


C H A P T E R

8
Differential Equations

The focus of this chapter is on solving and analyzing differential equations. Specifically, we will
learn how to! use the method of separation of variables to solve separable differential equations;! find equilibria and determine their stability graphically and analytically;! describe the behavior of solutions of differential equations, starting from different initial

conditions;! derive differential equations to model many different biological systems;! use the method of integrating factors to solve linear first order differential equations;! use compartment models to analyze biological systems with multiple interacting
components.

In Chapter 5 we showed how mathematical models of population growth and of the
passage of medication through the human body often take the form of differential
equations. For example, suppose that after t hours, the size of a population of cells is
N(t). If half of the cells divide every hour and if cell death can be ignored, then we
may model the growth of the population by a differential equation:

dN
dt

= 1
2

N (8.1)

Previously we have shown that if the population size at time t = 0 is 50 (that is,
N(0) = 50) then the function N(t) = 50et/2 solves (i.e., satisfies) the differential equa-
tion and matches the initial population size. But is there a way to derive the solution
from the differential equation directly? In Chapter 6 we learned that integration may
be thought of as being the inverse of differentiation. In Section 8.1 we will describe the
most important use of this result: solving differential equations by integrating them.

We call (8.1) a first order differential equation because it includes the first order
derivative dN/dt, but no higher order derivatives (like d2N/dt2, d3N/dt3, etc.). The
techniques introduced in this chapter will enable you to solve first order differential
equations. In Section 8.1 we will learn how to solve differential equations of the form:

dN
dt

= f (t)g (N) (8.2)

in which the right-hand side of the equation can be written as the product of two
functions, f and g , f (t) is a function of t only, and g (N) is a function of N only. Equation
(8.1) is an example of this kind of equation; we may set g (N) = 1

2 N (a function of N)
and f (t) = 1 (a function of t).

Using the method from Section 8.1, we will be able to solve many different math-
ematical models. For some types of differential equations, however, it is possible to
get qualitative information about the solution (e.g., the shape of the graph of N(t)
against t or the limit of N(t) as t → ∞) without solving the equation, as we shall learn
in Section 8.2. In Section 8.3 we will derive and analyze differential equation models
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428 Chapter 8 Differential Equations

for many different biological systems, either by solving the equations, or by analyzing
them using the methods from Section 8.2.

In Section 8.4 we will go on to learn how to solve equations of the form:

dN
dt

+ a(t)N = b(t)

where a(t) and b(t) are functions of t only. An example of this type of equation is:

dN
dt

+ N
t

= t2 + 1

in which a(t) = 1/t and b(t) = t2 + 1. In addition to learning both of these techniques,
an important skill for solving differential equations is to recognize which of the two
types an equation belongs to, and in Section 8.4 you will practice identifying the types
of different equations.

The method of Section 8.4 will enable us to solve a type of biological model
called a two-compartment model. These models are useful to understand how mat-
ter moves through biological systems (e.g., how a cell exchanges salts and ions with its
surroundings).

8.1 Solving Separable Differential Equations
Let’s return to the growth model in (8.1):

dN
dt

= 1
2

N, t ≥ 0 (8.3)

We are interested in finding a function N(t) that satisfies (8.3). Such a function is called
a solution of the differential equation. We already know that, with N(0) = 50

N(t) = 50et/2, t ≥ 0

is a solution of (8.3). To confirm that the function N(t) is a solution, we differentiate
N(t):

dN
dt

= 1
2︸ ︷︷ ︸

N(t)

50et/2 = 1
2

N(t).

Let’s recall how a differential equation like (8.3) might arise. (8.3) can be written in
the form:

1
N

dN
dt

= 1
2

So for this population, the per capita growth rate is constant. Put another way, a
fixed fraction of organisms within the population will die in one unit of time, and a
fixed fraction of organisms will reproduce in one unit of time. In many bacteria and
fungi the rate of reproduction varies over the course of a day—reproduction is slowest
at night when temperatures are lowest, and then the reproductive rate climbs during
the day as temperatures increase again. Thus, the per capita growth rate may oscillate
over time, as illustrated in Figure 8.1.

We can modify our original differential equation (8.3) to include these oscillations:
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Figure 8.1 Per capita growth rate in
Equation (8.4).

dN
dt

= 1
2

(1 + sin(2πt)) N, t ≥ 0 (8.4)

In this section, we will learn how to solve differential equations like (8.4). To find
the solution, we must integrate. We begin with a general method for solving separable
differential equations; that is, equations of the form:

dy
dt

= f (t)g (y) (8.5)

where f (t) is a function of t only and g (y) is a function of y only.
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We divide both sides of (8.5) by g (y) [assuming that g (y) ̸= 0]:

1
g (y)

dy
dt

= f (t)

Then, integrating both sides with respect to t, we find that
∫

1
g (y)

dy
dt

dt =
∫

f (t) dt.

We can use the rule for integration by substitution to convert the left-hand side of this
integration from an integral over t to an integral over y. We get:

∫
1

g (y)
dy =

∫
f (t) dt dy = dy

dt dt (8.6)

Evaluating the two integrals in (8.6) and rearranging terms then gives y as a function
of t.

In summary, to solve a separable differential equation, separate the variables t and
y so that one side of the equation depends only on y and the other side only on t and
then integrate both sides with respect to t. A good mnemonic for using this method is
to treat dy/dt as if it were an ordinary ratio; then multiply both sides of the equation
by dt when separating variables:

1
g (y)

dy = f (t) dt.

Then we may integrate both sides to obtain Equation (8.6).
The method of separating the variables t and y works because the right-hand side

of (8.5) can be separated into the product of two functions, f (t)g (y), which gave this
type of differential equation its name. Note that when we divided (8.5) by g (y), we had
to be careful, since g (y) might be 0 for some values of y. We will address this problem in
Subsection 8.1.2. Before solving general equations of form (8.5), we will first consider
the special cases where either g (y) = 1 or f (t) = 1.

8.1.1 Pure-Time Differential Equations
If the rate of change of a function depends only on time, we call the resulting differen-
tial equation a pure-time differential equation. Such a differential equation is of the
form

dy
dt

= f (t), t ∈ I (8.7)

where I is an interval and t represents time. This equation is a special case of (8.5) in
which g (y) = 1, and Equation (8.6) can then be rewritten as

y =
∫

f (t) dt g (y) = 1 ⇒
∫ dy

g (y) =
∫

1 dy = y (8.8)

We previously solved equations like (8.7) in Section 5.10. Our derivation above
shows that separation of variables produces the same answer. Namely, if F (t) is an
anti-derivative of f (t), then (8.8) implies that:

y(t) = F (t) + C

where C is any constant. To determine C, we must, in addition to (8.7), have an initial
condition on y(t). If the initial condition on y(t) is that y(0) = y0, then we can write
the solution to the initial value problem as a definite integral

y(t) =
∫ t

0
f (s)ds + y0 Since

∫ 0
0 f (s)ds = 0, y(0) = y0 (8.9)
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EXAMPLE 1 Suppose that the volume V(t) of a cell at time t changes according to

dV
dt

= sin t with V(0) = 3

Find V(t).

Solution We can find V(t) directly from (8.9), but it is not necessary to memorize the formula;
we can solve the differential equation by separating variables:

0
0

t

V(t)
6

1

2

3

4

5 V(t) 5 4 2 cos t

p 2p

Figure 8.2 The solution
V(t) = 4 − cos t in Example 1.

∫
dV =

∫
sin t dt

V = − cos t + C

Applying the initial condition V(0) = 3 we obtain:

3 = −1 + C

4 = C

So the volume of the cell at time t is:

V(t) = 4 − cos t

See Figure 8.2 for a graph of V(t). If we changed the initial condition in Example
1, the graph of the new solution could be obtained from the old solution by shifting
the old solution vertically to satisfy the new initial condition. (See Figure 8.3.) !
8.1.2 Autonomous Differential Equations
A different important simplification of (8.5) comes from setting f (t) = 1. Then:

0
0

t

V(t)
8
7
6
5
4
3
2
1

p 2p

Shift

V(0) 5 3

V(0) 5 6

Figure 8.3 The function
V(t) = 7 − cos t solves the
differential equation in Example 1
with V(0) = 6. The solution can be
obtained from the solution to
Example 1 by shifting upward by 3.

dy
dt

= g (y) (8.10)

These equations are called autonomous differential equations.
To interpret the biological meaning of autonomous, let’s return to the growth

model
dN
dt

= 1
2

N (8.11)

We will show very shortly that the general solution of (8.11) is

N(t) = Cet/2 (8.12)

where C is a constant that can be determined if the population size is known at one
time. Suppose we conduct an experiment in which we follow a population over time,
and suppose the population satisfies (8.11) with N(0) = 20. Using (8.12), we find that
N(0) = C = 20. Then the size of the population at time t is given by

N(t) = 20et/2 (8.12a)

If we repeat the experiment at, say, time t = 2 with the exact same initial popula-
tion size, then, everything else being equal, the population evolves in exactly the same
way as the one starting at t = 0. Returning to (8.12) but now setting N(2) = 20, we
find that N(2) = Ce = 20, or C = 20e−1. The size of the population is then given by

N(t) = 20e−1et/2 = 20e(t−2)/2. (8.12b)

The graph of this solution can be obtained from the graph of (8.12a), by shifting the
old graph 2 units to the right to the new starting point (t, N) = (2, 20) (see Figure 8.4).0 54321 t

N(t)
80

60

40

20

0

(0, 20) (2, 20)

Shift

N(NN t) 5 20et /2 N(NN t) 5 20e(t 2 2)/2

Figure 8.4 If N(2) = 20, then the
graph of the solution N(t) = 20et/2 is
shifted to the new starting point:
(t, N) = (2, 20).

This means that all populations starting with N = 20 grow in the same way, re-
gardless of when we start the experiment. We can understand this biologically: If the
growth conditions do not depend explicitly on time, the experiment should yield the
same outcome regardless of when the experiment is performed.
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We can solve (8.10) by separation of variables. We divide both sides of (8.10) by
g (y) and integrating both sides with respect to t.

∫
1

g (y)
dy
dt

dt =
∫

dt

⇒
∫

dy
g (y)

=
∫

dt Special case of (8.6) with f (t) = 1

Before we turn to biological applications, we give an example in which we see how
to solve an autonomous differential equation and how to use the initial condition.

EXAMPLE 2 Solve
dy
dx

= 2 − 3y, where y(1) = 1.

Solution The independent variable is now x, but we can still separate the variables and integrate
just as we did in Equation (8.6):

∫
dy

2 − 3y
=

∫
dx (8.13)

We need to assume 2 − 3y ̸= 0 to divide by 2 − 3y. We will discuss what to do if
2 − 3y = 0 below. Since an antiderivative of 1

2−3y is − 1
3 ln |2 − 3y|, we find that

−1
3

ln |2 − 3y| = x + C1

We want to solve this equation for y (i.e., write y as function of x).

ln |2 − 3y| = −3x − 3C1

|2 − 3y| = e−3x−3C1 Exponentiate both sides

|2 − 3y| = e−3C1 e−3x Split exponential

2 − 3y = ±e−3C1 e−3x Remove absolute value signs

C1 is an arbitrary constant, so ±e−3C1 is also an arbitrary constant. We may define a
new constant, C = ±eC1 , allowing us to write the solution in a more readable form:

2 − 3y = Ce−3x (8.14)

y = 2
3

− C
3

e−3x

For any value of C the function y = 2
3 − C

3 e−3x satisfies the differential equation. To
determine C, we use the initial y(1) = 1. That is,

1 = 2
3

− C
3

e−3, or C = −e3.

Hence,

y = 2
3

+ 1
3

e3−3x

(See Figure 8.5.) !

y 5 2 1 2e3 2 3x

(1, 1)

20 1 x

2

4

0

y

2
3

2
2
3

1
3

Figure 8.5 The solution to
Example 2.

To obtain (8.13) we divided by 2−3y, which we are only allowed to do if 2−3y ̸= 0
(i.e., if y ̸= 2/3). Fortunately we see from the solution that y ̸= 2/3 for all x. But if
y = 2/3, then according to the differential equation dy/dx = 0, so y is a constant. In
other words, if y = 2/3 initially, then y(x) = 2/3 for all x. This solution can be obtained
from our general solution (8.14) by setting C = 0.

We now turn to two biological applications.
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EXAMPLE 3 Exponential Population Growth We have previously modeled the growth of a population
by assuming that the per capita growth rate of a population is constant

If the number of organisms is N(t), then:

r = 1
N

dN
dt

is a constant. When r > 0, this model represents a growing population. When r < 0,
the size of the population decreases. We can rearrange the terms in the formula for r
into a differential equation.

dN
dt

= rN. (8.15)

To solve this differential equation we must also know the initial population size N(0) =
N0. (8.1) is a special case of this differential equation, in which r = 1/2.

We solve (8.15) by separating variables:
∫

1
N

dN =
∫

r dt Assume N ̸= 0

ln |N| = rt + C1

|N| = eC1 ert

N = ±eC1 ert = Cert Define a new constant C = ±eC1

Our initial condition is N(0) = N0. But if N(t) = Cert then N(0) = C, so imposing the
initial condition gives C = N0, or

N(t) = N0ert (8.16)

Equation (8.16) shows that the population size grows exponentially when r > 0.
When r < 0, the population size decreases exponentially. When r = 0, the population
size stays constant.

We show solution curves of N(t) = N0ert for r > 0, r = 0, and r < 0 in Figure

r , 0

r 5 0

r . 0

t

N(t)

N0

Figure 8.6 Solution curves for
dN/dt = rN.

8.6. Exponential growth (or decay) is one of the most important growth phenomena
in biology. You should therefore memorize both the differential equation (8.15) and
its solution (8.16). !

In Example 3 when r > 0, the population size grows without bound (limt→∞
N(t) = ∞). Exponential growth cannot continue indefinitely in any real population.
For example, if a small population of bacteria starts growing in a flask, then while the
bacteria have plenty of resources, the population will grow exponentially. Eventually,
however, the bacteria will run out of resources, and the population growth will slow.
We will discuss one model for this density dependent growth in Example 6.

The type of growth in Example 3 is referred to as Malthusian growth, named after
Thomas Malthus (1766–1834), a British clergyman and economist. Malthus warned
about the consequences of unrestricted growth on the welfare of humans. He argued
that while populations grow exponentially, food production can grow only linearly. He
concluded that, since exponential growth ultimately overtakes linear growth, popula-
tions would eventually experience starvation (see Problem 62.)

Recall from Section 4.6 that, when r < 0, (8.15) has the same form as the differen-
tial equation that describes radioactive decay. N(t) would then represent the amount
of radioactive material left at time t. We will revisit this application in Problem 22.

EXAMPLE 4 Restricted Growth: von Bertalanffy’s Equation Some species of fish show indefinite
growth, that is, they continue to grow over their entire lifetime. However, the fish
grow more slowly as they age. One model for fish growth is von Bertalanffy’s equa-
tion, which models the length of a fish L(t), at age t, using a differential equation:

dL
dt

= k(L∞ − L) (8.17)
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where k and L∞ are both positive constants. Assuming that at age t = 0, the fish has
length L0, solve this initial value problem.

Solution Assuming that L < L∞, the right-hand side of this equation is positive, so dL/dt > 0
(the fish is growing). When or if L ever reaches L∞, then dL/dt = 0, so growth will
stop. The solution will depend on the constants k and L∞, as well as the initial length,
L0. We solve the equation by separating variables.

∫
dL

L∞ − L
=

∫
k dt

Hence,

− ln |L∞ − L| = kt + C1

|L∞ − L| = e−C1 e−kt ×(−1) and exponentiate both sides.

L∞ − L = Ce−kt Let: C = ±e−C1 .

We solve for C by setting t = 0 on both sides

L∞ − L0 = C L(0) = L0

So, substituting for C, we obtain the solution:

L∞ − L(t) = (L∞ − L0)e−kt

or
L(t) = L∞ − (L∞ − L0)e−kt (8.18)

(See Figure 8.7.)

t

L(t)

L0

L`

Small k

Large k

Figure 8.7 The solution of von
Bertalanffy’s equation.

Since limt→∞ L(t) = L∞ the parameter L∞ denotes the asymptotic length of the
fish. According to the model, if L0 < L∞ the fish will grow over its lifetime, approach-
ing L = L∞ asymptotically (that is, getting closer and closer to a length of L∞ but
never reaching it). k represents the rate of growth; between two fish with the same
values of L0 and L∞, the one with the larger value of k will approach its asymptotic
length quicker (see Figure 8.7). !

We now consider an important type of autonomous differential equation, in which
the function g (y) is a quadratic polynomial.

EXAMPLE 5 Solve
dy
dt

= 2(y − 1)(y + 2) with y(0) = 2

Solution Separation of variables yields
∫

dy
(y − 1)(y + 2)

=
∫

2 dt. (8.19)

We use partial fractions to integrate the left-hand side. There are (unknown) constants
A and B for which

1
(y − 1)(y + 2)

= A
y − 1

+ B
y + 2

for all y

= A(y + 2) + B(y − 1)
(y − 1)(y + 2)

Comparing numerators we have: 1 = A(y + 2) + B(y − 1). As in Section 7.3 we
find A and B by substituting specific values of y into this equation:

y = −2 ⇒ 1 = −3B

y = 1 ⇒ 1 = 3A
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Thus, A = 1
3 and B = − 1

3 . So:

1
3

∫ (
1

y − 1
− 1

y + 2

)
dy =

∫
2 dt

1
3

[ln |y − 1| − ln |y + 2|] = 2t + C1

So

ln
∣∣∣∣
y − 1
y + 2

∣∣∣∣ = 6t + 3C1 Combining logarithms

∣∣∣∣
y − 1
y + 2

∣∣∣∣ = e3C1 e6t Exponentiating

y − 1
y + 2

= ±e3C1 e6t Removing absolute values

y − 1
y + 2

= Ce6t Define C = ±e3C1

We can solve for C using the initial condition:

1
4

= C when t = 0, y = 2, so y−1
y+2 = 1

4

The solution is therefore
y − 1
y + 2

= 1
4

e6t

If we want the solution in the form y = f (t), we must solve for y:

y − 1 = (y + 2)
1
4

e6t

y
(

1 − 1
4

e6t
)

= 1
2

e6t + 1

y =
1
2 e6t + 1

1 − 1
4 e6t

= 2e6t + 4
4 − e6t Isolate terms in y

See Figure 8.8 for a graph of this solution. !

y 5
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2e6t 1 4
4 2 e6t

Figure 8.8 The solution for
Example 5.

R(N)

N

r

K

N
K

R(N) 5 r (1 2 2)

Figure 8.9 The per capita growth
rate in the logistic equation is a
linearly decreasing function of
population size.

Why do we stress the need to study equations where g (y) is a quadratic polyno-
mial? A very important model of this type is the logistic equation, which can be used
to analyze density dependent growth of populations. The logistic equation was intro-
duced around 1835 by Pierre François Verhulst, and it modifies Malthus’ equation
from Example 3 to account for the finite carrying capacity of the environment that
the organisms are growing in.

