2 .

(b) Find the solution of this equation that satisfies the initial condition ys0d − 2.

SOLUTION
(a) We write the equation in terms of differentials and integrate both sides:

y 2 dy − x 2 dx

 y y 2 dy − y x 2 dx

1
3 y 3 − 1

3 x 3 1 C

 where C is an arbitrary constant. (We could have used a constant C1 on the left side 
and another constant C2 on the right side. But then we could combine these constants 
by writing C − C2 2 C1.)

Solving for y, we get

y − s3 x 3 1 3C  

We could leave the solution like this or we could write it in the form

y − s3 x 3 1 K  

where K − 3C. (Since C is an arbitrary constant, so is K.) Figure 1 plots this family of 
solutions.

(b) If we put x − 0 in the general solution in part (a), we get ys0d − s3 K  . To satisfy 
the initial condition ys0d − 2, we must have s3 K  − 2 and so K − 8. Thus the solution 
of the initial-value problem is

 y − s3 x 3 1 8  ■

 EXAMPLE 2  | The von Bertalanffy growth equation A commonly used 
differential equation for the growth, in length, of an individual fish is

dL
da

− ksL` 2 Ld

3

_3

_3 3

FIGURE 1
Graphs of several members of the 
family of solutions of the differential 
equation in Example 1. The solution of 
the initial-value problem in part (b) is 
shown in red.

The absolute value can be cleared by 
noting that we can write

 y − eCe kt  if y . 0

 y − 2eCe kt  if y , 0

Therefore y − Ae kt, where A − 6eC.
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where Lsad is length (in cm) at age a (in years), L` is the asymptotic length, and k is a 
positive constant whose units are 1yyear.
(a) Find a family of solutions for length as a function of age.
(b) Find the solution that has an initial length of Ls0d − 2.

SOLUTION
(a) Assuming L ± L`, we can write the equation in differential form as

dL
L` 2 L

− k da

Now integrate to obtain

y 
dL

L` 2 L
− y k da

or

2ln | L` 2 L | − ka 1 C1

Now we can solve for L:

| L` 2 L | − e2kae2C1

or

L − L` 2 Ce2ka

where C − 6e2C1 is an arbitrary constant. An example of this solution with particular 
constant values is shown in Figure 2.

If L − L`, we cannot divide the differential equation by L 2 L`, but we can verify 
that L − L` is itself another solution. Thus the constant C in the preceding solution can 
be 0 as well, and this again corresponds to an equilibrium solution.

(b) Setting a − 0 in the family of solutions from part (a) gives Ls0d − L` 2 C. To 
satisfy the initial condition Ls0d − 2, we therefore require that L` 2 C − 2, or 
C − L` 2 2. The desired solution is thus L − L` 2 sL` 2 2de2ka or

L − L`s1 2 e2kad 1 2e2ka

From this we can see why L` is called the asymptotic length. As a l `, L l L`. ■

 EXAMPLE 3  | Allometric growth During growth, the claw of fiddler crabs 
increases in length at a per unit rate that is 1.57 times larger than that of its overall 
body width. In other words, if L and B denote claw length and body width, respectively 
(in mm), then

dL
dt

 
1
L

− 1.57 
dB
dt

 
1
B

(See Figure 3.) Find an equation that specifies claw length as a function of body width 
at any point during growth.

SOLUTION Multiplying both sides by dt gives

dL
L

− 1.57 
dB
B

Von Bertalanffy
Ludwig von Bertalanffy (1901–1972) 
was an Austrian-born biologist who first 
published this differential equation for 
individual growth in 1934. It captures 
the idea that the rate of growth in length 
is proportional to the difference between 
current length and asymptotic length.
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FIGURE 2
Age-length relationship for Atlantic 
redfish along with the solution to the 
von Bertalanffy equation with constants 
specific to redfish.
Source: Adapted from C. Stransky et al., “Age 
Determination and Growth of Atlantic Redfish 
(Sebastes marinus and S. mentella): Bias and 
Precision of Age Readers and Otolith Preparation 
Methods,” ICES Journal of Marine Science 62 
(2005): 655–70.