Malthus’ equation assumes that a population has a constant per capita rate of
growth (i.e., 1

N
dN
dt = r for some constant r). In a population with density dependent

growth the per capita rate will depend on the population size, N. That is,

1
N

dN
dt

= R(N)

for some function R(N). Different growth models (we will explore others in Section
8.2) are associated with different functions R(N). For the logistic equation we assume

R(N) = r
(

1 − N
K

)

where r and K are both positive coefficients (R(N) is graphed in Figure 8.9). Why
is this form chosen? As you can see from the graph, per capita growth is positive if
N < K and is negative if N > K. Populations smaller than K will therefore grow, while
populations larger than K will decrease. If N = K, then dN

dt = 0 (the population stays
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steady): K therefore represents the carrying capacity of the population environment.
If N > K then there are not enough resources for all of the organisms present, so the
population will shrink. Also from Figure 8.9, we see that R(0) = r. This means that r
is the limiting per capita growth rate when N is very small. If N is small (specifically, if
N is much smaller than K), then 1

N
dN
dt ≈ r, so the population will grow exponentially

with per capita growth rate r until overcrowding starts to affect growth. The function
R(N) is the simplest function (a straight line) that incorporates both of the required
features: R(0) = r and R(N) changes sign at N = K.

EXAMPLE 6 The Logistic Equation for Population Growth Solve the logistic equation

dN
dt

= rN
(

1 − N
K

)
with initial condition N(0) = N0 (8.20)

where r > 0, K > 0, and N0 ≥ 0 are all constants.

Solution The constants r, K, and N0 allow the logistic equation to be fit to different species and
environments. It is important, therefore, to be able to solve the equation in this general
form, without specifying the values of these coefficients.

To solve (8.20) we separate variables and integrate:
∫

dN
N(1 − N/K)

=
∫

r dt,

provided N ̸= 0 and N ̸= K.
To evaluate the integral on the left-hand side, we use the partial fraction expan-

sion:
1

N(1 − N/K)
= A

N
+ B

1 − N/K

1 = A(1 − N/K) + BN. ×N(1 − N/K) on both sides (8.21)

To find A and B, substitute specific values into both sides of (8.21):

N = K ⇒ 1 = BK ⇒ B = 1/K

N = 0 ⇒ 1 = A ⇒ A = 1.

So our integrals become:
∫ (

1
N

+ 1
K(1 − N/K)

)
dN =

∫
r dt

ln |N| − ln |1 − N/K| = rt + C1

ln
∣∣∣∣

N
1 − N/K

∣∣∣∣ = rt + C1 Combining logarithms

N
1 − N/K

= ±erteC1 = Cert Defining C = ±eC1 (8.22)

To solve for C we can apply the initial condition:

N0

1 − N0/K
= C. N(0) = N0

But the calculations will be a little easier if we leave C in the equation for the time
being. Rearrange (8.22) as:

N
(

1 + Cert

K

)
= Cert ×(1 − N/K) and then isolate terms in N

⇒ N = Cert

1 + Cert/K
= C

e−rt + C/K
Solve for N

⇒ N = K
Ke−rt

C + 1
Multiply numerator and denominator by K

C
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Now since C = N0
1−N0/K , K

C = K−N0
N0

, so assuming N0 ̸= 0 we obtain,

N(t) = K

1 +
(

K−N0
N0

)
e−rt

= K

1 +
(

K
N0

− 1
)

e−rt
(8.23)

Our derivation requires that N ̸= 0 and N ̸= K, so to complete our solution we
observe that if N0 = 0, then N(t) = 0 for all t, while if N0 = K, then N(t) = K for
all t. !

The formula for N(t) in (8.23) is a somewhat complicated function, so we spend
a little time determining the shape of its graph, using the steps from Section 5.6. We
may check that

N(0) = K

1 +
(

K
N0

− 1
) = K

K
N0

= N0,

so our solution does satisfy the initial conditions.
Then notice that since r > 0, e−rt → 0 as t → ∞. So

lim
t→∞

N(t) = K

1 +
(

K
N0

− 1
)

· 0
= K.

That is, so long as N0 ̸= 0, the population size will converge to K as t → ∞.
If 0 < N < K, then

dN
dt

= rN(1 − N/K) > 0 r > 0, N > 0, 1 − N/K > 0

while if N > K then dN
dt = rN(1 − N/K) < 0. r > 0, N > 0, 1 − N/K < 0

So if N0 < K then N(t) will increase monotonically until it converges to a hor-
izontal asymptote N = K, while if N0 > K, then N(t) will decrease monotonically,
approaching the horizontal asymptote N = K. To complete the information needed
to sketch the function N(t), we only need to know whether it is concave up or concave
down. We may obtain the curvature from the differential equation. (Recall that N(t)
is concave up if d2N/dt2 > 0 and concave down if d2N/dt2 < 0.)

d2N
dt2 = d

dt

(
dN
dt

)
= d

dt
(rN(1 − N/K))

= r
dN
dt

− 2rN
K

dN
dt

d
dt (N2) = 2N dN

dt using implicit differentiation

= r
(

1 − 2N
K

)
dN
dt

If 0 < N < K then dN
dt > 0 (the solution increases), so d2N

dt2 is positive if
(
1 − 2N

K

)
>

0 and negative if
(
1 − 2N

K

)
< 0; that is, d2N

dt2 > 0 if N < K/2 and d2N
dt2 < 0 if K/2 < N < K.

So if the initial condition 0 < N0 < K/2, then the solution initially curves upward until
the population reaches N = K/2; once N(t) crosses K/2 the solution curves downward
(but continues to grow) approaching a horizontal asymptote N = K. The point at
which N(t) = K/2 is an inflection point. If K/2 < N0 < N, then N(t) grows toward
N = K but always curves downward. If N > K, then

(
1 − 2N

K

)
< 0, and dN

dt < 0 so
d2N
dt2 > 0. So if N0 > K, then the solution curve is both monotonic decreasing and

concave upward. Figure 8.10 shows some representative solution curves.

0 ! N0 ! K/2

K/2KK ! N0 NN ! K

N0NN " K

t

N(t)

K

0
0

K
2

Figure 8.10 Solution curves of the
logistic equation dN

dt = rN(1 − N/K)
for different initial values N0.

8.1.3 General Separable Equations
Although many important equations from biology are either of pure-time or au-
tonomous forms, we can combine the techniques from 8.1.1 and 8.1.2 to solve general
equations of the form: dN

dt = f (t)g (N) (i.e., where the right-hand side includes both
functions of the independent and dependent variables). As an example we first con-
sider the problem introduced at the beginning of this chapter.
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EXAMPLE 7 Circadian Rhythm The rate of division of some cells varies over the course of one day.
One model that incorporates this effect is to have the per capita growth rate of the
population be a function of the time of day. Let t represent time in fractions of one
complete day, so t = 0 is the beginning of the first day and t = 1 is the end of the day.
For example:

dN
dt

= 1
2

(1 + sin 2πt)N, t ≥ 0

Assuming N(0) = N0, solve for N(t).

Solution This is a separable equation with f (t) = 1
2 (1 + sin 2πt) and g (N) = N. Separate vari-

ables:

1
N

dN
dt

= 1
2

(1 + sin 2πt) Functions of N on left, function of t on right

∫
1
N

dN =
∫

1
2

(1 + sin 2πt)dt Integrate with respect to t and use dN
dt dt = dN

ln |N| = t
2

− 1
4π

cos 2πt + C1

N(t) = C exp
(

t
2

− 1
4π

cos 2πt
)

Define C = ±eC1

To find the value of C, apply the initial condition:

N0 = C exp
(

0
2

− 1
4π

cos 0
)

= Ce−1/4π

⇒ C = N0e1/4π

so

N(t) = N0e1/4π exp
(

t
2

− 1
4π

cos 2πt
)

= N0 exp
(

t
2

+ 1
4π

(1 − cos 2πt)
)

. !
An important application of equations of this type is allometry. Allometry is the

study of how different parts of an organism (e.g., the size of two different organs, or
parts) grow differently as the organism grows. We denote by L1(t) and L2(t) the re-
spective sizes of two different parts of an individual of age t. We say that L1 and L2
are related through an allometric law if their specific (or relative) growth rates are
proportional—that is, if

1
L1

dL1

dt
= k

1
L2

dL2

dt
Relative growth rate = growth rate

/
current size. (8.24)

for some constant k. If the constant k is equal to 1, then the growth is called isometric;
otherwise it is called allometric. Integrating both sides of (8.24), we find that

∫
dL1

L1
= k

∫
dL2

L2

dL1
dt dt = dL1

or
ln |L1| = k ln |L2| + C1

Solving for L1, we obtain
L1 = CLk

2 (8.25)

where C = ±eC1 . (Since L1 and L2 are typically positive, the constant C will typically
be positive.) If k = 1 (isometric growth) then L1 ∝ L2, so the two organs maintain the
same relative size during growth. More generally, the relationship between L1 and L2
is a power law.
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Section 8.1 Problems
8.1.1
In Problems 1–8, solve each pure-time differential equation.

1.
dy
dt

= t + sin t, where y(0) = 0.

2.
dy
dt

= e−3t , where y(0) = 10.

3.
dy
dx

= 1
x

, where y(1) = 0.

4.
dy
dx

= 1
1 − x2

, where y(0) = 0.

5.
dx
dt

= 1
1 − t

, where x(0) = 2.

6.
dx
dt

= sin(2π(t + 3)), where x(3) = 1.

7.
ds
dt

=
√

t + 1, where s(0) = 1.

8.
dh
dt

= 4 − 16t2, where h(1) = 0.

9. Suppose that the volume V(t) of a cell at time t changes ac-
cording to

dV
dt

= 1 + cos t with V(0) = 5

Find V(t).

10. Suppose that the amount of phosphorus in a lake at time t,
denoted by P(t), follows the equation

dP
dt

= 3t + 1 with P(0) = 0

Find the amount of phosphorus at time t = 10.

11. Drug Absorption For a drug with zeroth order elimination ki-
netics, a constant amount of drug is removed from the blood per
unit time. So the amount of drug in a patient’s blood obeys a dif-
ferential equation

dM
dt

= −k0

where k0 > 0 is a constant. Assuming M(0) = M0, find (in terms
of M0 and k0) the time at which the level of drug will drop to 0.

12. Drug Absorption Drug enters a patient’s blood by being ab-
sorbed from the gut. Assume that the drug enters the patient’s
blood at a rate that depends on time as ce−rt where c and r are
positive constants (the rationale for this formula will be discussed
in Section 8.4) and the drug is eliminated at constant rate k. So:

dM
dt

= ce−rt − k.

(a) Assuming c > k and M(0) = 0 (there is no drug present
in the patient’s blood at the start of the experiment), solve this
differential equation.

(b) Suppose k > 0. What does your solution predict will happen
to M(t) as t → ∞? Does your answer make sense? (In reality,
drug can only be removed at a constant rate until all drug is re-
moved from the blood. That is, the rate of elimination will be k if
M > 0 and 0 once M drops to 0.)

(c) Assume k = 0 (i.e., this drug is never eliminated from blood,
or is eliminated so slowly that elimination can be neglected).
Show that limt→∞ M(t) = c

r .

(d) Suppose that k = 0 and you measure the following data for
M(t) as a function of t:

t M(t)

0 0
1 1
2 1.5

Find parameters c and r that fit your model to these data.

8.1.2
In Problems 13–18, solve each autonomous differential equa-
tion.

13.
dy
dt

= 2y, where y(0) = 2

14.
dy
dt

= 2(1 − y), where y(0) = 0

15.
dx
dt

= −2x, where x(1) = 3

16.
dx
dt

= 1 − 3x, where x(1) = −2

17.
dh
ds

= 2h + 1, where h(0) = 4

18.
dN
dt

= 5 − N, where N(2) = 2

19. Suppose that a population, whose size at time t is denoted by
N(t), grows according to

dN
dt

= 0.3N with N(0) = 20

Solve this differential equation, and find the size of the popula-
tion at time t = 5.

20. Suppose that you follow the size of a population over time.
When you plot the size of the population versus time on a semilog
plot (i.e., the horizontal axis, representing time, is on a linear
scale, whereas the vertical axis, representing the size of the pop-
ulation, is on a logarithmic scale) you find that your data fit a
straight line that intercepts the vertical axis at 1 (on the log scale)
and has slope −0.43. Find a differential equation that relates the
growth rate of the population at time t to the size of the popula-
tion at time t.

21. Suppose that a population, whose size at time t is denoted by
N(t), grows according to

1
N

dN
dt

= r (8.26)

where r is a constant.

(a) Solve (8.26).

(b) Transform your solution in (a) appropriately so that the
resulting graph is a straight line. How can you determine the
constant r from your graph?

(c) Suppose now that, over time, you followed a population
which grew according to (8.26) with some unknown reproduc-
tive rate r. Describe how you would determine r from your
data.
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22. Radioactive Decay Assume that W(t) denotes the amount of
radioactive material in a substance at time t. Radioactive decay
is described by the differential equation

dW
dt

= −λW(t) with W(0) = W0 (8.27)

where λ is a positive constant called the decay constant.

(a) Solve (8.27).

(b) Assume that W(0) = 123 g and W(5) = 20 g and that time
is measured in minutes. Find the decay constant λ and deter-
mine the half-life of the radioactive substance. (Remember that
the half-life of the substance is the time taken for W(t) to de-
crease to half of its initial value.)

23. Drug Absorption A drug has first order elimination kinetics,
meaning that a fixed fraction of drug is eliminated from the body
in each unit of time. So if no further drug is absorbed into the pa-
tient’s blood after time t = 0, the amount of drug in their blood
will decay with time according to:

dM
dt

= −k1M

where k1 > 0 is the fraction of drug eliminated in one unit of
time.

(a) Assuming M(0) = M0, solve the differential equation.

(b) According to your model, does M(t) ever reach 0?

(c) Given that M0 = 10 and k1 = 2, calculate the time at which
M(t) drops to M = 1.

24. Fish Growth Denote by L(t) the length of a fish at time t,
and assume that the fish grows according to von Bertalanffy’s
equation

dL
dt

= k(34 − L(t)) with L(0) = 2

(a) Solve the differential equation.

(b) Use your solution in (a) to determine k under the assump-
tion that L(4) = 10. Sketch the graph of L(t) for this value
of k.

(c) Find the length of the fish when t = 10.

(d) Find the asymptotic length of the fish; that is, find
limt→∞ L(t).

25. Fish Growth Denote by L(t) the length of a certain fish at time
t, and assume that this fish grows according to von Bertalanffy’s
equation

dL
dt

= k(L∞ − L(t)) with L(0) = 1 (8.28)

where k and L∞ are positive constants. It is known that the
asymptotic length is equal to 123 in. and that it takes the fish
27 months to reach half its asymptotic length.

(a) Use this information to determine the constants k and L∞ in
(8.28). [Hint: Solve (8.28).]

(b) Determine the length of the fish after 10 months.

(c) How long will it take until the fish reaches 90% of its asymp-
totic length?

26. Insulin Pump A diabetic patient receives insulin at constant
rate from an implanted insulin pump. Insulin has first order elim-
ination kinetics, so the amount of insulin in the blood will obey a
differential equation:

dM
dt

= a − k1M

where a > 0 is the rate at which insulin is released into their blood
by the pump and k1 is the fraction of insulin removed from the
blood in one unit of time

(a) Assuming M(0) = 0 (i.e., there is no insulin present in the
patient’s blood at time t = 0), solve the differential equation to
find M(t) as a function of t.

(b) Find the limit of M(t) as t → ∞.

(c) Assume that a (the rate of release from the pump) is 1 IU/hr
and M(t) → 0.2 IU as t → ∞. Calculate, k1, the rate of insulin
elimination.

27. Amnesia During Surgery During surgery a patient receives
midazolam, a sedative, to produce amnesia (memory loss) and
ensure they do not remember the surgery. Holazo et al. (1988)
studied the rate at which midazolam is eliminated from a pa-
tient’s body. They gave healthy volunteers one injection of the
drug at time t = 0, and then measured the rate at which it disap-
peared from each volunteer’s blood. If no further drug is added
after time t = 0, then the concentration will obey the differential
equation:

dC
dt

= −k1C

where k1 is the fraction of drug eliminated in one hour.

(a) If the concentration at t = 0 is C0, solve for C(t).

(b) Holazo et al. found the following data:

t C(t)

1 90
4 34

where t is measured in hours, and C(t) is measured in ng of
midazolam per milliliter of blood. From these data estimate the
rate of elimination k1.

(c) During surgery midazolam may be infused continuously by
intravenous line, at some constant rate r per milliliter of blood.
Then the concentration must obey a differential equation.

dC
dt

= r − k1C.

Assuming that C(0) = 0, find C(t) as a function of t.

(d) Calculate limt→∞ C(t) as a function of r and k1.

(e) Using the value of k1 from part (b), at what rate, t, must
midazolam be infused into the patient’s blood to maintain a con-
stant concentration of 130 ng/milliliter?

28. Let N(t) denote the size of a population at time t. Assume
that the population exhibits exponential growth.

(a) If you plot log N(t) versus t, what kind of graph do you get?

(b) Find a differential equation that describes the growth of this
population and sketch possible solution curves.

29. Use the partial-fraction method to solve

dy
dx

= y(1 + y)

where y(0) = 2.

30. Use the partial-fraction method to solve

dy
dx

= y(1 − y)

where y(0) = 2.
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31. Use the partial-fraction method to solve

dy
dx

= y(y − 2)

where y(0) = 1.

32. Use the partial-fraction method to solve

dy
dx

= (y + 1)(y − 2)

where y(0) = 0.

33. Use the partial-fraction method to solve

dy
dt

= 2y
(

1 − y
3

)

where y(1) = 5.

34. Use the partial-fraction method to solve

dy
dt

= 1
2

y2 − 2y

where y(0) = −3.

In Problems 35–38, solve each differential equation.

35.
dy
dx

= y(1 + y) 36.
dy
dx

= (1 + y)2

37.
dy
dx

= (1 + y)3 38.
dy
dx

= (1 − y2)

39. (a) Use partial fractions to show that
∫

du
u2 − a2

= 1
2a

ln
∣∣∣∣
u − a
u + a

∣∣∣∣ + C

(b) Use your result in (a) to find a solution of

dy
dx

= y2 − 4

with initial conditions (i) y(0) = 0, (ii) y(0) = 2, and (iii) y(0) = 4.

40. Find a solution of

dy
dx

= y2 + 4

with initial conditions y(0) = 2.

41. Suppose that the size of a population at time t is denoted by
N(t) and that N(t) satisfies the logistic equation

dN
dt

= 0.34N
(

1 − N
200

)
with N(0) = 50

Solve this differential equation, and determine the size of the
population in the long run; that is, find limt→∞ N(t).

42. Assume that a population, whose size is denoted by N(t),
grows according to the logistic equation. Find the limiting growth
rate for small N (i.e., find the constant r) if the carrying capacity
is 100, N(0) = 10, and N(1) = 30.

43. Let N(t) denote the size of a population at time t. Assume
that the population grows according to the logistic equation. As-
sume also that the limiting growth rate for small N is 5 and that
the carrying capacity is 50.

(a) Find a differential equation that describes the growth of this
population.

(b) Without solving the differential equation in (a), sketch so-
lution curves of N(t) as a function of t when (i) N(0) = 10,
(ii) N(0) = 40, and (iii) N(0) = 50.

44. Logistic growth is described by the differential equation

dN
dt

= rN
(

1 − N
K

)

We showed in Example 6 that the solution of this differential
equation with initial condition N(0) = N0 is given by

N(t) = K
1 + ( K

N0
− 1)e−rt

. (8.29)

(a) Show that

r = 1
t

ln
(

K − N0

N0

)
+ 1

t
ln

(
N(t)

K − N(t)

)
(8.30)

by solving (8.29) for r.

(b) Equation (8.30) can be used to estimate r. Suppose we are
studying a population that grows according to the logistic equa-
tion and find that N(0) = 10, N(5) = 22, N(100) = 30, and
N(200) = 30. Estimate r. (Hint: First estimate K from the behav-
ior of the solution for large t.)

45. Population Genetics Population genetics is the study of how
the frequency of particular traits changes within a population
over time. We are studying a gene that comes in two alleles (i.e.,
variants) A and a. The A allele makes individuals reproduce a lit-
tle faster than the a allele. So we expect the A alleles to take over
the population with time. Suppose that a proportion p of all indi-
viduals within the population carry the A allele (with the remain-
ing proportion, 1 − p, carrying the a allele). If the A allele boosts
reproduction rate by an amount s it can be shown under some
assumptions that the proportion of A-allele individuals obeys a
differential equation

dp
dt

= 1
2

s p(1 − p) (8.31)

(a) Use separation of variables and partial fractions to find the
solution of (8.31), assuming p(0) = p0.

(b) Show that if p0 ̸= 0, then limt→∞ p(t) = 1. Explain why this
behavior makes sense biologically.

(c) Suppose p0 = 0.1 and s = 0.01; how long will take until
p(t) = 0.5?

8.1.3
In Problems 46–54, solve each differential equation with the
given initial condition.

46.
dy
dx

= 2
y
x

, with y(1) = 1.

47.
dy
dx

= x + 1
y

, with y(0) = 2.

48.
dy
dx

= xy
x + 1

, with y(0) = 1.

49.
dy
dx

= (y + 1)e−x, with y(0) = 2.

50.
dy
dx

= y2

x
, with y(1) = 1.

51.
dy
dx

= y + 1
x − 1

, with y(2) = 5.

52.
du
dt

= sin t
u + 1

, with u(0) = 3.
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53.
dy
dt

= t
y

, with y(0) = 1.

54.
dx
dy

= 1
2

x
y

, with x(3) = 2.

In Problems 55–60 you will need to solve differential equations
by separation of variables. In these problems it will not always
be possible to solve explicitly for y in terms of t; instead your
solution may take the form of an implicit function relating the
two variables.

55.
dy
dt

= y2 + y
t − 1

where y(0) = 1.

56.
dy
dt

= yt
ln y

where y(1) = e.

57.
dy
dt

= t + 1
y + y2

where y(0) = 1.

58.
dy
dt

= t2 + 1
cos y + sin y

where y(0) = 0.

59.
dy
dt

=
√

t + 1
y + 1

where y(0) = 1.

60.
dy
dt

= t + 1
ty + ty3

where y(1) = 1.

61. Circadian Rhythm The per capita growth rate of a population
of cells varies over the course of a day. Assume that time t is mea-
sured in hours and

dN
dt

= 2
(

1 − cos
2πt
24

)
N

if N(0) = 5, find the number of cells after one day (that is, find
N(24)).

62. Malthusian Population Growth This problem addresses
Malthus’s concerns, which were discussed in Example 3. Assume
that a population size grows exponentially according to

N(t) = 1000et

and the food supply grows linearly according to

F (t) = 3t

(a) Write a differential equation for each of N(t) and F (t).

(b) Does exponential growth eventually overtake linear growth?
Explain.

63. Bite Strength in Carnivores Bite strength varies as animals
grow, which may mean that the animal’s diet must change.
Christiansen and Adolfsson (2005) studied the relationship be-
tween the strength of animal teeth with skull size in carnivores
from the cat and dog families. They found that tooth strength S,
and skull length L, were related in a power law:

S = CL2.85

where C is some constant. Find the relationship between the rel-
ative rates of growth of S and L (i.e., between 1

S
dS
dt and 1

L
dL
dt ).

64. Homeostasis Sterner and Elser (2002) studied the relation-
ship between the amount of nitrogen in an animal’s body and the
amount of nitrogen present in the food that it eats. Many animals
maintain homeostasis (balance), that is, they control their own ni-
trogen content. As the amount of nitrogen present in their food
increases, the amount of nitrogen in the animal’s body increases
more slowly. If the amount of nitrogen in the animal is N and the
amount of nitrogen in its food is F , Sterner and Elser argue that:

1
N

dN
dt

= σ

F
dF
dt

where σ is a constant.

(a) Show that if σ = 1, then N ∝ F ; that is, the nitrogen content
of the animal increases in proportion to its food. This is called
absence of homeostasis.

(b) If σ = 0, then N is a constant, independent of F . This is
called homeostasis (the animal maintains a balanced amount of
nitrogen, independent of its food).

(c) Show that if 0 < σ < 1, then, if F doubles, N also increases
but by a factor less than 2.

8.2 Equilibria and Their Stability
In Subsection 8.1.2, we learned how to solve autonomous differential equations. Once
we solve a differential equation we may draw the graph of the solution. For instance,
logistic growth can be modeled using the differential equation

dN
dt

= rN
(

1 − N
K

)
(8.32)

The solution of this differential equation was derived in Section 8.1 (see Equation
(8.23)) and graphed in Figure 8.10. In particular we saw that so long as N(0) ̸= 0 the
population size converges to K as t → ∞. We identified K as the carrying capacity
of the organism’s habitat. In this section we will show that this behavior could have
been predicted without solving the differential equation. In particular, if N = K then
the right-hand side of (8.32) vanishes. This is no coincidence. If N(t) converges to
any constant, as t → ∞, then dN

dt must converge to 0, since the curve approaches
a horizontal asymptote (i.e., a flat line) and the gradient of this flat line is 0. Since
dN/dt = 0, the right-hand side of the equation must also vanish. In fact there are
two values of N for which the right-hand side of (8.32) vanishes: N = K and N = 0.
Why don’t solutions converge to 0 as t → ∞? To answer this question we will need to
introduce the concept of stability.
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8.2.1 Equilibrium Points
We will consider autonomous differential equations of the form

dy
dt

= g (y) (8.33)

The point ŷ is said to be an equilibrium of the differential equation if g (ŷ) = 0. Some
books use the term fixed point instead of equilibrium. We will always refer to these
points as equilibria in this book, but you should be aware of the alternate term.

Why are equilibria important? If y(t) solves the differential equation dy
dt = g (y)

and y(0) = ŷ, then because dy
dt = g (ŷ) = 0, y(t) = ŷ for all t (i.e., if a solution starts

at one of the equilibria of the differential equation, then it will remain at that equilib-
rium). In other words y(t) = ŷ is a constant solution of the differential equation.

EXAMPLE 1 Find all equilibria of the differential equations:

(a)
dy
dt

= 2y (b)
dy
dt

= y3 − 3y2 + 2y (c)
du
dt

= sin u

Solution In all cases the equilibria are the zeros of the function on the right-hand side of the
differential equation.

(a) 2ŷ = 0 ⇒ ŷ = 0
(b) ŷ3 − 3ŷ2 + 2ŷ = 0 ⇒ ŷ(ŷ2 − 3ŷ + 2) = 0

ŷ(ŷ − 1)(ŷ − 2) = 0 ŷ = 0 is a root

so ŷ = 0, 1 or 2. Factorize the quadratic

(c) sin û = 0 ⇒ the equilibria are: û = 0,±π ,±2π , . . . (alternatively: û = Kπ

where K ∈ Z.) !
EXAMPLE 2 Tumor Growth Laird (1969) showed that the growth of many different kinds of solid

tumors in mice, rats, and rabbits could be described by Gompertz’s equation, which
predicts that the number of cells in the tumor, N, increases with time t, according to
the differential equation:

dN
dt

= aN ln
(

b
N

)
, N > 0 (8.34)

Here a and b are both positive coefficients. Find the possible equilibria of the number
of cells.

Solution The function on the right-hand side of the differential equation is:

g (N) = aN ln
(

b
N

)

g (N) can only be equal to zero if N = 0 or if ln
( b

N

)
= 0, since one of the two factors

that make up g (N) must equal 0 to make g (N) equal 0. N = 0 is not in the domain for
which g (N) is defined. But ln

( b
N

)
= 0 if N = b, and this will in general be within the

domain. In fact, we will show in subsection 8.2.4 that all solutions of (8.34) converge
to N = b. !
8.2.2 Graphical Approach to Finding Equilibria
Suppose that g (y) is of the form given in Figure 8.11. To find the equilibria of dy/dt =y10 y2 y

g(y)

Figure 8.11 Vector field plot for the
differential equation dy/dt = g (y).

g (y), we must find all points y = ŷ for which g (y) = 0. Graphically, this means that if
we graph g (y) as a function of y, then the equilibria are the points of intersection of
g (y) with the horizontal axis, which is the y-axis in this case, since y is the independent
variable. We see that, for this choice of g (y), the equilibria are at y = 0, y1, and y2.
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8.2.3 Stability of Equilibrium Points
Although the logistic equation dN/dt = rN(1 − N/K) has two equilibria, at N =
0 and at N = K, the equilibria differ in the following fundamental respect. If the
population starts at either equilibrium, it will remain there (i.e., N = 0 and N = K
are both valid constant solutions of the differential equation). But if the population
starts with a size close to 0, but not exactly equal to 0, it will grow further from 0 as t
increases, whereas if the population starts close to K, it will approach K as t → ∞ (see
Figure 8.12).

N0 < K

N0NN < 0

t

N

K

Figure 8.12 Solution curves of the
logistic equation. If N0 ≈ 0, the
population will grow away from
N = 0 as t increases. If N0 ≈ K, the
population will approach K as t
increases.

We say that the equilibrium point N = 0 is unstable, while the equilibrium point
N = K is stable. Whether an equilibrium is stable or unstable is determined by the
behavior of the solution when the solution is perturbed away from the equilibrium,
meaning that it doesn’t start at the equilibrium but at a value close to the equilibrium.
If it returns to the equilibrium, the equilibrium is stable; while if it diverges from the
equilibrium, then the equilibrium is unstable.

A useful analogy is to think of a ball rolling around on a landscape that contains
hills and valleys (see Figure 8.13). The ball can be balanced and at rest when it is either
at the top of a hill, or at the bottom of a valley. But if it is perturbed slightly from the
top of a hill, it will roll down the hill away from its rest position—these equilibria are
unstable. If it starts at the bottom of a valley, and is perturbed from the bottom of a
valley, it will return to its starting position—these equilibria are stable.

Unstable

Stable

Figure 8.13 A ball rolls around on
a landscape containing hills, and
valleys. Equilibria occur both at the
top of hills, and at the bottom of
valleys.

We will present two methods for identifying whether an equilibrium is stable or
unstable. One is based on the graph of the function g (y); the other requires calculating
g ′(y). You should be comfortable using both approaches.

Suppose we are studying the differential equation

dy
dt

= g (y)

where the function g (y) is graphed in Figure 8.11. The equilibria of this differential
equation are points ŷ at which g (ŷ) = 0. On the graph these correspond to points at
which g (y) crosses the horizontal axis. There are three such points: 0, y1, and y2.

We can also use the graph in Figure 8.11 to identify the values of y for which
y(t) increases with t and the values for which y(t) decreases with t. (Remember, since
the equation is autonomous, the value of dy

dt depends only on y.) If g (y) > 0, then
according to the differential equation dy

dt > 0 (i.e., y(t) is an increasing function of t).
Conversely, if g (y) < 0 (so dy

dt < 0), then y(t) is a decreasing function of t. We can label
the horizontal axis of Figure 8.11 with direction arrows to show the direction in which
y(t) travels as t increases, putting a rightward arrow to show where y(t) is increasing,
and a leftward arrow to show where y is decreasing. For the function g (y) in the figure,
this means that we add rightward arrows in the intervals (0, y1), and (y2,∞) and we
add leftward arrows in the intervals (−∞, 0) and (y1, y2). This plot, which now includes
the direction in which y travels with time, is called a vector field plot of the differential
equation dy

dt = g (y).
We may use the vector field plot to determine which of the equilibria are stable

and which are unstable. Consider, for example, the equilibrium y = y1. Recall that
stability of an equilibrium is determined from the behavior of the solution when it
is slightly perturbed away from the equilibrium. Suppose that we start with an initial
condition that is slightly above y1 (i.e., right of it on the graph); then, since the arrows
are leftward, y(t) will decrease back toward y1. Similarly, if we solve the differential
equation with an initial condition that is slightly smaller than y1 (i.e., left of it on the
graph), then the arrows show that y(t) will increase back toward y1. In either case the
solution will tend to return to y1 if it is started from an initial condition that is per-
turbed a small distance from y1 (see Figure 8.14). Therefore y1 is a stable equilibrium
of the differential equation.

y1y

y1 y

Figure 8.14 If y is perturbed from
the stable equilibrium y = y1 then
y(t) will either decrease or increase
to bring y(t) back toward y1.

Let’s apply the same arguments to study the stability of the point y2. If y starts
above (right of) y2, then it will follow the rightward arrows (i.e., increase) and move
further from y2. If y starts below (left of) y2 then it will follow the leftward arrows
(i.e., decease), again moving further from y2. Thus, however y is perturbed from y2, it
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will tend to move further from y2 over time, as summarized in Figure 8.15. So y2 is an
unstable equilibrium of the differential equation.

y2y

y2 y

Figure 8.15 If y is perturbed from
the unstable equilibrium y2, then y(t)
will increase or decrease to travel
further from y2.

Our reasoning here did not require much knowledge of g (y); we only needed to
know the direction of arrows on either side of each equilibrium. We can examine the
final equilibrium ŷ = 0 in exactly the same way. The arrows are leftward left of y = 0,
and rightward right of ŷ = 0, so if y(t) starts from an initial condition on either side of
0, it will tend to travel away from y = 0; the equilibrium ŷ = 0 is therefore unstable.

Graphical Criteria for Stability
If g (y) > 0 left of ŷ and g (y) < 0 right of ŷ, then ŷ is a stable equilibrium.

If g (y) < 0 left of ŷ and g (y) > 0 right of ŷ, then ŷ is an unstable equilibrium.

In terms of the vector field plot, stable equilibria have arrows pointing toward the
equilibrium, while for unstable equilibria, the arrows point away from the equilibrium
(see Figure 8.16).

y

y

Stable

Unstable

Figure 8.16 Arrows showing
direction in which y(t) moves near
stable and unstable equilibria.

An alternative way of writing the graphical criteria for stability may be easier to
apply in some circumstances. Notice that if g (ŷ) = 0 and g (y) > 0 left of ŷ and g (y) < 0
right of ŷ (i.e., ŷ is a stable equilibrium according to the graphical criteria), then g (y)
must be a decreasing function of y at y = ŷ (since it goes from positive values to
negative values as y passes from values smaller than ŷ to values larger than ŷ). We can
make similar arguments for unstable fixed points.

If g (ŷ) = 0 and g (y) is decreasing at y = ŷ, then ŷ is a stable equilibrium.
If g (ŷ) = 0 and g (y) is increasing at y = ŷ, then ŷ is an unstable equilibrium.

If g is differentiable then we may turn this criteria into one based on the derivative
g ′(ŷ) because g ′(ŷ) < 0 implies that g is decreasing at y = ŷ, and g ′(ŷ) > 0 implies that
g is increasing at y = ŷ.

Derivative-Based Criterion for Stability of Equilibria
If g (ŷ) = 0 and g ′(ŷ) < 0, then ŷ is a stable equilibrium.

If g (ŷ) = 0 and g ′(ŷ) > 0, then ŷ is an unstable equilibrium.

The derivative-based criterion says nothing about the stability of an equilibrium if
g ′(ŷ) = 0, since the function g may be increasing, decreasing, or have a local extremum
if g ′(ŷ) = 0. We will discuss the last possibility after some examples.

EXAMPLE 3 Identify the equilibria of the following differential equations and determine whether
they are stable or unstable.

(a)
dy
dt

= y2 − y (b)
dy
dx

= y3

Solution Notice that the independent variables are different for the two equations. But since
the right-hand side is a function of y (the dependent variable) in both cases, they are
both autonomous differential equations. We plot these functions g (y) for (a) and (b)
in Figures 8.17 and 8.18.

(a) g (y) = y(y − 1) so the equilibria are at y = 0 and y = 1. In the vector field plot,
the arrows point in toward y = 0, so y = 0 is stable. Arrows point out from y = 1,
so y = 1 is unstable. In this case we could also have used the derivative test since
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10 y

dyd
dt

Figure 8.17 Vector field plot of
dy
dt = y2 − y for Example 3(a).

0 y

2
dyd
dxdd

Figure 8.18 Vector field plot of
dy
dx = y3 for Example 3(b).

g ′(y) = 2y − 1, so g ′(0) = −1, and g ′(1) = 1. Since g ′(0) < 0, y = 0 is stable. Since
g ′(1) > 0, y = 1 is unstable.

(b) The only zero of g (y) = y3 is y = 0. In the vector field plot the arrows point
away from y = 0, so y = 0 is an unstable equilibrium, Although g (y) is an increasing
function of y at y = 0, g ′(0) = 0, so the derivative criterion for stability cannot be used
here. !

EXAMPLE 4 The Logistic Equation The logistic equation models the growth or decay of a population
living in a habitat with carrying capacity K using a differential equation:

dN
dt

= rN
(

1 − N
K

)

where r, K > 0 are constants. Find the stable and unstable equilibria of this differential
equation.

Solution The right-hand side of the differential equation is g (N) = rN(1 − N/K) and is already
written in factorized form, so we can read off the roots N = 0 and N = K. These
roots are the equilibria of the differential equation. To determine stability we make a
vector field plot (Figure 8.19). To draw the graph of g (N) notice that g (N) is a quadratic
polynomial in N (i.e., a parabola). For large N, g (N) ≈ −rN2/K (i.e., g (N) can be
approximated by the largest degree term; see Section 3.3), so limN→∞ g (N) = −∞
and limN→−∞ g (N) = −∞, meaning that the parabola bends downward for N > K,
and g (N) > 0 for 0 < N < K.NK0

g(N)

K
g(N) 5 rN (1 2 2)

Figure 8.19 Vector field plot for
Example 4.

The arrows in the vector field plot (Figure 8.19) point toward the equilibrium at
N = K, so this equilibrium is stable; while arrows point away from the equilibrium at
N = 0, so this equilibrium is unstable. !

Our graphical classification of stability of equilibria agrees with our direct solution
of the logistic equation in Example 6 of Section 8.1. In the discussion following that
example we showed that solutions tend to converge toward N = K as t → ∞, and
tend to diverge away from N = 0.

EXAMPLE 5 The Allee Effect If a population is too small, then it may be outcompeted by other
species present in the same habitat, or individuals may be forced to leave in search
of mates outside the habitat. So, rather than growing exponentially, small populations
may decline into extinction, an effect known as the Allee effect. We can modify the
logistic equation to capture this effect by introducing another threshold, a, that repre-
sents the minimum size a population must exceed to avoid decline. (We assume that
0 < a < K, where K is the carrying capacity.)

dN
dt

= rN(N − a)
(

1 − N
K

)
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The only difference between this equation and the logistic equation is the extra factor
of (N − a) on the right-hand side.

Find the equilibria of the logistic equation with Allee effect and determine their
stability.

2
dN
dt

Na0 K

Figure 8.20 Vector field plot for
Example 5.

Solution The right-hand side of the differential equation is already written in factorized form,
so we may read off the values of the equilibria: N = 0, a, and K. To determine stability
we refer to the vector field plot in Figure 8.20. The arrows in the vector field plot point
toward the equilibria N = 0 and N = K, making these equilibria stable. The arrows
point away from the equilibrium N = a, making N = a unstable. In Example 9 we will
discuss how the vector field plot represents the Allee effect. !

The graphical approach can be used to find the number of equilibria, and to de-
termine their stability, even if the function g (y) is too complicated to graph directly,
provided that g (y) can be written as the difference between two functions that can be
graphed individually.