L

B

FIGURE 3
Three crabs of different sizes, along 
with their claw lengths
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Now integrate both sides to get

ln L − 1.57 ln B 1 C

On a log-log plot this is a straight line. Figure 4 plots data displaying this relationship. 
We can also rearrange our solution to the differential equation to obtain a power 
function for allometric scaling like those in Sections 1.2 and 1.5. Defining k − eC, we 
obtain

L − kB 1.57

 

ln B

ln L

log(body size) (mm)

lo
g(

cl
aw

 s
iz

e)
 (m

m
)

321
0
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run

rise runslope=rise =1.57

 ■

 EXAMPLE 4  | Population dynamics Suppose the per capita growth rate of a 
population decreases as the population size n increases, in a way that is described by 
the expression 1ys1 1 nd. The differential equation for n is therefore

1
n

 
dn
dt

−
1

1 1 n
Solve this differential equation.

SOLUTION Writing the equation in differential form gives

y 
1 1 n

n
 dn − y dt

(3) ln n 1 n − t 1 C 

where C is an arbitrary constant. Equation 3 gives the family of solutions implicitly. In 
this case it’s impossible to solve the equation to express n explicitly as a function of t.
 ■

 EXAMPLE 5  | Gompertz model of tumor growth The Gompertz differen-
tial equation models the growth of a tumor in volume V  (in mm 3) and is given by

dV
dt

− asln b 2 ln VdV

where a and b are positive constants.
(a) Find a family of solutions for tumor volume as a function of time.
(b) Find the solution that has an initial tumor volume of Vs0d − 1 mm 3.

SOLUTION First note that ln b 2 ln V − lnsbyVd. Therefore, assuming V ± 0 and 
V ± b, we can write the equation in differential form and integrate as

y 
dV

V flnsbyVdg
− y a dt

FIGURE 4
Data for the relationship between claw 

length and body width on a log-log plot

The Gompertz differential equation 
assumes that the per volume growth 
rate of the tumor declines as the tumor 
volume gets larger according to the 
expression asln b 2 ln V d. Notice that 
the tumor growth rate is zero when 
V − b, where b represents the asymp-
totic tumor volume.
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We can then integrate the left side using the substitution u − lnsbyVd . We get

2ln | lnsbyVd | − at 1 C1

Now we can solve for V  by exponentiating both sides twice:

 lnsbyVd − Ce2at

and then  byV − eCe2at  

or  V − be2Ce2at 

where C − 6e2C1 is an arbitrary constant.
On the other hand, we can verify that V − b is also an (equilibrium) solution.

(b) Setting t − 0 in the family of solutions from part (a) gives Vs0d − be2C. To satisfy 
the initial condition Vs0d − 1, we therefore require that 1 − be2C or 0 − ln b 2 C. 
Therefore the desired solution is V − be2sln bde2at or

V − bse2ln bde2at

 ? V − bS 1
bDe2at

Figure 5 shows model predictions and data for three different sets of constant values 
with initial condition Vs0d − 35. ■

 EXAMPLE 6  | The logistic equation Find the solution to the following 
initial-value problem involving the logistic equation:

dN
dt

− rS1 2
N
KDN  Ns0d − N0

SOLUTION Assuming N ± 0 and N ± K, we can write the equation in differential 
form and integrate as

(4) y 
dN

s1 2 NyKdN
− y r dt 

To evaluate the integral on the left side, we write

1
s1 2 NyKdN

−
K

NsK 2 Nd

Using partial fractions (see Section 5.6), we get

K
NsK 2 Nd

−
1
N

1
1

K 2 N

0 t

V

8 12 164
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FIGURE 5
The solution of the Gompertz model 
fitted to tumor data.
Source: Adapted from D. Miklavčič et al., “Math-
ematical Modelling of Tumor Growth in Mice Fol-
lowing Electrotherapy and Bleomycin Treatment,” 
Mathematics and Computers in Simulation 39 
(1995): 597–602.
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This enables us to rewrite Equation 4:

 y S 1
N

1
1

K 2 NDdN − yr dt

 ln | N | 2 ln | K 2 N | − rt 1 C

 ln Z K 2 N
N Z − 2rt 2 C

 Z K 2 N
N Z − e2rt2C − e2Ce2rt

(5)  
K 2 N

N
− Ae2rt  

where A − 6e2C. Solving Equation 5 for N, we get

K
N

2 1 − Ae2rt  ?  
N
K

−
1

1 1 Ae2rt

so N −
K

1 1 Ae2rt

We find the value of A by putting t − 0 in Equation 5. If t − 0, then N − N0 (the initial 
population), so

K 2 N0

N0
− Ae 0 − A

Thus the solution to the logistic equation is

Nstd −
K

1 1 Ae2rt   where A −
K 2 N0

N0

On the other hand, if N − 0, then we can verify that this is also an (equilibrium) 
solution. Likewise, N − K is an equilibrium solution.