Suppose
dy
dt

= f (y) − h(y) g (y) = f (y) − h(y)

where f (y) and h(y) can both be graphed individually. Where the graphs for f (y) and
h(y) intersect, f (y) = h(y), so g (y) = f (y) − h(y) = 0. So the points of intersection of
the two graphs are the equilibria of the differential equation. To create the vector field
plot (i.e., determine whether dy/dt is positive or negative) we compare the graphs. On
any interval in which f (y) > h(y) (i.e., the graph of f (y) is above the graph of h(y)),
g (y) > 0, so we draw an arrow to the right on the horizontal axis. On any interval
where f (y) < h(y) (the graph of f (y) is below h(y)), g (y) < 0, so we draw an arrow to
the left on the horizontal axis.

EXAMPLE 6 Consider the differential equation

dy
dt

= e−y − y.

Determine how many equilibria the differential equation has and whether they are
stable or unstable.

Solution To find the equilibria, we would need to solve the equation g (y) = e−y − y = 0. This
equation cannot be solved analytically, although it can be solved using a numerical
method like bisection (from Section 3.5) or Newton’s method (from Section 5.8). How-
ever, the graphical method allows us to find the number of equilibria and determine
their stability without needing to know precisely where they are.

We cannot graph g (y) = e−y − y directly, but we can decompose it into two func-
tions: f (y) = e−y and h(y) = y, whose graphs we should be familiar with (see Figure
8.21). We see from the graphs that the two functions intersect at one point, ŷ, and this
point will be an equilibrium of the differential equation. In fact, since f (y) is a de-
creasing function of y, and h(y) is an increasing function of y, there can be only one
intersection point. To create the vector field plot we observe that if y < ŷ (left of the
intersection point), f (y) > h(y), so g (y) = f (y)−h(y) > 0, and we draw right pointing
arrows on the horizontal axis to represent the fact that y(t) is increasing. For y > ŷ
(i.e., right of the point of intersection), f (y) < h(y), so g (y) < 0, and we draw left
pointing arrows on the horizontal axis. Since the arrows point toward ŷ on both sides,
the equilibrium point is stable. !

The graphical approach is particularly helpful when analyzing how the locations
and number of equilibria are affected by unknown coefficients that may appear in the
differential equation.

1

2
dyd
dt

y0

f (y) , h (y)

h (y) 5 y

f (y) 5 e2y

y

f (y) . h (y)

Figure 8.21 From the graphs of
f (y) = e−y and h(y) = y we can
create the vector field plot for
dy/dt = f (y) − h(y).
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EXAMPLE 7 Sustainable Harvesting A lake contains a managed population of fish. In the absence
of any fishing, the population grows or decreases following the logistic equation with
carrying capacity K, and limiting growth rate, r, as N → 0. That is, absent fishing:

dN
dt

= rN
(

1 − N
K

)

Suppose time, t, is measured in months and fishing removes fish from the lake at a rate
of H fish per month. So, if fishing takes place, then

dN
dt

= rN
(

1 − N
K

)
− H (8.35)

where H > 0 is a constant.
Successful management of the fish stocks in the lake means finding a value of H

for which the differential equation has a stable equilibrium with N > 0. Show that this
stable equilibrium exists, provided H < 1

4 rK.

g(N)

NK0 N1 N2

H

Small H

f (N) , h (N)f (N) , h (N) f (N) . h (N)

g(N) Large H

NK0

H

Figure 8.22 Vector field plot for
dN
dt = rN(1 − N/K) − H

Solution Since the right-hand side of (8.35) is a quadratic polynomial in N, we could find any
equilibria by solving the polynomial using the quadratic formula. However, the so-
lution is a complicated function of r, K, and H, and it is hard to see what role the
different parameters play. Instead we use the graphical approach, splitting g (N) =
rN(1−N/K)−H into functions f (N) = rN(1−N/K) and h(N) = H. We sketched the
function f (N) already for Example 4. The function h(N) is just a horizontal line. Two
possible scenarios can occur, depending on the value of H. If H is small, then there are
two points of intersection (N1 and N2). If H is large, then the curves do not intersect
(see Figure 8.22).

If H is small we can determine the stability of the two equilibria from the vector
field plot. If N1 < N < N2 (i.e., between the equilibria), f (N) > h(N), meaning that
dN/dt > 0, so arrows are rightward. If N < N1, or N > N2 (i.e., left of N1, or right of
N2 on the graph), f (N) < h(N), meaning that dN/dt < 0, so the arrows point leftward.
The arrows therefore point toward the equilibrium N2 and away from N1, making N2
stable and N1 unstable (Figure 8.22).

The equilibrium N2 represents a sustainable state for the lake, since we expect
the fish population to stay at this value, and not be strongly affected by perturba-
tions. But this stable equilibrium does not exist if H is too large. If H is too large,
then f (N) < h(N) everywhere, so dN/dt < 0 for all values of N. What is the
threshold value for H at which the two equilibria disappear? From the plot we
can see that the curves stop intersecting if H exceeds the height of the parabola,
f (N) (i.e., if H exceeds the value f takes at its local maximum). To find the local
maximum calculate

f ′(N) = r(1 − 2N/K).

f ′(N) = 0 when N = K/2 (from the plot we know that f (N) has one local maximum
and no local minima, so there is no need to check the type of extremum point). At
N = K/2 the height of the function is:

f (K/2) = rK
4

.

So, if H < rK
4 , there is a stable equilibrium. If H > rK/4, then there is no stable

equilibrium (in fact, dN/dt < 0 for all values of N, meaning that the fish population
decreases over time). !

If H > rK/4 in the above example, then our model predicts that N(t) will de-
crease indefinitely (i.e., N(t) → −∞ as t → ∞). This is an unrealistic prediction
because N(t) should never drop below 0 in a real population! The problem is that in
our model we assume that the same number of fish is removed from the lake each
month, independent of the size of the fish population, even when the fish population
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is 0. In Problem 91 you will analyze a different fishing model, in which a fraction of
fish is removed from the fish each month. In that model N(t) will not drop below 0.

What happens if H = rK/4 in the above example? In that case dN
dt < 0 if N ̸= K/2,

and dN
dt = 0 if N = K/2. The vector field plot is shown in Figure 8.23. So the arrows

showing whether N(t) is increasing or decreasing point toward N = K/2 for N > K/2
and away from N = K/2 for N < K/2. Thus N = K/2 is stable to perturbations
that increase N, but unstable to perturbations that decrease N. We call this kind of
equation semi-stable: It is stable in one direction but unstable in the other.

K
2

2
dN
dt

N0

Figure 8.23 dN
dt = rN(1−N/K)−K/4

has a semi-stable equilibrium at
N = K/2 Definition An equilibrium ŷ is semi-stable if y(t) returns to ŷ if perturbed in

one direction from ŷ and diverges from ŷ if perturbed in the other direction
from ŷ.

Criterion for Semi-Stability If g (ŷ) = 0 and ŷ is a local minimum or local maxi-
mum of g (y), then ŷ is a semi-stable equilibrium.

8.2.4 Sketching Solutions Using the Vector Field Plot
Using the information in the vector field plot, we can sketch the solutions y(t) as a
function of time t. To do this we make use of an important result.

Monotonicity of Solutions of Autonomous Differential Equations If y(t) solves
the differential equation dy

dt = g (y), then y(t) must be either constant or mono-
tonic increasing or monotonic decreasing.

This result means that if y(t) is initially increasing (i.e., if our initial condition is
y(0) = y0, and g (y0) > 0, so that dy

dt starts positive) then y(t) will always be increasing;
that is, so long as the solution exists, dy

dt will remain positive. Similarly if dy
dt starts off

negative then it will remain negative so long as the solution exists.
We will justify, but not rigorously prove, the monotonicity result. Suppose that a

solution of the differential equation dy
dt = g (y) does not obey the monotonicity result.

For example, it may start off increasing; but then switch to decreasing (the following
argument can be adapted for solutions that start off decreasing but then switch to
increasing; see Problem 67). For definiteness assume that this switch happens at a time
t = T ; that is, dy/dt > 0 over the interval [0, T) and dy

dt < 0 for some interval (T, b)
where b > T . So, t = T must then be a local maximum of y(t), and the solution locally
will look like the sketch in Figure 8.24.

Ta

Y

bt1 t2 t

y

Figure 8.24 A sketch of a solution
to dy

dt = g (y) that has both increasing
and decreasing intervals.

Since y(t) must pass through the same values climbing up to y(T) as those it passes
through when it decreases again, there must be some pair of times t1, and t2 with t1 <

T < t2, at which y(t) takes the same value, say y(t1) = y(t2) = Y . However, since
t1 < T , dy

dt > 0 for t = t1, and since t2 > T , dy
dt < 0 for t = t2. But dy

dt = g (y), so dy
dt ≥ 0

for t = t1 requires g (Y) ≥ 0, whereas dy
dt < 0 for t = t2 requires g (Y) ≤ 0. The only

way that we may have both g (y) ≥ 0 and g (y) ≤ 0 is if g (y) = 0. In that case y = Y is
an equilibrium of the differential equation, meaning that y(t) = Y for all t > t1. This
contradicts the assumption that y(t) starts decreasing at t = T .

What else can we say about solutions? Suppose y(t) is an increasing solution of
the differential equation. Then as t → ∞, y(t) may either increase indefinitely (i.e.,
y(t) → +∞) or it must converge to a constant. That is limt→∞ y(t) = ŷ for some
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constant ŷ. If y(t) converges to a constant as t → ∞, then dy
dt → 0 and g (y) → g (ŷ).

For the two sides of the equation to be equal we must have g (ŷ) = 0, which implies
that ŷ is an equilibrium of the differential equation.

Let’s put all of this information together.

Rules for Sketching the Solutions of a Differential Equation.

1. If dy
dt = 0 initially then y(t) is a constant.

2. If dy
dt > 0 initially, y(t) will grow to +∞, or converge to the first equilibrium

it meets.

3. If dy
dt < 0 initially, y(t) will decrease to −∞, or converge to the first equilib-

rium it meets.

Let’s use these rules to sketch the solutions for some differential equations.

EXAMPLE 8 The Gompertz law for tumor growth predicts that the number of cells in a tumor, N,
changes with time t, according to dN/dt = g (N) where

g (N) =
{

aN ln (b/N) if N > 0 Use l’Hôpital’s rule to show that g (N)
is continuous from the right at N = 00 if N = 0.

where a, b are positive coefficients that depend on the type of tumor.
By drawing the vector field plot of the differential equation, sketch possible solu-

tions.

Solution Previously we showed that N̂ = b is an equilibrium of this differential equation.
Adding N = 0 to the domain of the differential equation adds the additional equi-
librium N̂ = 0. To draw the vector field plot we need to know where g (N) is positive
and where it is negative. Since aN > 0 for all N > 0, the sign of g (N) is determined by
the sign of ln (b/N).

ln (b/N) > 0 if N < b and ln (b/N) < 0 if N > b ln x > 0 if and only if x > 1

The vector field plot for the differential equation is shown in Figure 8.25. Both
N = 0 and N = b are constant solutions of the differential equation if N(0) ∈ (0, b)
(that is, the initial tumor size starts somewhere between 0 and b). Then we see from
the vector field plot the solution is initially growing. It must then continue to grow, but
it cannot grow past N = b, since dN/dt < 0 for N > b. Thus N(t) will converge to
b as t → ∞. Similarly if N(0) > b (i.e., if the starting tumor size is right of b on the
vector field plot, then N(t) will decrease until it again converges to b). We sketch the
solutions in Figure 8.26. !

2
dN
dt

Nb0

b
N

g(N) 5 aN ln(2)

Figure 8.25 Vector field plot for
the Gompertz tumor growth
model.

t

N(t)

b

0
0

Figure 8.26 Solutions of the
Gompertz tumor growth
model.
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EXAMPLE 9 The Allee Effect In Example 5 we modified the logistic equation to include the Allee
effect; the tendency of small populations to shrink due to emigration and competition
with other populations. The population size is modeled using a differential equation:

dN
dt

= rN(N − a)
(

1 − N
K

)
.

Sketch the possible solutions of this differential equation.

Solution Again we start from the vector field plot that was plotted in Figure 8.20. There are three
possible constant solutions: N = 0, a, and K. If 0 < N(0) < a, then from the vector
field plot we see that N(t) starts decreasing. It will continue to decrease, converging to
0 as t → ∞. If a < N(0) < K, then N(t) will increase, converging to N = K. Finally,
if N(0) > K, then N(t) will decrease, again converging to N = K. This behavior is
consistent with the Allee effect as it was described in Example 5: Populations smaller
than a decline to extinction, and populations larger than a converge to the habitat’s
carrying capacity. A sketch of the solutions is given in Figure 8.27. !

t

N(t)

K

a

0
0

Figure 8.27 Solutions of the logistic
equation with Allee effect.

8.2.5 Behavior Near an Equilibrium
The graphical method allows all equilibria of a differential equation to be identified
and classified as either stable or unstable. We also showed that the stability of an equi-
librium ŷ can also be determined from the sign of g ′(ŷ). What the graphical method
cannot tell us is how quickly the solution converges back to ŷ, or diverges away from
ŷ, if perturbed from ŷ. Put another way, are some equilibria more stable than others?
To determine the rate of convergence (or divergence) we analyze the behavior of the
differential equation if y is slightly perturbed from ŷ.

Consider a differential equation

dy
dt

= g (y) (8.36)

and an equilibrium ŷ. We consider a small perturbation of the solution away from the
equilibrium ŷ; we express this perturbation as

y(t) = ŷ + Y(t)

where Y(t) is small and may be either positive or negative. The function Y(t) measures
how far the solution has been perturbed from the equilibrium. The perturbed initial
condition is y(0) = ŷ + Y(0). Then substituting for y(t):

dy
dt

= d
dt

(ŷ + Y) = dY
dt

ŷ is a constant, so dŷ
dt = 0.

Substituting for y into both sides of (8.36), we find that:

dY
dt

= g (ŷ + Y)

If Y is sufficiently small, we can approximate g (ŷ+Y) by its linear approximation. The
linear approximation of g (y) close to y = ŷ is given by

g (y) ≈ g (ŷ) + (y − ŷ)g ′(ŷ) = (y − ŷ)g ′(ŷ) g (ŷ) = 0

Or, in terms of the perturbation variable, Y :

g (ŷ + Y) ≈ Yg ′(ŷ)

If we set λ = g ′(ŷ) then the linear approximation of (8.36) takes the form:

dY
dt

= λY

This equation has the solution
Y(t) = Y(0)eλt (8.37)
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The value Y(0) represents our initial perturbation; that is, how far the solution
starts from the equilibrium. According to Equation (8.37), if Y(0) is non-zero, then
Y(t) will grow exponentially (i.e., diverge from ŷ if λ > 0), or will decay exponentially
(i.e., converge back to ŷ, if λ < 0). Since we have defined λ = g ′(ŷ), this analysis
reproduces the derivative test (including the ambiguity of what must occur if λ = 0).
However it also tells us the role that g ′(ŷ) plays in controlling how quickly the solution
converges back to ŷ. If g ′(ŷ) < 0, then perturbations decay more quickly for larger
values of |g ′(ŷ)|. If g ′(ŷ) > 0, then perturbations grow faster for larger values of g (ŷ).
Because the parameter λ controls the behavior of small perturbations, we need a name
for it: We will call it the eigenvalue of the equilibrium. The main importance of the
eigenvalue method for determining stability of equilibria is that it can also be used
to study systems of differential equations, a problem that we will study at length in
Chapter 11.

EXAMPLE 10 Find the equilibria and associated eigenvalues for each of the following differential
equations. Then use the eigenvalue to determine whether each equilibrium is stable
or unstable.

(a)
dy
dt

= y(1 − y) (b)
dz
dt

= 1
z2 − 1

z, z> 0 (c)
dy
dx

= ln y − 2, y > 0

Solution (a) The function g (y) = y(1 − y) has roots at ŷ = 0 and ŷ = 1. g ′(y) = 1 − 2y, so
the corresponding eigenvalues are g ′(0) = 1 and g ′(1) = −1. Since g ′(0) > 0, ŷ = 0 is
unstable, while g ′(1) < 0 implies that ŷ = 1 is stable.

(b) The function g (z) = 1
z2 − 1

zhas roots where:

1
z2 − 1

z
= 0 ⇒ 1 − z= 0 × both sides by z2

z= 1.

g ′(z) = − 2
z3 + 1

z2

so the eigenvalue for this equilibrium is: g ′(1) = −2 + 1 = −1. Since g ′(1) < 0, the
equilibrium ẑ= 1 is stable.

(c) The function g (y) = ln y − 2 has roots when ln y − 2 = 0 (i.e., the equilibrium is
ŷ = e2). g ′(y) = 1

y , so the eigenvalue is g ′(e2) = e−2. Since g ′(e2) > 0, the equilibrium
ŷ = e2 is unstable. !

Section 8.2 Problems
8.2.1
Find the equilibria of the following differential equations.

1.
dy
dt

= y(y2 − 1) 2.
dy
dt

= y3 + y

3.
dx
dt

= x2 − 3x + 2 4.
dx
dt

= 6 + 5x + x2

5.
dy
dt

= y − 2
y + 1

6.
dy
dt

= y − 1
y2 + 1

7.
dx
dt

= x8 − 1 8.
dy
dt

= y1/3 − 1

9.
dN
dt

= Ne−N 10.
dN
dt

= N ln N, N > 0

11.
dN
dt

= sin N 12.
dN
dt

= N cos 2N

8.2.2, 8.2.3
For Problems 13–28 make vector field plots of each of the dif-
ferential equations. Find any equilibria of each differential
equation and use your vector field plot to classify whether each
equilibrium is stable or unstable.

13.
dy
dt

= y − 1 14.
dy
dt

= 2 − y

15.
dy
dt

= 4 − y2 16.
dy
dt

= y(y − 2)

17.
dy
dt

= y2 − y 18.
dy
dt

= y2 − 2y − 8

19.
dx
dt

= x − x3 20.
dx
dt

= x5 − x

21.
dN
dt

= N ln(2/N), N > 0 22.
dN
dt

= N3e−N
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23.
dx
dt

= x2 − x
x2 + 1

24.
dx
dt

= x + 1
x − 1

, x ̸= 1

25.
dx
dt

= x
x + 1

, x ̸= −1 26.
dx
dt

= x + 1
x

, x ̸= 0

27.
dS
dt

= 1
S3

− 1
S

, S > 0 28.
dS
dt

= 1
S

− 1
S5

, S > 0

In Problems 29–38, by breaking down each equation into
two parts that you can sketch, determine how many equilib-
ria each differential equation has, and classify them as stable
or unstable. You do not need to determine the location of the
equilibria.

29.
dy
dt

= ey − (1 − y) 30.
dy
dt

= ln y − e−y y > 0

31.
dx
dt

= 1
x

− x
x + 1

x > 0 32.
dx
dt

= 3e−x2 − x2

33.
dx
dt

= 1
2

− x2

x2 + 1
34.

dx
dt

= x2− 1
x + 1

x ̸= −1

35.
dN
dt

= N2 − N + 1 N > 0 36.
dN
dt

= 1 − N − N3

37.
dy
dx

= y + y5 − 1 38.
dy
dx

= y4 + y3 − 1

In Problems 39–48 you should treat h as a constant. For what
values of h (if any) does each equation have equilibria? Use a
graphical argument to show which of the equilibria (if any) are
stable.

39.
dy
dt

= y(1 − y) − h 40.
dy
dt

= y − h

41.
dy
dx

= y2 − h 42.
dy
dx

= (y − 1)(y + 3) − h

43.
dy
dx

= (y − 2)(y + 4) + h 44.
dy
dx

= y3 − y − h

45.
dx
dt

= x2 − hx 46.
dx
dt

= x3 − hx

47.
dx
dt

= x(x2 − 1) − h 48.
dx
dt

= hx − x3

For Problems 49–56 determine whether the equilibrium at x = 0
is stable, unstable, or semi-stable.

49.
dx
dt

= x3 50.
dx
dt

= −x5

51.
dx
dt

= x4 52.
dx
dt

= x3 − x5

53.
dx
dt

= x3 + x4 54.
dx
dt

= x2 − x3

55.
dx
dt

= x3

x − 1
56.

dx
dt

= x3e−x

8.2.4
For Problems 57–66 draw the vector field plot of the differential
equation. Then, using the given initial conditions, sketch the so-
lutions (i.e., draw a graph showing the dependent variable as a
function of the independent variable).

57.
dy
dt

= 3y − 2

(a) y(0) = 2, (b) y(0) = 0.

58.
dy
dt

= 1 − y

(a) y(0) = 2, (b) y(0) = −1.

59.
dy
dt

= y(1 − y)

(a) y(0) = 0, (b) y(0) = 1/2, (c) y(0) = 1/4,
(d) y(0) = 2.

60.
dy
dt

= y2 − 1

(a) y(0) = −1, (b) y(0) = −1/2, (c) y(0) = 1/2,
(d) y(0) = 2.

61.
dy
dt

= (y + 3)(1 − y)

(a) y(0) = −1, (b) y(0) = −1/2, (c) y(0) = −2,
(d) y(0) = 2.

62.
dy
dt

= (y + 1)(y + 3)

(a) y(0) = −3/2, (b) y(0) = −5/2, (c) y(0) = 0,
(d) y(0) = −5.

63.
dN
dt

= N(N − 1)(5 − N)

(a) N(0) = 1, (b) N(0) = 1/2, (c) N(0) = 3/2,
(d) N(0) = 7.

64.
dN
dt

= (N − 1)(N + 1)(N − 4)

(a) N(0) = 0, (b) N(0) = 2, (c) N(0) = 6,
(d) N(0) = −2.

65.
dy
dx

= (y − 1)(y − 2)(y − 5)

(a) y(0) = 0, (b) y(0) = 4, (c) y(0) = 3/2,
(d) y(0) = 6.

66.
dy
dx

= −y − y3

(a) y(0) = 0, (b) y(0) = 1, (c) y(0) = 2,
(d) y(0) = 3.

67. Monotonicity of Solutions One of the key ideas for sketching
solutions from vector field plots is that a solution curve must be
monotonic; that is, x(t) is either increasing or decreasing or con-
stant but cannot switch from one behavior to another. We showed
that a solution x(t) could not start by increasing and then switch
to decreasing. Suppose that x(t) is a solution of the differential

equation
dx
dt

= g (x) and that x(t) starts off decreasing with time.

Show that x(t) cannot switch to increasing.

68. Monotonicity of Solutions Figure 8.28 shows the graphs of
some functions x(t). Which of these functions could not arise as
solutions of a differential equation dx/dt = f (x) for some con-
tinuous function f (x)?

t

(a)

x(t)

t

x(t)

(b)
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t

(c)

x(t)

t

(d)

x(t)

t

(e)

x(t)

t

( f )

x(t)

Figure 8.28 Functions x(t) for Problem 68.

69. Curvature of Solutions In Section 5.6 we showed how know-
ing the curvature of a function (that is, whether it is concave up
or concave down) can assist in drawing the graph of the function.
Suppose that x(t) solves the differential equation dx/dt = f (x),
where f (x) is a differential function and f ′(x) is continuous.

(a) By applying the chain rule, show that

d2x
dt2

= f ′(x) f (x)

(b) If f (x) > 0, explain why a solution x(t) is concave up if
f ′(x) > 0 and concave down if f ′(x) < 0.

(c) What about if f (x) < 0? When is the solution x(t) concave
up and when is it concave down?

(d) Using the results of (b) and (c), show on the vector field plot
in Figure 8.29 the intervals on which x(t) will be concave up and
the intervals on which x(t) will be concave down.

(e) What happens to x(t) when x passes through one of the local
extrema of f (x)?

x

2
dxdd
dt

Figure 8.29 Vector field
plot for dx

dt = f (x) in
Problem 69(d).

70. Logistic Equation with Allee Effect
You must solve Problem 69 before solving this problem.
The vector field plot for a model of density dependent growth of
a population is shown in Figure 8.30.

(a) Label on the plot the intervals on which N(t) is concave up.

(b) Label also the intervals on which N(t) is concave down.

(c) What happens when N = b or N = c?

(d) Suppose that N(0) ∈ (a, c). Explain why the solution N(t)
will look like the sketch in Figure 8.31.

Na cb0 K

2
dN
dt

Figure 8.30 Vector field
plot for a population
modeling density
dependent growth and the
Allee effect (see Problem
70). Local extrema b and
c are shown as well as
equilibria N = 0, a, K.

t

N(t)

K

c

a

0
0

Figure 8.31 Sketch of the
solution if N(0) ∈ (a, c)

(e) Draw sketches of the solution if (i) N(0) ∈ (0, b), (ii) N(0) ∈
(b, a), (iii) N(0) ∈ (c, K), (iv) N(0) ∈ (K,∞)

In Problems 71–76 you are given graphs of the function f (y) for
a differential equation dy/dt = f (y). (See Figure 8.32.) You
are also given initial conditions y0 or y1 (shown on the plot).
For each graph make a sketch of the solution y(t) against t for
(a) y(0) = y0, (b) y(0) = y1. If you have solved Problem 69,
your sketch can show where y(t) is concave up and where y(t)
is concave down.

71. The function shown in 8.32a.

72. The function shown in 8.32b.

73. The function shown in 8.32c.

74. The function shown in 8.32d.

75. The function shown in 8.32e.

76. The function shown in 8.32f.

0.50 1y0y1
y

2
dyd
dt

(a)

1 2 3 4y0 y1
y

2
dyd
dt

21

(b)

5 y0y1 y

2
dyd
dt

21

(c)

1 2 3 4y0 y1
y

dyd
dt

(d )
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21 0.5 1.5y1y0 y

dyd
dt

(e)

0.5 1.5 2.5y0 y1 y

dyd
dt

( f )

Figure 8.32 Graphs of f (y) for Problems 71–76. The initial con-
ditions y(0) = y0 or y(0) = y1 are marked on each graph.

8.2.5
For Problems 77–88 find all equilibria, and, by calculating the
eigenvalue of the differential equation, determine which equi-
libria are stable and which are unstable.

77.
dy
dt

= 2 − 3y 78.
dy
dt

= y − 2

79.
dy
dt

= y(2 − y)(y − 3) 80.
dy
dt

= y(y − 1)(y − 2)

81.
dN
dt

= N ln
(

2
N

)
N > 0

82.
dN
dt

= N − 1
N + 1

N ≥ 0

83.
dy
dx

= y2 − y
y2 + 1

84.
dy
dx

= 1
y3

− 1
y

, y > 0

85.
dx
dt

= xe−x 86.
dx
dt

= e−x − e−2x

87.
dx
dt

= hx − x2, where h is a constant and

(a) h > 0, (b) h < 0

88. dx/dt = hx − x3, where h is a constant and

(a) h > 0, (b) h < 0

89. Effect of Predation on Population Growth Suppose that N(t) de-
notes the size of a population at time t. The population evolves
according to the logistic equation, but in addition, predation re-
duces the size of the population so that the rate of change is
given by

dN
dt

= g (N) (8.38)

where

g (N) = N
(

1 − N
50

)
− 9N

5 + N
.

The first term on the right-hand side describes the logistic growth;
the second term describes the effect of predation.

(a) Make the vector field plot for this differential equation.

(b) Find all equilibria of (8.38).

(c) Use your vector field plot in (a) to determine the stability of
the equilibria you found in (b).

(d) Repeat your analysis from part (c) but now use the method
of eigenvalues to determine the stability of the equilibria you
found in (b).

90. Sustainable Harvesting Suppose that a fish population
evolves according to the logistic equation and that a fixed num-
ber of fish per unit time are removed. That is,

dN
dt

= rN
(

1 − N
K

)
− H

Assume that r = 2 and K = 1000.

(a) Find possible equilibria, and discuss their stability when
H = 100.

(b) What is the maximal harvesting rate that maintains a positive
population size?

91. Sustainable Harvesting Suppose that a fish population
evolves according to a logistic equation and that fish are har-
vested at a rate proportional to the population size. If N(t)
denotes the population size at time t, then

dN
dt

= rN
(

1 − N
K

)
− hN

Assume that r = 2 and K = 1000.

(a) Find possible equilibria and use the graphical approach to
discuss their stability, when h = 0.1.

(b) Show that if h < r = 2, then there is a nontrivial equilibrium.
Find the equilibrium.

(c) Use (i) the eigenvalue approach and (ii) the graphical ap-
proach to analyze the stability of the equilibrium you found
in (b).

92. Growth of a Tumor Gompertz’s equation can be used to model
the growth of some solid tumors. It predicts that the number of
cells N(t) in a tumor will grow over time according to:

dN
dt

= g (N) (8.39)

where

g (N) =
{

0 if N = 0
aN ln (b/N) if N > 0

where a and b > 0 are constants

(a) Find all of the equilibria of (8.39).

(b) Can you use the eigenvalues of g to calculate the stability of
each equilibrium? If not, why not?

93. Logistic Equilibrium with Allee Effect A population whose
growth is affected by the Allee effect is modeled using the dif-
ferential equation:

dN
dt

= rN(N − a)
(

1 − N
K

)

where r, a, k are all positive constants and a < K.
The equilibria of this equation are N = 0, N = a, and

N = K. Use the eigenvalue method to classify whether each of
these equilibria is stable or unstable.
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8.3 Differential Equation Models
In sections 8.1.2 and 8.2 we learned methods to solve autonomous differential equa-
tions, and to identify features of their solutions (e.g., equilibria) without solving the
differential equation. We will now show how these methods can be used to study many
different mathematical models.

8.3.1 Compartment Models
This example is adapted from DeAngelis (1992). A common question that many mod-
els set out to answer is how matter, nutrients, energy, or drugs move through a system
like the human body. One way to model this movement is to treat the system as a
series of compartments; for example, we could treat the blood as one compartment
and organs as separate compartments, and model the flows of a drug between those
compartments.

Let’s start with a physically motivated example. A single compartment of fixed
volume, V , of water contains a concentration C(t) of a particular solute (e.g., salt).
New water is added to the volume at a rate q. That is, in one unit of time a volume
q flows into the compartment. At the same time water also flows out of the compart-
ment. Let’s assume that the rate of outflow is also q (that is, a volume, q, of water is
removed in one unit of time; see Figure 8.33). We denote by C(t) the concentration
of the solution in the compartment at time t. Then the total mass of the solute in the
compartment is C(t)V , where V is the volume of the compartment. For instance, if the
concentration of the solution is 2 grams per liter and the volume of the compartment
is 10 liters, then the total mass of the solute in the compartment is 2 g liter−1 × 10
liters, which is equal to 20 g. Since the inflow and outflow rates are the same, the total
volume of water in the compartment will remain constant with time. However, if the
concentration of solute in the water flowing into the compartment is different from
the concentration flowing out of the compartment, then C(t) can change over time.

Rate q 

Rate q 

Figure 8.33 Inflows and outflows
of water and solute in a single
compartment.

The concentration in the outflow should be the same as the concentration in the
compartment, C(t), provided the solute is mixed evenly through the compartment.
Suppose that the concentration in the inflow is a constant, CI . Like q, CI is an arbitrary
constant that allows us to tailor the model to different problems. To calculate C(t) we
determine the rate of change of solute in the compartment.

Rate of change of
amount of solute
in compartment

= Rate at which solute
flows in − Rate at which solute

flows out

In one unit of time a volume q of water flows in, so an amount qCI of solute flows
in: The rate at which solute flows in is qCI . Similarly the rate at which solute flows out
is qC(t). On the left-hand side, since the total amount of solute in the compartment
is C(t) · V , the rate of change is d

dt (C(t) · V). Putting these ingredients together, we
obtain:

d
dt

(CV) = qCI − qC(t)

V
dC
dt

= q(CI − C) V is a constant

Figure 8.34 is a diagram showing the rates of flow of solute into and out of the
compartment.

To analyze this equation we rearrange it into:

dC
dt

= q
V

(CI − C) (8.40)

and draw the vector field plot for this differential equation (Figure 8.35). Since C rep-
resents the concentration of solute we only need to consider C ≥ 0. The graph of this
equation is a straight line with slope (−q/V) that meets the horizontal axis at C = CI .

qCI qC(t)
C(t)VC(t)V

Figure 8.34 Flow diagram for the
single-compartment model.

CI C0

2
dC
dt

2
qCIC
V

2
q
V

1

Figure 8.35 Vector field plot for the
single compartment model.
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The equilibrium concentration is C = CI , and all arrows point toward C =
CI , so whatever the starting concentration is, C(t) will converge to CI over time.
Some possible solutions are shown in Figure 8.36 for different values of the initial
concentration, C0.

If C(0) = C0, then we can solve the differential equation using separation of vari-
ables. We will just give the solution here (you will derive the solution in Problem 1).

C(t) = CI − (CI − C0)e−qt/V

Since e−qt/V → 0 as t → ∞ the solution confirms that limt→∞ C(t) = CI .x

y

CI

0
0

C0 , CI

C0CC . CIC

Figure 8.36 The solution curves for
the single-compartment model for
different values of C0.

What role do the parameters q and V play? Notice from the exact solution that
the exponential decay part of the solution has the form e−qt/V . From the form of the
exponential we see that C converges to CI more rapidly if q/V is large, that is, if either
q is large (fast inflow and outflow) or V is small (i.e., the compartment is small). In
fact we do not need to solve the differential equation to see how q and V affect the
rate at which C(t) converges to CI . Remember that, in general, near the equilibrium
the solution decays with decay rate eλt where λ is the eigenvalue. If g (C) = q

V (CI −C),
then for Equation (8.40) λ = g ′(CI) = − q

V .

8.3.2 An Ecological Model
The habitats of many organisms are fragmented: Fungi, for example, may only live on
certain hosts, or may only feed on logs that are spread through a forest. Ants in the
same forest have a limited number of potential nest sites, depending on the availabil-
ity of food and building materials and also the danger of flooding, predators, and so
on. Thus the ants or fungi in a forest are broken down into small subpopulations; for
example, the fungi on a single log, or the ants in a single nest. The number of organ-
isms at each of these sites will typically vary greatly over time; each subpopulation
may last only a few years before going extinct. Yet the total number of ants or fungi
in the forest may remain quite stable over time: When an ant nest goes extinct, the
site that it occupied is quickly recolonized by ants from nearby sites. We will study a
mathematical model that was created by Levins (1969) to explain why under some
conditions the total number of organisms in a particular habitat can be stable, though
individual subpopulations don’t last very long.

In Levins’ model, we start by imagining that the habitat is divided into a large
number of sites that could contain subpopulations of the organism (e.g., potential nest
sites). We will keep track of how the proportion of sites, that are occupied, p, changes
with time, t. The number of occupied sites changes due to two processes.

Mortality: The subpopulation occupying a particular site may die out. Assume
that in one unit of time, a fraction m of the occupied sites die out (the sites themselves
remain but they cease to be occupied). The constant m is called the mortality rate.

Colonization: Each subpopulation sends out propagules to nearby sites. A propag-
ule could be, for example, a fungal spore, or an insect scout that is sent out to find new
potential nest sites and to colonize those sites. Suppose that in one unit of time each
subpopulation sends out c propagules; these propagules are sent out indiscriminately,
landing at sites that are already occupied as well as sites that are not. The constant c is
called the colonization rate. The two steps, mortality and colonization, are illustrated
in Figure 8.37.

Colonized site

Empty site

Mortality

Colonization

Figure 8.37 The number of occupied
sites changes due to mortality and
colonization.

Suppose that there are N sites that could be occupied by subpopulations, and that
at a time t, a proportion p(t) of the sites are occupied. Then the rate of change of the
number of occupied sites can be written as a word equation:

Rate of change
of occupied sites = −Rate of loss by

mortality + Rate of colonization
of new sites

If a proportion of p sites are occupied, the number of subpopulations is Np. In
one unit of time, a fraction m of subpopulations will die out. The total number of
subpopulations that die out is therefore:

Rate of loss
by mortality = Number of

subpopulations × Fraction that
die = Np × m = mNp
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The rate of colonization is slightly harder to calculate. If in one unit of time each oc-
cupied site sends out c propagules, then since there are Np occupied sites, in one unit
of time a total of cNp propagules (number of occupied sites × number of propagules
per site) will be sent out. Only propagules that land on unoccupied sites will start new
subpopulations. Since a fraction p of sites are occupied, a fraction p of propagules sent
out will land on already occupied sites, and a fraction 1 − p will land on unoccupied
sites and start new subpopulations. So the rate of colonization is:

Rate of
colonization =

Number of propagules
released in
unit time

×
Fraction of

propagules that
start new subpopulations

= cNp(1 − p)

So, putting everything together, we obtain:
d
dt

(Np) = −mNp + cNp(1 − p)

dp
dt

= −mp + cp(1 − p) Divide by N (8.41)

Although (8.41) can be solved using a separation of variables, we will not do that
here. Instead we will use the methods from Section 8.2 to analyze how the solution
depends on the parameters m and c.

Let g (p) = −mp + cp(1 − p). Then the equilibria of (8.41) correspond to values
p̂ for which g (p̂) = 0, that is,

p̂((c − m) − cp̂) = 0 Factoring g (p̂)

This equation has two solutions, p̂ = 0 and p̂ = 1 − m/c. However, p represents
the proportion of sites that are occupied, and this fraction must be between 0 and 1.
Although the equilibrium p̂ = 0 always lies in this interval, p = 1 − m/c ≥ 0 only if
m/c ≤ 1, that is, if m ≤ c (since m ≥ 0 and c ≥ 0, we certainly have p̂ ≤ 1).

Thus there are three cases: If m > c, then there is only one equilibrium in [0, 1].
If m < c, then there are two distinct equilibria in [0, 1]. There is also a borderline case
m = c in which the two roots of g (p) = 0 coincide at p̂ = 0.

We draw the vector field plots corresponding to each of the cases in Figure 8.38.
In the plots we have drawn g (p) over a large enough interval to show both roots, but
you should remember that the domain of p is always [0, 1].

m . c

Domain
of p

122

p0 1

2
dpd
dt

m
c

m , c

Domain of p

122
p0 1

2
dpd
dt

m
c

0

m 5 c

Domain of p

p0

2
dpd
dt

Figure 8.38 The vector field plot
for the Levins’ model of population
growth in a patchy environment
depends on whether m ≥ c or m < c.

From the vector field plots we see that if m ≥ c, then all solutions converge to
0, whatever the initial condition on p (remember 0 ≤ p(0) ≤ 1). But if m < c, then
the equilibrium p̂ = 1 − m/c is stable, and p̂ = 0 is unstable. Thus p(t) = 0 and
p(t) = 1 − m/c are constant solutions. But if p(0) > 0, then p(t) will either grow or
decrease monotonically until it converges to 1−m/c. We show the different behaviors
of p(t) in these two cases in Figure 8.39.

m . c

t

p(t)

0
0

(a)

m , c

0

122
m
c

t
0

p(t)

(b)

Figure 8.39 (a) If m ≥ c, then p(t)
converges to 0. (b) If m < c, if
p(0) ̸= 0, then p(t) converges to
1 − m/c.