We can now return to the model of yeast growth from page 424. As mentioned in 
Section 7.1, the model output in Figure 7.1.5 comes from the logistic growth equation 
with constant values N0 − 0.2, K − 210, and r − 0.55. Substituting these values into 
the solution that we just obtained gives (after some rearrangement)

Nstd −
42e 0.55t

209.8 1 0.2e 0.55t

This is exactly the solution presented on page 424. ■
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EXERCISES 7.4
  1–10 Solve the differential equation.

 1. 
dy
dx

− xy 2 2. 
dy
dx

− xe2y

 3. sx 2 1 1dy9 − xy 4. sy 2 1 xy 2dy9 − 1

 5. sy 1 sin ydy9 − x 1 x 3 6. 
du
dr

−
1 1 sr 

1 1 su 

 7. 
dy
dt

−
te t

ys1 1 y 2 
 8. 

dy
d!

−
e y sin2 !

y sec !

 9. 
du
dt

− 2 1 2u 1 t 1 tu 10. 
dz
dt

1 e t1z − 0

  11–18 Find the solution of the differential equation that satis-
fies the given initial condition.

 11. 
dy
dx

−
x
y

,  ys0d − 23

 12. 
dy
dx

−
ln x
xy

,  ys1d − 2

 13. 
du
dt

−
2t 1 sec2t

2u
,  us0d − 25

 14. y9 −
xy sin x
y 1 1

,  ys0d − 1

 15. x ln x − ys1 1 s3 1 y 2 dy9,  ys1d − 1

 16. 
dP
dt

− sPt ,  Ps1d − 2

 17. y9 tan x − a 1 y,  ys"y3d − a, 0 , x , "y2

 18. 
dL
dt

− kL2 ln t,  Ls1d − 21

 19.  Find an equation of the curve that passes through the point 
s0, 1d and whose slope at sx, yd is xy.

 20.  Find the function f   such that f 9sxd − f sxdf1 2 f sxdg and 
f s0d − 1

2.

 21.  Solve the differential equation y9 − x 1 y by making the 
change of variable u − x 1 y.

 22.  Solve the differential equation xy9 − y 1 xe yyx by making  
the change of variable v − yyx.

 23. (a)  Solve the differential equation y9 − 2xs1 2 y 2  .

 ;  (b)  Solve the initial-value problem y9 − 2xs1 2 y 2  ,  
ys0d − 0, and graph the solution.

  (c)  Does the initial-value problem y9 − 2xs1 2 y 2  , 
ys0d − 2, have a solution? Explain.

 ; 24.  Solve the equation e2yy9 1 cos x − 0 and graph several 
members of the family of solutions. How does the solution 
curve change as the constant C varies?

 CAS  25.  Solve the initial-value problem y9 − ssin xdysin y, 
ys0d − "y2, and graph the solution (if your CAS does 
implicit plots).

 CAS  26.  Solve the equation y9 − xsx 2 1 1ysye y d and graph several 
members of the family of solutions (if your CAS does 
implicit plots). How does the solution curve change as the 
constant C varies?

 CAS   27–28 
 (a)  Use a computer algebra system to draw a direction field  

for the differential equation. Get a printout and use it to 
sketch some solution curves without solving the differen-
tial equation.

 (b) Solve the differential equation.
  (c)  Use the CAS to draw several members of the family of 

solu tions obtained in part (b). Compare with the curves 
from part (a).

 27. y9 − y 2 28. y9 − xy

  29–31 An integral equation is an equation that contains an 
unknown function ysxd and an integral that involves ysxd. Solve 
the given integral equation. [Hint: Use an initial condition 
obtained from the integral equation.]