We can interpret the two types of behaviors biologically. When m ≥ c, mortality
removes subpopulations faster than they can be replaced by colonization, so the sub-
populations die out faster than sites can be recolonized; eventually all subpopulations
die out. If m < c, then although subpopulations are continuously lost, the sites are
then recolonized, maintaining a stable number of subpopulations. At the stable equi-
librium the proportion of sites that are occupied is p̂ = 1 − m/c. This is always less
than 1 (i.e., colonization cannot keep all sites filled), but is closer to 1 if m/c is small;
that is, if either the mortality rate, m, is small, or the colonization rate, c, is large.

8.3.3 Modeling a Chemical Reaction
Now we will revisit the mass action laws that were introduced in Section 4.2. Suppose
we want to build a mathematical model for a chemical reaction in which two reactants
(A and B) combine to form a product (C).

A + B → C

In Section 4.2 we argued that this reaction will proceed until either A or B is com-
pletely used up. What if the reaction is reversible; that is, C can also break down spon-
taneously back into A and B? We represent the reaction and the two rates (for the
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forward and backward reactions) by:

A + B
kAB
−→←−
kC

C

where kAB is the rate constant for the reaction between A and B, and kC is the rate at
which C breaks down.

Suppose that the initial amount of A present is a (this could be a total amount;
e.g., measured in moles, or concentration) and the amount of B initially is b. Let x
denote the amount of C present at time t. Then we derive a mathematical equation
for the rate of change of x from the word equation:

Rate of change
of x =

Rate at which
C is produced
by A + B → C

− Rate at which C is consumed
by C → A + B

The A + B → C reaction produces C at rate kAB[A][B] (remember from Section 4.2
that [A] denotes the amount of A present). But to produce an amount x of C, the same
amount of A must be consumed, so [A] = a−x. Similarly [B] = b−x. So C is produced
at a rate kAB(a − x)(b − x).

The reverse reaction consumes C at a rate kCx. So
dx
dt

= kAB(a − x)(b − x) − kCx.

To find the equilibria of this differential equation we can set g (x) = kAB(a−x)(b−
x) − kCx and use the quadratic formula to find the roots of g (x) = 0. However, even
without knowing the precise values of the roots we can use a vector field plot to deter-
mine how many equilibria there are and to determine their stability. First, though, we
need to establish the domain of x for this plot. Since [A], [B], [C] all represent amounts
of chemicals, they must all be non-negative; this constraint means that we must have
a − x ≥ 0, b − x ≥ 0, and x ≥ 0. To satisfy all of these constraints we must have:

0 ≤ x ≤ min(a, b)

which generalizes the condition that we derived in Section 1.3, Example 5.
To identify equilibria in this interval we will use the method from Section 8.2.3 of

separately plotting the two parts of g (x) (i.e., make plots of f (x) = kAB(a − x)(b − x)
and h(x) = kCx and look for points of intersection). For our plot we will assume that
a < b (in Problem 25, you will investigate what modifications are necessary if a > b
or a = b).

y y 5 kAB (a 2 x)(b 2 x)

y 5 kC xDomain
of p

b0 x

kABab

a

Figure 8.40 The curves
y = kAB(a − x)(b − x) and y = kCx
have two points of intersection,
including one stable equilibrium
with 0 < x < a.

The function f (x) = kAB(a − x)(b − x) has roots x = a and x = b, and
limx→±∞ f (x) = +∞, since the largest degree term is kABx2 and kAB > 0. So the
function is a concave up parabola. f (x) is a decreasing function of x over the interval
0 ≤ x ≤ a, starting at kABab when x = 0 and decreasing to 0 when x = a. By contrast,
h(x) = kCx is an increasing function of x on the same interval starting at h(0) = 0 and
increasing to h(a) = kCa. Thus, the two functions must intersect at exactly one point in
the interval 0 < x < a, meaning that there is a single equilibrium value x̂. The vector
field plot of the differential equation is given in Figure 8.40. From the vector field plot
we see that the equilibrium is stable; and in fact, whatever the initial amount of x is,
x(t) → x̂ as t → ∞. A sketch of these solutions are shown in Figure 8.41.

The graphical method also allows us to determine how the equilibrium value, x̂,
varies as the parameters in the differential equation are changed. We will focus on
the effect of varying the rate constants kAB and kC. Increasing kAB dilates the curve
y = f (x) in the vertical direction (Figure 8.42). Since increasing kAB increases f (x)
for all x ∈ [0, a), the point of intersection, x̂, between y = f (x) and y = h(x) moves
rightward toward x = a (see Figure 8.42). The change in x̂ makes sense chemically,
because as kAB increases, C is produced at faster and faster rates. But the rate of
decay of C back into A and B is left unaffected. So the concentration of C, at which
rate of production of C equals decay, increases.

x

0
0

x

a

t

Figure 8.41 Concentration for C
over time starting with different
initial conditions.

What about changing kC? If we increase kC, then the curve y = kCx gets steeper.
It therefore intersects y = kAB(a − x)(b − x) at smaller and smaller values of x
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y

y 5 kAB (a 2 x)(b 2 x)

Increasing kAB

a
0 x

b

x xx

y 5 kC x

Figure 8.42 Increasing kAB increases x̂, the
equilibrium amount of C.

y

y 5 kAB (a 2 x)(b 2 x)

Increasing
kC

0 xxxx

y 5 kC x

Figure 8.43 Increasing kC decreases the
equilibrium amount of C.

(see Figure 8.43), that is, the equilibrium value of x gets smaller and smaller. Again
there is a chemical interpretation of this behavior: Increasing kC increases the rate at
whichC decomposes back into A and B. Since the rate of production ofC is unaffected,
the equilibrium amount of C decreases.

8.3.4 The Evolution of Cooperation
Many organisms cooperate to perform tasks that they could not achieve working in-
dividually. For example, the cells in the human body cooperate to process food, fight
off infection, and move the body around. An ant colony may contain millions of ants
that work together to raise young, gather food, and defend the nest. Cooperation can
also occur between different species. The health of a plant depends on symbiotic in-
teractions between the plant and bacteria and fungi that the plant harbors in its root
system. Despite the frequency with which it occurs, cooperation is also a paradoxical
biological process. When two organisms cooperate they both contribute to a common
good, but these contributions may be costly to each. For example, if a worker ant in a
colony devotes her life to building the nest or defending it, she loses the opportunity
to have offspring of their own. In many cooperative arrangements, the cooperating
organisms are related (e.g., ants in a nest may all be sisters, born to the same queen);
and so contributing to the common good may indirectly benefit each organism’s genes,
since these genes are shared by the organisms that they cooperate with. However, in
cases where the two partners are not related we could imagine one of the organisms
allowing the other to contribute to the common good but not doing so itself. That way,
the organism that cheats (i.e., chooses not to cooperate) receives the benefit of coop-
eration but does not pay any cost. The cooperative organism pays all of the cost of
cooperating.

One method for modeling these kinds of interactions is through evolutionary
game theory. The model that we will give in this section is adapted from Nowak
(2006). Imagine a population of organisms playing what evolutionary biologists call
a snowdrift game. In this game there are two types of organisms: cooperators and
cheaters. When two cooperators meet they cooperate; that is, the two organisms work
together so each pays a cost c/2 and receives a benefit b. When a cooperator meets
a cheater, then the cooperator contributes but the cheater doesn’t. In that case the
cooperating organism pays a cost c, and the cheating organism pays no cost. So long
as one organism cooperates, the organisms still receive a benefit b.

Bio Info ! The name snowdrift game is used because biologists consider this form
of cooperation to be analogous to two people driving on a snowy street who find
themselves blocked by the same snowdrift. The benefit of shoveling through the
snowdrift to each driver (i.e., getting home) is b independent of whether that driver
helped to clear the snowdrift. The total cost of clearing the snowdrift so that each
may drive home is c. If one person clears the snowdrift unassisted, that individ-
ual pays the entire cost, c, but if both work together they split the cost equally
between them (i.e., each pays cost c/2). In this scenario a cooperator is one who
shovels the snowdrift. A cheater, on the other hand, sits in their car, listening to
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the radio, and staying warm, while the other driver shovels. You shouldn’t imag-
ine literal snowdrifts, however. Consider, for example, a plant that interacts with
a fungus or bacterium in the soil. The soil fungus or bacterium can cooperate by
providing the plant with nitrogen that the plant itself cannot extract from the soil.
The plant cooperates by sharing with the bacterium sugars that it creates by pho-
tosynthesis. A cheating bacterium would take sugars, but not provide any nitrogen
in return, while a cheating plant might take nitrogen but not provide any sugars
in return.

Thus we may model the interaction by using a pay-off matrix that represents the
net benefit each organism gets from the interaction. If we think of one organism as a
player in a game, and the other organism as its opponent, then the entries in the table
tell us what net return (benefit minus cost) the player receives from the interaction.
The opponent’s pay-off is not represented in the pay-off matrix.

Opponent
Cooperate Cheat

Cooperate b − c/2 b − c
Player

Cheat b 0

As we can see from the table, if the opponent is a cooperator, then a player who
cheats will receive a higher pay-off than a player who cooperates. But if the opponent
is a cheater, then depending on whether b > c or b < c, a cooperator may receive
higher pay-off than a cheater. Evolutionary game theory models the effects of these
different strategies on the numbers of organisms playing the game.

Imagine that we have a (large) population of N organisms, a fraction x of which
are cooperators, and a fraction y of which are cheaters. In each unit of time, each
organism (whether it is a cooperator or a cheater) interacts with n other organisms,
which are randomly chosen (that is, a cooperator cannot choose to interact only with
other cooperators; see Problem 35 for a discussion of what can occur if cooperators
are able to choose whom to interact with). From each interaction it receives a payoff
that can be calculated from the payoff matrix. For each organism the rate of births is
proportional to the net payoff from all of its interactions with other organisms. The
offspring of a cooperator organism are all cooperators, and the offspring of a cheater
are all cheaters. However, we also assume that the habitat that the organisms share is
at its carrying capacity. This means that for each birth that occurs, another organism
must die to maintain the total size of the population at N. All organisms (cheaters and
cooperators) are equally likely to die. Assume that the death rate is m for both types
of organism. Figure 8.44 summarizes how the population changes from step to step.

b 2 c

b 2 cb 2 c

b 2 2
c
2

No. offspring proportional to pay off:

Mortality:

Calculate net payoff:

Figure 8.44 Evolutionary snowdrift
game. A population contains both
cheaters (blue) and cooperators
(red). Each organism plays a
snowdrift game with n other
organisms receiving a pay-off from
each game. The organism has a
number of offspring proportional
to its total pay-off. Organisms then
die to keep population size constant.

So we can write down word equations for the rate at which the cooperator and
cheater populations grow or decrease.

Rate of change
of number of
cooperators

=
Rate of

cooperator
births

−
Rate of

cooperator
deaths

Since x denotes the proportion of organisms that are cooperators and y represents
the proportion that are cheaters, the total number of cooperators is Nx, and the total
number of cheaters is Ny.

The rate of change of the number of cooperators is:

d
dt

(Nx)

Since a fraction m of all organisms die in one unit of time, the rate of cooperator deaths
is m× number of cooperators = mNx.

Thus:

d(Nx)
dt

= Rate of cooperator
births − mNx (8.42a)
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Similarly the word equation for the rate of change of the cheater population is:

Rate of change
of cheater
population

=
Rate of
cheater
births

−
Rate of
cheater
deaths

which can be rewritten as:
d
dt

(Ny) = Rate of cheater births − mNy. (8.42b)

To complete our derivation we need mathematical expressions for the birth
rates that appear in Equations (8.42a) and (8.42b). To derive these expressions let’s
first consider the average payoff that a cooperator receives in one unit of time. In
that time it interacts with n other organisms. On average, since a fraction x of those
organisms are cooperators and y are cheaters, a single cooperator will interact with
nx cooperators and ny cheaters. Its payoff from each cooperator is b − c/2, and its
payoff from each cheater is b − c. So the total payoff from all n interactions is:

Payoff
to cooperator = Number of cooperators

interacted with ×
Payoff from
interacting

with cooperator
+Number of cheaters

interacted with ×
Payoff from

interacting with
a cheater

= nx · (b − c/2) + ny · (b − c)

The number of offspring this individual will have is proportional to its total payoff.
Let the constant of proportionality be k. Then

Number of offspring per cooperator = k × total payoff

= k · n (x(b − c/2) + y(b − c))

So:
Rate of

cooperator births = Number of cooperators × Number of offspring per
cooperator

= Nx · kn (x(b − c/2) + y(b − c))

We can calculate similarly the birth rate of cheaters, by first calculating the total
payoff to each cheater in one unit of time.

Total payoff
to cheater = Number of cooperators

interacted with ×
Payoff from
interacting

with a cooperator
+ Number of cheaters

interacted with ×
Payoff from
interaction

with a cheater

= nx · b + ny · 0

= nx · b

Hence

Rate of cheater births = Number of cheaters × Birth rate per cheater

= Ny · knxb Birth rate per cheater = k× Payoff to each cheater

Equations (8.42a) and (8.42b) can now be written as mathematical formulas:

d(Nx)
dt

= Nxkn (x(b − c/2) + y(b − c)) − mNx

and
d(Ny)

dt
= Nyknxb − mNy

or on rearranging some of the terms:

dx
dt

= knx (x(b − c/2) + y(b − c)) − mx N is a constant, and can be (8.43)
cancelled from both sides.

dy
dt

= knyxb − my (8.44)
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The mortality rate, m, appears not to have been specified. But we can use Equa-
tions (8.43) and (8.44) to calculate m. The total rate of births must match the total rate
of deaths, to keep the population size constant. Alternatively, since each organism can
only be one of the two types (cheater or cooperator), we must have x + y = 1. Thus

dx
dt

+ dy
dt

= d
dt

(x + y) = d
dt

(1) = 0.

And substituting in our expressions for dx/dt and dy/dt from (8.43) and (8.44) into
this equation, we obtain:

knx (x(b − c/2) + y(b − c)) + knyxb − m(x + y) = 0

or
m(x + y) = knx (x(b − c/2) + y(2b − c)) Isolating term in m

so:
m = knx(b − c/2)(x + 2y) = knx(b − c/2)(1 + y) x + y = 1, and factorize out (b − c/2)

From this equation we see that it is essential that b − c/2 ≥ 0. Otherwise, m < 0
(i.e., we have negative mortality rate). The biological rationale for this inequality is
that if b − c/2 < 0, then cooperators always receive negative payoffs, even from inter-
acting with other cooperators. There is clearly no incentive in this case to cooperate.

Thus, substituting for m in (8.43) and (8.44), we obtain

dx
dt

= knx
(

x(b − c/2) + y(b − c) − (b − c/2)x(1 + y)
)

dy
dt

= kny
(

bx − (b − c/2)x(1 + y)
)

or
dx
dt

= knxy (−(b − c/2)x + (b − c)) (8.45)

and
dy
dt

= knxy
( c

2
− (b − c/2)y

)
(8.46)

Initially it may appear that we have to solve two differential equations; one for x(t)
and one for y(t). But if we know x, then we can obtain y as 1 − x, without needing to
solve a second differential equation. So we only need to analyze one of the equations.
Let’s study the equation for x(t) (i.e., (8.45)), which can be written as dx

dt = g (x), where

g (x) = knx(1 − x)
(

(b − c) − (b − c/2)x
)

and 0 ≤ x ≤ 1 Set y = 1 − x in (8.45).

This is a single autonomous differential equation, so we can analyze it using the
methods from Section 8.2. To find the equilibria observe g (x̂) = 0 if x̂ = 0, or x̂ = 1, or
x̂ = (b−c)

(b−c/2) , assuming that b ̸= c/2. You will analyze the case b = c/2 in Problem 31.
We will assume that b > c/2. The first two roots certainly lie in the interval 0 ≤ x ≤ 1.
Whether the other root does or doesn’t depends on the values of b and c. In order for
the third root to lie in the interval we must have

0 ≤ b − c
b − c/2

≤ 1 (8.47)

To analyze these inequalities we must multiply all sides by b − c/2. Since we are
assuming that b > c/2, we do not need to reverse any of our inequalities if we multiply
all three parts of the inequality by b − c/2. So (8.47) is satisfied if

0 ≤ b − c ≤ b − c/2

The inequality b − c ≤ b − c/2 is automatically satisfied if c > 0. Thus the equilibrium
x = b−c

b−c/2 lies in [0, 1], provided b ≥ c. Hence, if b > c, there are three equilibria in
[0, 1], at x = 0, x = 1, and x = b−c

b−c/2 . If c
2 < b < c, then there are two equilibria in

[0, 1], at x = 0 and x = 1.
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Which of these equilibria are stable? We will use the derivative test to decide:

g ′(x) = kn(1 − x)
(

(b − c) − (b − c/2)x
)

− knx
(

(b − c) − (b − c/2)x
)

− kn(b − c/2)x(1 − x) Using product rule

So:

g ′(0) = kn(b − c) g ′(0) > 0 if b > c

g ′(1) = knc/2 g ′(1) > 0

and

g ′
(

b − c
b − c/2

)
= −kn(b − c/2)

(
b − c

b − c/2

)(
1 − b − c

b − c/2

)

= −kn(b − c)c/2
b − c/2

1 − b−c
b−c/2 = c/2

b−c/2

= −knc
2

(
b − c

b − c/2

)

So, if c/2 < b < c, then there are two equilibria in the interval at x̂ = 0 and x̂ = 1.
The equilibrium x̂ = 0 is stable (since g ′(0) < 0) and x̂ = 1 is unstable (since g ′(1) >

0). The vector field plot is shown as Figure 8.45, and possible solutions are drawn in
Figure 8.46.

b2c
b2c/2

Allowed values
range of  x

x0 1

2
dxdd
dt

Figure 8.45 The vector field plot for
the snowdrift game if c/2 < b < c.

0

1

t
0

x (t)

Figure 8.46 If c/2 < b < c, then
unless x(0) = 1, x(t) → 0 as t → ∞.

Conversely, if b > c, there are three equilibria in the interval at x̂ = 0, x̂ = b−c
b−c/2 ,

and x̂ = 1. The equilibria x̂ = 0 and x̂ = 1 are both unstable, and x̂ = b−c
b−c/2 is stable.

The vector field plot of the differential equation is shown in Figure 8.47 and possible
solutions in Figure 8.48.

b2c
b2c/2

Allowed range of  x

x0 1

2
dxdd
dt

Figure 8.47 The vector field plot for
the snowdrift game if b > c.

Can we interpret these different behaviors biologically? First we have imposed a
condition that b > c/2. This inequality ensures that, when two cooperators interact,
their payoff (b − c/2) is larger than the payoff received by two cheaters that interact
(0). Unless this condition is met, there is no incentive to cooperate. If, in addition,
b < c, when a cooperator meets a cheater, the cooperator receives a negative payoff
(b − c < 0), while the cheater receives a positive payoff. The ability of cheaters to
take advantage of cooperators means that according to our model, cheaters will al-
ways eventually take over the entire population since x(t) → 0 as t → ∞, meaning
that the proportion of cheaters, y(t) → 1. Cooperation can be exploited by cheaters
who enjoy the benefit of cooperation without paying the cost, so cooperators are even-
tually driven extinct. The one exception to this is if x(0) = 1, in which case x(t) = 1
for all t. If a population starts with no cheaters present (y(0) = 0), then no cheaters
will ever appear (since the only way a cheater can be added is when another cheater
reproduces). Our analysis shows that even if the starting number of cheaters is very
small, they will still eventually drive the cooperators extinct.

0 t
0

x (t)

b2c
b2c/2

1

Figure 8.48 If b > c, unless x(0) = 0
or x(0) = 1, all solutions of the
snowdrift game converge to the
stable fixed point x(t) = b−c

b−c/2

If, on the other hand, b > c, then when a cooperator and a cheater interact, the
cooperator still receives a positive payoff (b − c > 0), although the payoff to the
cheater is larger. In an initially mixed population (that is, provided x(0) ̸= 0 or 1),
neither cheaters nor cooperators go extinct, but instead achieve some equilibrium
x̂ = b−c

b−c/2 . Notice that for larger values of b (in particular if b ≫ c), x̂ will be close
to 1 (i.e., there will be a higher proportion of cooperators in the population’s stable
equilibrium).

8.3.5 Epidemic Model
Mathematical models can be used to predict disease outbreaks. Models for the spread
of disease can provide critical information for efforts to control a disease. For example
Fisman, Khoo, and Tuite (2014) built a mathematical model to predict the rate of
growth of an Ebola epidemic in West Africa, and to show that the control measures
in place at that time were not enough to stop the disease from continuing to spread.
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We will study disease spread in depth in Chapter 11. In this subsection we will
introduce a type of model that can be used to predict the spread of a rapidly evolving
disease, like the common cold. Colds are caused by several different kinds of viruses
that spread by touch, or through droplets that are produced when a person sneezes.

For our model we will consider how a cold spreads through a population of N peo-
ple. We divide people into two classes: susceptible individuals (who don’t currently
have a cold) and infected individuals (who are currently sick with a cold). If a sus-
ceptible individual catches a cold, they are moved into the infected population. If an
infected individual fights off their cold, then they re-enter the susceptible population.
Let S(t) represent the number of susceptible people at time t and I(t) the number of
infected people at that time. We write down word equations for the rate of change of
S(t) and I(t) as follows:

Rate of change of
no. susceptibles =

Rate at which
infected individuals

recover
−

Rate at which
susceptible individuals

are infected

Rate of change of
no. infected =

Rate at which
susceptibles
are infected

−
Rate at which

infected individuals
recover

We must now derive mathematical expressions for the rates appearing in these
equations. The left-hand sides are respectively dS/dt and dI/dt.

At time t there are I(t) infected individuals. Let’s assume that in one unit of time
a fraction c of these individuals recover. Then:

Rate at which
infected individuals

recover
= No. infected

individuals × Fraction that
recover = I(t) · c

We call the coefficient c the recovery rate. It depends on the disease that is being studied.
For example, the recovery rate for the common cold is typically around c = 0.3/day.

The model for infection is a little more involved. Assume that the disease can
only be transmitted by direct contact between individuals (e.g., by handshakes, or
when they are close enough that one inhales the droplets produced by the other’s
sneezes). Suppose that in one unit of time each individual comes into contact with
b other individuals. We assume that the likelihood that a susceptible individual will
become infected is proportional to the number of infected individuals they come into
contact with. Of the b individuals, each susceptible individual contacts, a fraction I(t)

N

will be infected, and a fraction S(t)
N will not. So;

Likelihood that
susceptible individual

gets infected
=

k× No.
infected individuals

contacted in unit time
= k × bI

N

where k is a constant of proportionality. So total rate of infection is given by

Rate at which susceptibles
are infected = No. susceptibles ×

Likelihood susceptible
individual is infected

in one unit of time

= S(t) × kb
I(t)
N

= kb
N

S(t)I(t).

Putting these ingredients together, we obtain differential equations

dS
dt

= cI − kb
N

SI (8.48)

dI
dt

= kb
N

SI − cI

In these equations c, k, b, and N are all positive constants that allow the model to be
used to represent different diseases and different populations.
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At first look the equations in (8.48) appear very different from the equations we
have previously analyzed because there are two dependent variables (S and I). We
cannot solve the differential equation for I(t) unless we know S(t), and we cannot solve
the differential equation for S(t) unless we know I(t). How can we proceed? A general
method for analyzing systems of differential equations like (8.48) will be introduced
in Chapter 11. But in this case we note that all individuals are either susceptible or
infected. So:

S(t) + I(t) = N (8.49)

Hence, if we know I(t) at any time then we can calculate S(t) from (8.49). Using (8.49)
to substitute for S(t) in the second equation from (8.48), we obtain:

dI
dt

= kb
N

(N − I)I − cI

Or:
dI
dt

= (kb − c)I − kb
N

I2 (8.50)

This is a single autonomous differential equation so we can analyze the solutions using
the methods from Section 8.2. There are two potential equilibria: at Î = 0 and at
Î = (kb−c)N

kb = N
(
1 − c

kb

)
. We call these values of Î potential equilibria because in

addition to satisfying (8.50), I(t) must satisfy inequalities.

0 ≤ I(t) ≤ N

Î = 0 certainly satisfies these inequalities. The second equilibrium, Î = N
(
1 − c

kb

)
is

certainly less than N (c, k, and b are all positive numbers). But if kb < c, then Î < 0,
while if kb > c, then Î > 0. There are therefore two cases to consider.

If kb < c, then the only equilibrium in [0, N] is Î = 0; the vector field plot for
Equation (8.50) then shows that Î = 0 is a stable equilibrium (see Figure 8.49). So no
matter what the initial number of infected individuals, I(t) → 0 as t → ∞; that is, the
disease runs its course and disappears.

Allowed
range of I

N (122)
I0 N

2
dI
d t

c
kb

Figure 8.49 Vector field plot for
(8.50) if kb < c.

IN (122)c
kb
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0 N

2
dI
d t

)0

Figure 8.50 Vector field plot for
(8.50) if kb > c.

If, on the other hand, kb > c, then there are two equilibria to be considered. Î = 0
and Î =

(
1 − c

kb

)
N. The equilibrium Î = 0 is unstable, while Î = (1 − c

kb)N is stable.
(see the vector field plot in Figure 8.50). Î = 0 is an equilibrium, because if there are
initially no infected individuals (i.e., the disease is not present in the population), then
no individuals will ever get sick, according to our model. However, our model now
predicts that unless I(0) = 0, I(t) →

(
1 − c

kb

)
N as t → ∞. That is, the disease persists

in the population at some stable level. In this case we say that the disease has become
endemic.

We can interpret the condition for determining whether a disease becomes endemic
or disappears biologically. A disease will become endemic if kb > c, that is, if either k
is large, or b is large, or c is small; in other words, if each individual has many contacts
with others per unit time (large b), if these contacts have a high chance of passing the
disease on (large k), or if the disease takes a long time to recover from (small c).

Section 8.3 Problems
8.3.1
1. In Section 8.3.1 we introduced single-compartment models for
the motion of matter through a single tank of water. We derived
an equation:

dC
dt

= q
V

(CI − C) (8.51)

for the concentration of solute in the tank, C(t). We analyzed this
equation graphically. Now let’s solve the equation to confirm our
analysis.

Assume that C(0) = C0

(a) Solve (8.51) and use your solution to show that C(t) → CI as
t → ∞, for any value of C0.

(b) Explain how your solution from part (a) predicts that larger
values of q/V lead to faster convergence ofC(t) toCI , and smaller
values of q/V lead to slower convergence.

2. Assume the single-compartment model defined in Section
8.3.1; that is, denote the concentration of the solute at time t by
C(t), and assume that

dC
dt

= 3(20 − C(t)) for t ≥ 0 (8.52)

(a) Solve (8.52) when C(0) = 5.

(b) Find limt→∞ C(t).

(c) Use your answer in (a) to determine t so that C(t) = 10.
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3. Use the single-compartment model defined in Section 8.3.1;
that is, denote the concentration of the solution at time t by
C(t), and assume that the concentration of the incoming
solution is 3 g liter−1 and the rate at which mass enters is
0.2 liter s−1. Assume, further, that the volume of the compart-
ment V = 400 liters.

(a) Find the differential equation for the rate of change of the
concentration at time t.

(b) Find all equilibria of the differential equation and discuss
their stability.

(c) Solve the differential equation in (a) when C(0) = 0, and find
limt→∞ C(t).

4. Suppose that a tank holds 1000 liters of water, and 2 kg of salt
is poured into the tank.

(a) Compute the concentration of salt in g liter−1.

(b) Assume now that you want to reduce the salt concentration.
One method would be to remove a certain amount of the salt wa-
ter from the tank and then replace it by pure water. How much
salt water do you have to replace by pure water to obtain a salt
concentration of 1 g liter−1?

(c) Another method for reducing the salt concentration would
be to hook up an overflow pipe and pump pure water into the
tank. That way, the salt concentration would be gradually re-
duced. Assume that you have the choice of two pumps, one that
pumps water at a rate of 1 liter s−1, the other at a rate of 2 liter s−1.
For each pump, find out how long it would take to reduce the
salt concentration from the original concentration to 1 g liter−1.
(Note that the rate at which water enters the tank is equal to the
rate at which water leaves the tank.)

(d) Show that, whichever pump you use in part (c), you need
more pure water if you use the pump method than if you follow
the method in (b). Can you explain why?

5. Osmosis Through a Cell Membrane A cell constantly gains or
loses small molecules to its environment because the small
molecules are able to diffuse through the cell membrane. We will
build a model for this process.

Suppose a molecule is present in the cell at a concentra-
tion C(t), and present in its environment at a concentration C∞
(you may assume C∞ is a constant). One model for the diffusion
of molecules across the cell membrane is that the rate at which
molecules travel through the membrane is proportional to the
difference in concentration between the cell and its surroundings.
That is:

Rate at which
molecules flow out

of cell
= k(C − C∞)

The constant k is known as the permeability of the membrane;
k > 0, and k depends on the surface area of the cell and the
chemistry of the membrane, as well as the type of molecule.

(a) Starting with a word equation for the amount of small
molecules in the cell, show, if the cell volume is V , then:

dC
dt

= − k
V

(C − C∞) (8.53)

(b) Find the equilibrium of (8.53) and use a graphical analysis to
determine whether it is stable or unstable.

(c) Suppose that the molecule we are studying is produced
within the cell. The cell produces the molecule at a rate r; that is,
a quantity r is produced (added to the cell) in unit time. Explain

why the differential equation for the concentration of molecules
in the cell should be modified to:

dC
dt

= − k
V

(C − C∞) + r
V

(8.54)

(d) Analyze Equation (8.54) to find the equilibrium value of the
cell concentration. Is this equilibrium stable or unstable? You
may use a graphical argument or calculate the eigenvalue to de-
termine the equilibrium’s stability.

6. Chemostat A chemostat is a device that can be used to main-
tain a constant concentration of a chemical in a chamber.

Consider a chemostat consisting of a chamber of volume V
and containing a concentration C(t) of the chemical.

(a) Initially we will neglect inflows and outflows in the chamber.
The chemical breaks down at a fractional rate p; that is, a propor-
tion p of the chemical contained in the chamber is broken down
in unit time. Explain why the concentration of the chemical must
obey a differential equation

dC
dt

= −pC (8.55)

(b) By analyzing (8.55) determine the long-term behavior of
C(t); that is, find limt→∞ C(t). (You can do this using the meth-
ods from Section 8.2. There is no need to solve the differential
equation.)

(c) To maintain the concentration C(t) of the chemical, at some
desired concentration, fresh chemical is continuously added to
the chamber. This is accomplished by adding fluid containing the
chemical to the chamber continually at a rate q, and removing
fluid from the chamber at the same rate. Show that if the concen-
tration of chemical in the fluid being added to the chamber (the
“inflow”) is CI , then:

dC
dt

= q
V

(CI − C) − pC (8.56)

(d) By analyzing (8.56) find the equilibrium concentration of
chemical in the chamber as a function of q,V,CI , and p. Deter-
mine whether the equilibrium is stable or unstable.

(e) Suppose p = 0.2/hr, q = 1 ml/hr, and V = 10 ml. If we want
to maintain C(t) at 5 g/liter, what should the concentration CI of
chemical in the inflow be?

7. The stability of the equilibrium concentration in a single com-
partment is often quantified using TR, which is called the time
to return to equilibrium. Suppose that the equilibrium concen-
tration is C0. Then, to measure TR, perturb the concentration
slightly, from C0 to C0 + C1. Then TR is defined to be the time
that the tank takes for the perturbation to drop to a factor 1

e of
its initial value (i.e., for C(t) to drop from C0 + C1 to C0 + C1

e ).
If the single compartment obeys the single-compartment

differential Equation (8.45):

(a) Show that TR = V/q.

(b) Suppose, instead of defining TR by the time taken for the con-
centration to drop to C0 + C1/e, we choose a fraction p, (p < 1),
and define TR to be the time taken for the concentration to drop
to C0 + pC1. Calculate TR in terms of V , q, and p.

8. Insulin Pump Insulin pumps treat patients with type I diabetes
by releasing insulin continuously into the fat in the patient’s
stomach or thigh. We will develop a model for the transport of
insulin from the site where it is released by the pump, by treating
the fat as a compartment in a single-compartment model. Let’s
suppose that the pump releases insulin at a constant rate, r (r is
the amount added in one unit of time).
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(a) Explain why, if insulin is not transported from the site of re-
lease, the amount of insulin at the site of release, a(t), will obey
a differential equation:

da
dt

= r.

(b) From the fat, the insulin enters the patient’s bloodstream.
Suppose that a fraction p of the insulin present in the patient’s
fat enters the blood in unit time. Explain why:

da
dt

= r − pa.

(c) Find the equilibrium from the differential equation in part
(b) and determine whether this equilibrium is stable or unstable.

9. Freeway Engineering Compartment models are used to model
the flow of traffic between different roads, by treating each road
as a compartment. As an example, consider how the number of
cars on a freeway on-ramp, N(t), changes with time. For a simpli-
fied model let’s assume that cars join the on-ramp at a constant
rate q (that is, q cars join the on-ramp in one unit of time). Cars
then leave the on-ramp by entering the freeway itself. Assume
that a fraction f of the cars on the on-ramp enter the freeway in
one unit of time.

(a) Derive a differential equation for N(t). Your differential
equation will include the unknown constants f and q.

(b) Analyze your model from part (a) to find the equilibrium
number of cars on the on-ramp, and determine whether this equi-
librium is stable or unstable.

(c) Suppose that the maximum capacity of the on-ramp is
90 cars, and the rate at which cars flow onto the on-ramp is q = 60
cars per min. Find the value of f that is needed to keep N below
the on-ramp’s capacity.

10. Filling Box Model In our compartment model we assumed that
inflows and outflows are matched at q to keep the volume of
water in the tank constant. It’s often useful when modeling, for
example, the flow of pollutant into a pristine environment, to
consider what can occur if the inflows and outflows do not match.

Let’s assume that the tank initially contains a volume V0 of
water. Water flows into the tank at rate qin, and out of the tank
at rate qout. (You may assume qin > qout.) Suppose that the water
flowing into the tank contains a concentration CI of solute. As
usual we write C(t) for the concentration in the tank.

(a) Show that the concentration in the tank can be modeled us-
ing a differential equation:

d
dt

(CV) = qinCI − qoutC

(b) Previously we were able to treat V as a constant. Now V
changes with time. Derive a formula for V(t).

(c) By substituting your formula for V(t) into (a), derive a dif-
ferential equation for C(t).

(d) In general we cannot analyze the behavior of the solution
C(t) using techniques from Section 8.2. Why not?

(e) Let’s assume CI = 0. Then show that your equation from (c)
can be written as:

dC
dt

= −qinC
V0 + (qin − qout)t

(8.57)

(f) Assume some definite values for the constants in (8.57):
qin = 2, qout = 1, and V0 = 20. Assuming C(0) = 1, solve (8.57)
to find C(t). Show that limt→∞ C(t) = 0.

8.3.2
11. Levins Model Denote by p = p(t) the fraction of occupied
sites in the patchy habitat model, and assume that

dp
dt

= 2p(1 − p) − p for t ≥ 0 (8.58)

(a) Set g (p) = 2p(1 − p) − p. Graph g (p) for p ∈ [0, 1].

(b) Find all equilibria of (8.58) that are in [0, 1]. Use your graph
from (a) to determine their stability.

(c) Now use the eigenvalue approach to analyze the stability of
the equilibria that you found in (b).

12. Levins Model Denote by p = p(t) the fraction of occupied
sites in the patchy habitat model, and assume that

dp
dt

= 0.5p(1 − p) − 1.5p for t ≥ 0 (8.59)

(a) Set g (p) = 0.5p(1 − p) − 1.5p. Graph g (p) for p ∈ [0, 1].

(b) Find all equilibria of (8.59) that are in [0, 1]. Use your graph
in (a) to determine their stability.

(c) Use the eigenvalue approach to analyze the stability of the
equilibria that you found in (b).

Subpopulation Interactions in Patchy Habitats

To derive our model for patchy habitat we assumed that a fixed
fraction, m, of occupied sites became extinct in each unit of time.
Often, however the survival of the population at a site depends
on the number of subpopulations in the surrounding sites. If
different subpopulations compete for limited resources, then the
per site mortality rate may not be a constant, but may increase
with p because, as p increases, competition between subpopula-
tions increases. In questions 13 and 14 we will study the effect
of different models for competition between subpopulations.

13. The term p2 describes the density-dependent extinction of
patches; that is, the per-patch extinction rate is p, and a fraction
p of patches are occupied, resulting in patches going extinct at a
total rate of p2. The colonization of vacant patches is the same as
in the Levins model. Then the fraction of occupied patches obeys
a differential equation:

dp
dt

= cp(1 − p) − p2

where c > 0.

(a) Show that there are two possible equilibrium values for p in
[0, 1] (which you should calculate) and determine their stability.

(b) Does the patch model always predict a nontrivial equilib-
rium when c > 0? Contrast with what we found for the Levins
model in Section 8.3.2.

14. Assume that the per site extinction rate is Mp, and recolo-
nization is unaffected by competition between subpopulations.
Then our model for the proportion of occupied sites becomes

dp
dt

= cp(1 − p) − Mp2

where M > 0 and c > 0 are constants.

(a) Show that there are two possible equilibrium values for p in
[0, 1] for any values of c and M. You do not need to find the values
of both equilibria; instead, follow the method used in Section 8.2
and graph on the same axes the functions f (p) = cp(1 − p) and
h(p) = Mp2.
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(b) Which of the two equilibria from part (a) is stable?

(c) Contrast your answer (about the existence of equilibria) with
the analysis from Section 8.3.2.

Competition between Subpopulations

In Problems 13 and 14 we assumed that the per colony extinc-
tion rate was proportional to p. This means that the per colony
extinction rate goes to 0 for small p. This may not be realistic—
subpopulations may still go extinct even if they are not compet-
ing among themselves. One way to model this is to say that the
per colony extinction rate is a function m(p) of p. In Problems
15 and 16 we will assume that m(p) = a+bp for some constants
a, b > 0. That is, the extinction rate increases with p because of
competition between subpopulations, but m(p) does not vanish
as p → 0.

Then our model for proportion of occupied sites must be
modified to:

d p
dt

= cp(1 −p) −(a + bp)p (8.60)

where c, a, b are all positive constants.

15. Assuming that the subpopulations obey the differential
Equation (8.60) and the coefficients are a = 1, b = 2, but c is
allowed to take any value:

(a) Find the equilibrium values of p (your answer will depend
on the unknown coefficient c).

(b) What are the conditions on c for p to have a nontrivial equi-
librium, that is, an equilibrium in which p ∈ (0, 1]?

(c) Show that if your condition from (b) is met, then the non-
trivial equilibrium is also stable.

16. In this question we will analyze (8.60) using a graphical
argument.

(a) Assuming that a, b, c are all positive, draw the graphs of
y = c(1−p) and y = a+bp to show that the differential Equation
(8.60) has an equilibrium between 0 and 1 if a < c. [Hint: If the
graphs intersect, then c(1 − p) − (a + bp) = 0.]