 29. ysxd − 2 1 yx

2
 ft 2 t ystdg dt

 30. ysxd − 2 1 yx

1
 

dt
ty std

,  x . 0

 31. ysxd − 4 1 yx

0
 2tsy std dt

  32–34 Seasonality and habitat destruction The per capita 
growth rate of many species varies temporally for a variety of 
reasons, including seasonality and habitat destruction. Sup-
pose nstd represents the population size at time t, where n is 
measured in individuals and t is measured in years. Solve the 
differential equation for habitat destruction and describe the 
predicted population dynamics.

 32.    n9 − e2tn  ns0d − n0

   Here the per capita growth rate declines over time, but 
always remains positive. It is modeled by the function e2t.

 33.   n9 − se2t 2 1dn  ns0d − n0

   Here the per capita growth rate declines over time, starting 
at zero and becoming negative. It is modeled by the 
function e2t 2 1.

 34.   n9 − sr 2 atdn  ns0d − n0

   Here the per capita growth rate declines over time, going 
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fBg − b molesyL and we write x − fCg, then we have

dx
dt

− ksa 2 xdsb 2 xd

 CAS   (a)  Assuming that a ± b, find x as a function of t. Use the 
fact that the initial concentration of C is 0.

  (b)  Find x std assuming that a − b. How does this expres- 
 sion for x std simplify if it is known that fCg − 1

2 a after  
20 seconds?

 41.  Population genetics Exercise 7.2.16 derives the fol- 
lowing equation from population genetics that specifies the 
evolutionary dynamics of the frequency of a bacterial strain 
of interest:

dp
dt

− sps1 2 pd  ps0d − p0

   where s is a constant. Find the solution, pstd.

 42.  Mutation-selection balance The equation of Exer- 
cise 41 can be extended to account for a deleterious 
mutation that destroys the bacterial strain of interest. The 
differential equation becomes

dp
dt

− sps1 2 pd 2 !p  ps0d − p0

   where ! is the mutation rate and ! . 0 (see Exercise 
7.2.19). Solve this initial-value problem for s ± !.

 43.  Glucose administration A glucose solution is adminis-
tered intravenously to the bloodstream at a constant rate r. 
As the glucose is added, it is converted into other substances 
and removed from the bloodstream at a rate that is propor-
tional to the concentration at that time. Thus a model for the 
concentration Cstd (in mgymL) of the glucose solution in 
the bloodstream is

dC
dt

− r 2 kC

  where k is a positive constant.
  (a)  Suppose that the concentration at time t − 0 is C0. 

Determine the concentration at any time t by solving the 
initial-value problem.

  (b)  Assuming that C0 , ryk, find lim t l ` Cstd and interpret 
your answer.

 44.  mRNA transcription The intermediate molecule mRNA 
arises in the decoding of DNA: it is produced by a process 
called transcription and it eventually decays. Suppose that 
the rate of transcription is changing exponentially accord-
ing to the expression e bt, where b is a positive constant and 
mRNA has a constant per capita decay rate of k. The num-
ber of mRNA transcript molecules T thus changes as

dT
dt

− e bt 2 kT

   Although the form of this equation is similar to that from 
Exercise 43, the first term on the right side is now time-
varying. As a result, the differential equation is no longer 
separable; however, the equation can be solved using the 

from positive to negative. It is modeled by the function 
r 2 at, where r and a are positive constants.

 35.  Noyes-Whitney drug dissolution Solve the initial-value 
problem in Exercise 7.1.14 for the Noyes-Whitney drug 
dissolution equation.

 36.  Weibull drug dissolution Solve the Weibull drug dissolu-
tion equation given in Exercise 7.1.15.

  37–38 Bacteria colony growth In Exercises 1.6.35–36, 
we obtained difference equations for the growth of circular 
and spherical colonies of bacteria. These equations are based 
on the idea that nutrients for growth are available only at the 
colony–environment interface. Continous-time versions of these 
equations are presented here, where k is a positive constant and 
n is the number of bacteria (in thousands). Solve each differen-
tial equation to find the size of the colony as a function of time. 
Assume ns0d − 1.

 37.  
dn
dt

− kn 1y2 (circular colony)

 38. 
dn
dt

− kn 2y3 (spherical colony)

 39.  Tumor growth The Gompertz equation in Example 5 is 
not the only possibility for modeling tumor growth. Sup- 
pose that a tumor can be modeled as a spherical collection 
of cells and it acquires resources for growth only through its 
surface area (like the spherical bacterial colony in Exer- 
cise 38). All cells in a tumor are also subject to a constant 
per capita death rate. The dynamics of tumor mass M (in 
grams) might therefore be modeled as

dM
dt

− kM 2y3 2 !M

   where ! and k are positive constants. The first term rep-
resents tumor growth via nutrients entering through the 
surface. The second term represents a constant per capita 
death rate.

  (a)  Assuming that k − 1 and Ms0d − 1, find M as a func-
tion of t.

  (b)  What happens to the tumor mass as t l `?
  (c)  Assuming tumor mass is proportional to its volume, 

the diameter of the tumor is related to its mass as 
D − aM 1y3, where a . 0. Derive a differential equation 
for D and show that it has the form of the von Berta-
lanffy equation in Example 2.

 40.  In an elementary chemical reaction, single molecules of  
two reactants A and B form a molecule of the product C: 
A 1 B l C. The law of mass action states that the rate  
of reaction is proportional to the product of the concentra-
tions of A and B: 

d fCg
dt

− k fAg fBg

   Thus, if the initial concentrations are fAg − a molesyL  and 
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 49.  When a raindrop falls, it increases in size and so its mass at 
time t is a function of t, namely, mstd. The rate of growth of 
the mass is kmstd for some positive constant k. When we 
apply New ton’s Law of Motion to the raindrop, we get 
smvd9 − tm, where v is the velocity of the raindrop 
(directed downward) and t is the acceleration due to gravity. 
The terminal velocity of the raindrop is lim t l ` vstd. Find an 
expression for the terminal velocity in terms of t and k.

 50.  Homeostasis refers to a state in which the nutrient content 
of a consumer is independent of the nutrient content of its 
food. In the absence of homeostasis, a model proposed by 
Sterner and Elser is given by

dy
dx

−
1
!

 
y
x

   where x and y represent the nutrient content of the food and 
the consumer, respectively, and ! is a constant with ! > 1.

  (a)  Solve the differential equation.
  (b)  What happens when ! − 1? What happens when  

! l `?
Source: Adapted from R. Sterner et al., Ecological Stoichiometry: The Biol-
ogy of Elements from Molecules to the Biosphere (Princeton, NJ: Princeton 
University Press, 2002).

 51.  Tissue culture  Let Astd be the area of a tissue culture at 
time t and let M be the final area of the tissue when growth 
is complete. Most cell divisions occur on the periphery of 
the tissue and the number of cells on the periphery is pro-
portional to sAstd. So a reasonable model for the growth of 
tissue is obtained by assuming that the rate of growth of the 
area is jointly proportional to sAstd and M 2 Astd.

  (a)  Formulate a differential equation and use it to show that  
the tissue grows fastest when Astd − 1

3 M.
 CAS   (b)  Solve the differential equation to find an expression  

for Astd. Use a computer algebra system to perform the 
integration.

 52.  According to Newton’s Law of Universal Gravitation, the  
gravitational force on an object of mass m that has been pro-
jected vertically upward from the earth’s surface is 

F −
mtR 2

sx 1 Rd2

   where x − xstd is the object’s distance above the surface at 
time t, R is the earth’s radius, and t is the acceleration due 
to gravity. Also, by Newton’s Second Law, 
F − ma − m sdvydtd and so

m 
dv
dt

− 2
mtR 2

sx 1 Rd2

  (a)  Suppose a rocket is fired vertically upward with an 
initial velocity v0. Let h be the maximum height above 
the surface reached by the object. Show that

v0 − Î 2tRh
R 1 h

 

   [Hint: By the Chain Rule, m sdvydtd − mv sdvydxd.]

change of variables ystd − e kt T std. Solve the differential 
equation using this technique.

  45–48 Mixing problems Mixing problems arise in many 
areas of science. They typically involve a tank of fixed capac-
ity filled with a well-mixed solution of some substance (such as 
salt). Solution of a given concentration enters the tank at a fixed 
rate and the mixture, thoroughly stirred, leaves at a fixed rate. 
We will focus on examples where the inflow and outflow rates 
are the same, so that the volume of solution in the tank remains 
constant. If ystd denotes the amount of substance in the tank at 
time t, then y9 − srate ind 2 srate outd.

yª=rb _  ry
V

y(t)
V

(amount/L)(L/min)

r 

Volume=V

(L/min) (amount/L)
r b.

.

 45.  A tank contains 1000 L of brine with 15 kg of dissolved 
salt. Pure water enters the tank at a rate of 10 Lymin. The 
solution is kept thoroughly mixed and drains from the tank 
at the same rate. How much salt is in the tank (a) after  
t minutes? (b) After 20 minutes?

 46.  Dialysis treatment removes urea and other waste products 
from a patient’s blood by diverting some of the blood flow 
externally through a machine called a dialyzer. Suppose that 
a patient’s blood volume is V mL and blood is diverted 
through the dialyzer at a rate of K mLymin. At the start of 
treatment the patient’s blood contains cs0d − c0 mgymL of 
urea.

  (a)  Formulate the process of dialysis as an initial-value 
problem.

  (b)  What is the concentration of urea in the patient’s blood 
after t minutes of dialysis? Compare your answer to 
Exercise 1.5.53.

 47.  A vat with 500 gallons of beer contains 4% alcohol (by  
volume). Beer with 6% alcohol is pumped into the vat at a 
rate of 5 galymin and the mixture is pumped out at the same 
rate. What is the percentage of alcohol after an hour?

 48.  Lung ventilation A patient is placed on a ventilator to 
remove CO2 from the lungs. Suppose that the rate of ven- 
tilation is 100 mLys, with the percentage of CO2 (by 
volume) in the inflow being zero. Suppose also that air is 
absorbed by the lungs at a rate of 10 mLys and gas con- 
sisting of 100% CO2 is excreted back into the lungs at the 
same rate. The volume of a typical pair of lungs is around 
4000 mL. If the patient starts ventilation with 20% of lung 
volume being CO2, what volume of CO2 will remain in the 
lungs after 30 minutes?
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Suppose that this relationship is such that the rate of 
increase with island area is always proportional to the 
density of species (that is, number of species per unit area) 
with a proportionality constant between 0 and 1. Find the 
function that describes the species-area relationship. 
Compare your answer to Example 1.5.14.

  (b)  Calculate ve − lim h l ` v0. This limit is called the 
escape velocity for the earth.

  (c)  Use R − 3960 mi and t − 32 ftys2 to calculate ve in  
feet per second and in miles per second.

 53.  Species–area relationship The number of species found 
on an island typically increases with the area of the island. 

■ PROJECT Why Does Urea Concentration Rebound after Dialysis? 

A patient undergoes dialysis treatment to remove urea from the bloodstream when the  
kidneys are not functioning properly. Blood is diverted from the patient through a 
machine that filters out the urea. In many patients, once a dialysis session ends there 
is a relatively rapid rebound in the concentration of urea in the blood—too rapid to be 
accounted for by the production of new urea (see Figure 1).
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One explanation for this rebound is that urea also exists in other parts of the body, 
and there is continual movement of urea from these other areas into the bloodstream. 
Modeling this movement results in a so-called “two-compartment” model, as shown in 
Figure 2.

In Exercise 7.4.46 we saw that a common, one-compartment model for dialysis is

dc
dt

− 2
K
V

 c

where K and V  are positive constants and c is the concentration of urea in the blood (in 
mgymL). To construct a two-compartment model we need to describe the dynamics 
using two variables, c for the concentration in the blood and p for the concentration in 
the inaccessible pool (both measured in mgymL). A model for this process is

(1) 
dc
dt

− 2
K
V

 c 1 ap  
dp
dt

− 2ap 

where K, V , and a are positive constants.

 1.   Explain the terms in Equations 1 and the assumptions that underlie them.

 2.   The dynamics of c depend on both the concentration in the blood c and in the 
inaccessible pool p. However, the dynamics of p depend only on p and so we can 
solve the differential equation for p independently of the differential equation for 
c. What is this solution, assuming that the initial concentration of urea in the pool 
is c0?

FIGURE 1
Urea rebound after dialysis

dialysisc
blood

p

FIGURE 2
A schematic diagram of the  
two-compartment model
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