(b) Show additionally that if a < c, then the nontrivial equi-
librium is stable. [Hint: if c(1 − p) > a + bp and p > 0, then
cp(1 − p) > (a + bp)p.]

Cooperation between Subpopulations

Interactions between different subpopulations need not be com-
petitive. In fact, different subpopulations may share resources,
and the presence of many subpopulations may provide a pool of
genetic diversity that helps the population of organisms to re-
act to changing conditions. We will model cooperation between
subpopulations by again assuming that the extinction rate de-
pends on p, but now m(p) = a −bp, where a and b are both
positive constants. So m(p) decreases as p increases. Our model
for the number of subpopulations then becomes:

d p
dt

= cp(1 −p) −(a −bp)p (8.61)

We will analyze this model in Problems 17 and 18.

17. Assume that the number of subpopulations obeys (8.61) with
a = 2, b = 1, and c some unknown (positive) constant.

(a) Find the equilibrium values of p (your answer will depend
on the constant c). You may assume c > 1.

(b) What is the condition on c for p to have a nontrivial equilib-
rium (i.e., an equilibrium in which p̂ ∈ (0, 1])?

(c) Show that if your condition from (b) is met, then the non-
trivial equilibrium is also stable.

18. Assuming that the number of subpopulations obeys (8.61),
we will analyze this model graphically.

(a) Explain why we would expect a ≥ b. [Hint: What would hav-
ing negative m(p) imply?]

(b) Assuming that a, b, c are all positive, show by drawing the
graphs of y = c(1 − p) and y = a − bp that the differential Equa-
tion (8.60) has an equilibrium between 0 and 1 if a < c. [Hint: If
the graphs intersect, then c(1 − p) − (a − bp) = 0.]

(c) Show additionally that if a < c, then the nontrivial equi-
librium is stable. [Hint: If c(1 − p) > a − bp and p > 0, then
cp(1 − p) > (a − bp)p.]

Habitat Destruction
To study the effects of habitat destruction on a single species, we
modify the Levins model in the following way: We assume that a
fraction D of patches is permanently destroyed. Consequently,
only patches that are vacant and undestroyed can be success-
fully colonized. A fraction 1−p(t)−D of patches is both vacant
and undestroyed where p(t) is the fraction of occupied patches.
Then:

d p
dt

= cp(1 −p −D) −mp (8.62)

19. (a) Explain in words the meaning of the different terms in
(8.62).

(b) Assume that m = 0.2, c = 2, and D = 0.2. Show that (8.62)
predicts a nontrivial equilibrium value for p(t) and that this equi-
librium is stable.

20. Assume that a patchy habitat that has been partly destroyed
obeys Equation (8.62) with c, D, m all positive constants.

(a) Show that there are two possible equilibria: the trivial equi-
librium p̂1 = 0 and the nontrivial equilibrium p̂2 = 1 − D − m

c .
Sketch the graph of p̂2 as a function of D.

(b) Assume that m < c such that the nontrivial equilibrium is
stable when D = 0. Find a condition for D such that the nontriv-
ial equilibrium is between 0 and 1, and investigate the stability of
both the nontrivial equilibrium and the trivial equilibrium under
that condition.

(c) Assume that the condition that you derived in is met. Show
that when the system is in equilibrium, the fraction of patches
that are vacant and undestroyed—that is, the sites that are avail-
able for colonization—is 1−D− p and that this available fraction
is independent of D. Show that the effective colonization rate in
equilibrium—that is, c times the fraction of available patches—is
equal to the mortality rate. This equality shows that the effective
birth rate of new colonies balances their mortality rate at equi-
librium.

8.3.3
A reversible chemical reaction between chemicals A and B pro-
duces a product C: A + B ! C. We modeled this reaction in
Section 8.3.3 using a differential equation for the amount of C
produced:

dx
dt

= kAB(a −x)(b −x) −kCx (8.63)

Here x(t) is the amount of C at time t, a is the initial amount of
chemical A, b is the initial amount of B, and kAB and kC are re-
spectively the rate constants for the reaction that creates C and
for the decay of C back into A and B.
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21. Explain what each term in (8.63) represents and how the
equation is derived.

For Problems 22–24 find the equilibrium value of x, and use a
perturbation analysis to determine the stability of the equilib-
rium of (8.63).

22. kAB = 2, kC = 2, a = 2, b = 2.

23. kAB = 2, kC = 1, a = 2, b = 3.

24. kAB = 1, kC = 2, a = 3, b = 2.

25. To show that the differential equation (8.63) always has a sta-
ble equilibrium between x = 0 and x = min(a, b) we assumed
that a and b were different (in fact that a < b). Show by redraw-
ing Figure 8.40 that the result still holds if (a) a > b and (b) if
a = b.

26. Reactions in a Chemostat A chemostat is a device that can be
used to maintain a chemical at a particular concentration. As-
sume that the reaction A + B ! C takes place in a chemo-
stat that maintains A and B at constant concentrations a and
b respectively (that is, the concentrations do not change over
time).

(a) Explain why the concentration x(t) of C now obeys a differ-
ential equation:

dx
dt

= kABab − kCx (8.64)

(b) Find the equilibrium for x predicted by Equation (8.64).

(c) Is the equilibrium that you found in part (b) stable or
unstable?

27. Reactions in a Chemostat A chemostat is a device that can be
used to maintain a chemical at a particular concentration. As-
sume that the reaction A + B ! C takes place in a chemostat
that maintains A at a constant concentration a. The chemical B
has initial concentration b and is depleted by the reaction.

(a) Explain why the concentration x(t) of C now obeys a differ-
ential equation:

dx/dt = kABa(b − x) − kCx (8.65)

(b) Find the equilibrium for x predicted by Equation (8.65).

(c) Is the equilibrium that you found in part (b) stable or
unstable?

28. An Irreversible Reaction In an irreversible reaction A and B
combine to produce C, but C cannot disassociate back into A and
B. We can represent this reaction symbolically by A + B → C.
This is equivalent to setting kC = 0 in our original differential
equation model. So the concentration, x(t), of C obeys a differ-
ential equation:

dx
dt

= kAB(a − x)(b − x) (8.66)

(a) Find the equilibrium for x predicted by Equation (8.66).

(b) Is the equilibrium that you found in part (b) stable or
unstable?

29. Temperature in a Chemical Reaction The rate constants kAB and
kC in the chemical reaction we are modeling depend on tempera-
ture: Many reactions speed up at higher temperatures. Both kAB

and kC will be affected by a temperature increase. Suppose that

the reaction is run at a higher temperature that doubles both kAB

and kC. Show that the final concentration of C will remain the
same, despite the temperature increase.

30. Autocatalytic Reactions An autocatalytic reaction is one in
which chemical C is involved in its own production, for example,

A + C ! 2C

That is, one molecule of A and one molecule of C react to create
two molecules of C. Suppose that the reaction occurs in a chemo-
stat that maintains the concentration of A at a.

(a) If the concentration of C is x(t), explain why we can model
this process using an equation:

dx
dt

= kACax − kCx2 (8.67)

where you should explain what the two terms in this equation
represent.

(b) Find the equilibrium for x predicted by Equation (8.67).

(c) Is the equilibrium that you found in part (b) stable or unsta-
ble?

8.3.4
To derive the model for the growth or decline of the population
of cooperators interacting in a snowdrift game, we modeled the
proportion of cooperators using a model.

dx
dt

= knx(1 −x)
(
−(b −c/2)x + (b −c)

)
(8.68)

where b > 0 represents the benefit of interaction if one player is
a cooperator and c > 0 is the cost of cooperation.

31. In Section 8.3.4 we analyzed Equation (8.68) if b > c/2. De-
termine the equilibria and what their stability is if b = c/2.

Assuming that x(t) is modeled by Equation (8.68) in Problems
32–34, you should locate the equilibria and find which equilib-
ria are stable for each of the following parameter values. Draw
a vector field plot for each of the three problems.

32. k = 1, n = 1, b = 2, c = 1

33. k = 1, n = 1, b = 3, c = 4

34. k = 1, n = 1, b = 4, c = 4

35. Greenbeard Genes We showed in Section 8.3.4 that if b < c,
then cooperators will be eventually outcompeted by cheaters.
One mechanism that may allow cooperators to persist un-
der these conditions is the greenbeard gene. Richard Dawkins
coined this name (see Dawkins, 2006) to describe how, if the
genes that are responsible for cooperation also mark coopera-
tors in some way (e.g., by giving each cooperator a bright green
beard), then cooperators can make sure that they interact only
with other cooperators (and thus cheaters interact only with
other cheaters).

In this case the proportion, x(t), of cooperators in the popu-
lation will obey a differential equation.

dx
dt

= (b − c/2)knx(1 − x)

and again the proportion of cheaters, y(t), can be obtained from
y = 1 − x.

(a) Show that if b > c/2, then under the greenbeard gene model
x = 1 is a stable equilibrium and x = 0 is unstable.
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(b) What are the equilibria and their stability if b < c/2?

(c) Explain your answers from part (a) and (b) biologically in
terms of the relative costs and benefits of cooperation.

(d) What happens if b = c/2? Again explain your answer
biologically.

We discussed the snowdrift model as one example of how organ-
isms may interact. In Problems 36–40 we will consider an alter-
nate model for interaction.
A Hawk-Dove game
Bio Info ! In the Hawk-Dove game we assume that when two or-
ganisms interact they compete for some resource (e.g., territory).
Only one organism can win the competition, and the benefit to
this organism is b. But the competition may also leave one organ-
ism injured. There are two possible strategies that organisms may
adopt when interacting with each other. Hawks always fight for the
resource while Doves always back down from a fight. When two
doves meet, both back down, and the resource is shared equally
between them (i.e., each receives benefit b/2). When a hawk meets
a dove, the dove surrenders the contested resource; then the hawk
automatically gets the benefit (b), while the dove gets nothing.
When two hawks meet, they fight: The victor will receive the ben-
efit. But there is a cost to losing, since the loser may be hurt. Let’s
call this cost c. Since a hawk does not know in advance whether
they will win or lose the fight, on average costs and benefits will be
evenly split (i.e., on average a hawk’s benefit from fighting another
hawk is 1

2 (b−c)). We can summarize the results of the competition
in a payoff matrix:

Opponent

Hawk Dove

Hawk
1
2

(b − c) b
Player

Dove 0 b/2

If we model the effect of each interaction upon the propor-
tions of hawks x(t), and doves y(t), in the population we may derive
a differential equation

dx
dt

= knx(1 − x)
(

b
2

− cx
2

)
(8.69)

Just as for the snowdrift game model, we can then calculate y,
the proportion of doves, from the equation y = 1 − x.

In Problems 36–38 we will analyze the population dynamics
that are predicted by (8.69), for different values of b and c.

36. Show that if b > c (that is, the maximum benefit of fighting
exceeds the maximum cost), then the only equilibria for (8.69)
within 0 ≤ x ≤ 1 are x = 0 and x = 1. Which equilibrium is
stable and which is unstable?

37. Show that if b < c, then there are three equilibria for (8.69)
with 0 ≤ x ≤ 1. What are these equilibria and which one(s) are
stable?

38. Suppose b = c; then dx
dt = knb

2 x(1 − x)2. Assuming k = 1,
n = 1, and b = 1, sketch the vector field plot for x.

Assuming that x(t) is modeled by Equation (8.69), in Prob-
lems 39–40, you should find the equilibria and determine which
equilibria are stable for each of the following parameter values.
Draw a vector field plot for each problem.

39. k = 1, n = 1, b = 2, c = 1

40. k = 1, n = 1, b = 2, c = 3

8.3.5
To model the spread of a disease in a population of size N we
derived a differential equation model:

dI
dt

= (kb −c)I −kb
N

I2 (8.70)

where I(t) is the number of infected individuals at time t, and
k, b, and c are all positive coefficients.

Assuming that I(t) is modeled by Equation (8.70), in Prob-
lems 41–44, you should locate the equilibria of the model, and
find which of these equilibria are stable. Draw a vector field plot
for each problem.

41. k = 1, b = 1, c = 0.5, N = 50.

42. k = 1, b = 1, c = 0.5, N = 200.

43. k = 2, b = 2, c = 1, N = 100.

44. k = 2, b = 2, c = 4, N = 100.

45. In this question we will interpret the recovery rate, c, that
appears in the model. Assume that a population of infected in-
dividuals is quarantined (that is, they are unable to transmit the
disease to others, or to catch it again once they recover).

(a) Explain why under these assumptions we expect:

dI
dt

= −cI (8.71)

(b) Assuming I(0) = I0, find I(t) by solving (8.71).

(c) How long will it take for the number of infected individuals
to decrease from I0 to I0/2?

(d) Assume that it takes 7 days for the number of infected indi-
viduals to decrease from 50 to 25. Calculate the recovery rate c
for this disease.

46. Quarantining Quarantining is an effective way to prevent dis-
eases from spreading. Infectious individuals are told to stay at
home to avoid spreading the disease. However, when a person is
in the early stages of a disease, they may not realize they are ill
and they then spread the disease to others.

Suppose that a fraction p of infectious individuals continue
to spread the disease.

(a) Explain why, if a person contacts b individuals in a unit of
time, then a fraction

(
pI

S+pI

)
will be infectious.

(b) Show that the differential equation for the number of infec-
tious individuals needs to be modified to

dI
dt

= kb
pIS

(S + pI)
− cI.

(c) Use the relationship S = N − I to rewrite your equation
from part (b) in terms of I only (i.e., to eliminate S(t) from the
equation).

(d) Assume that p = 1/2. Analyze the differential equation
from (c) to find its equilibria, and determine which are stable.

(e) Under what conditions on k, b, and c will the disease be en-
demic? (You may continue to assume p = 1/2). Compare this
condition with the one that we derived in Section 8.3.5.

47. Handwashing One way to control the spread of a disease is to
run public health programs that educate people on how to limit
their exposure to the disease. For example, frequent handwash-
ing can prevent people from picking up a virus after touching
surfaces that it may live on.
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(a) Explain why in our model such efforts to control the disease
would affect the value of the parameter k, but would not affect
b or c.

(b) Suppose that for a particular disease c = 0.3/day, and b =
10/day. What value must k remain below to prevent the disease
from becoming endemic?

48. Public Health In our analysis of the spread of a disease we
showed that a disease will become endemic if kb > c. Thinking
about the meanings of the coefficients k, b, and c, discuss how the
following public health measures can help to prevent a disease

from becoming endemic. In particular, explain which coefficients
in the model are affected by each measure, and whether the mea-
sure increases or decreases the coefficients it affects:

(a) Quarantining sick people (i.e., requiring that sick people stay
at home).

(b) Encouraging frequent hand-washing.

(c) Educating people to cover their mouths and noses when they
sneeze.

(d) Providing medications to people with the disease.

8.4 Integrating Factors and Two-Compartment Models
In Section 8.1 we learned the method of separation of variables for solving differential
equations of the form:

dN
dt

= f (t)g (N) (8.72)

In Section 8.2 we learned how to analyze the solutions of these kinds of differential
equations graphically as in the case where f (t) = 1 (i.e., the right-hand side of (8.72) is
a function of N only). As we saw in Section 8.3 many differential equations that arise
as models of biological phenomena are of this form. However, not all equations are
of this form, and it is important to recognize when separation of variables can be used
and when it cannot be used. For example, the equation:

dN
dt

= N + t (8.73)

cannot be solved by separation of variables—the right-hand side is not the product
of a function of N with a function of t. To see why, try pulling out the t (i.e., writing
N + t = t(1 + N/t)). Then we have one factor, f (t) = t, that is truly a function of t
only, but the other factor is a function of both N and t, g (N, t) = 1 + N/t.

In this section we will learn a technique that can be used to solve any equation of
the form:

dN
dt

+ a(t)N = b(t) (8.74)

where a(t) and b(t) are both functions of t only. Equation (8.73) is of this form because
it can be written as

dN
dt

− N = t

which is of the correct form if we set a(t) = −1 and b(t) = t in (8.74). The method that
we will use is called integrating factors, because it involves multiplying (8.74) by a new
function (a factor) in order to turn both sides of the equation into functions that we
can integrate with respect to t. Equations of the form (8.74) are needed for the study of
two-compartment models—these are differential equations that are used throughout
life sciences, but particularly to study how medications or drugs move through the
body, and we will present this important application at the end of this section.

8.4.1 Integrating Factors
Let’s start with a specific example, namely the differential equation from (8.73), with
an initial condition added

dN
dt

− N = t N(0) = 0

To solve this differential equation we will start with an unintuitive step: We will mul-
tiply both sides of the differential equation by e−t

dN
dt

e−t − Ne−t = te−t
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Although it looks like we have, needlessly, made our differential equation even more
complicated, we notice that the left-hand side can now be rewritten to put the equation
in the form

d
dt

(Ne−t) = te−t
d
dt (Ne−t ) = dN

dt · e−t + N · d
dt (e−t )

= dN
dt · e−t − N · e−t

This simplification seems like magic, but it is part of the integrating factor method.
We can then integrate both sides of the equation with respect to t:

Ne−t =
∫

te−tdt Fundamental theorem of calculus on left-hand side.

= −te−t +
∫

e−tdt Integrating by parts with u = t, v′ = e−t .

= −te−t − e−t + C

Thus:
N(t) = −(t + 1) + Cet

To calculate C we apply the initial condition:

0 = −1 + C ⇒ C = 1 e0 = 1

so
N(t) = −(t + 1) + et .

Now let’s develop a more general version of the integrating factor method. Sup-
pose that we are trying to solve the general form of Equation (8.74). In general we
will assume that a(t) is continuous and b(t) is differentiable for all of the values of t
for which a solution of the equation is sought. Because a(t) is continuous, it has an
antiderivative; that is, there is a function A(t) for which A′(t) = a(t). Multiply both
sides of (8.74) by eA(t). For the example studied previously, a(t) = −1, so A(t) = −t
and eA(t) = e−t , which is the factor that we multiplied (8.73) by. The factor eA(t) is
known as the integrating factor of the equation. (In this section we will use IF as an
abbreviation for integrating factor in the help text.) Then (8.74) becomes

eA(t) dN
dt

+ a(t)eA(t)N = eA(t)b(t) (8.75)

But we recognize that the left-hand side of (8.75) can be rewritten as d
dt (N(t)eA(t)), so

d
dt

(NeA(t)) = eA(t)b(t) d
dt (NeA(t)) = dN

dt eA(t) + N d
dt (eA(t))

Or on integrating both sides with t:

NeA(t) =
∫

eA(t)b(t)dt

N(t) = e−A(t)
∫

eA(t)b(t)dt (8.76)

Note that the differential equation is solved only in the sense that we have converted
the problem of calculating N(t) to the problem of finding the integral

∫
eA(t)b(t)dt.

Since b(t) is differentiable, b(t) is certainly continuous and so is A(t), so the integral
exists, but you may not be able to write it in terms of functions that you know. It is not
necessary to memorize Equation (8.76); in general, you can memorize the sequence
of steps that led to the result and perform them for any equation of the form (8.74).

EXAMPLE 1 Solve the differential equation:

dy
dt

= k(y − a), y(0) = 0 (8.77)

using the method of integrating factors.
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Solution The function on the right-hand side of this differential equation is a function of the
dependent variable, y, only; that is, the differential equation is autonomous. It can
therefore be solved by separation of variables. However, (8.77) can also be rearranged
into the form of (8.74):

dy
dt

− ky = −ka, y(0) = 0. a(t) = −k, b(t) = −ka

We may then solve the equation using integrating factors. For this equation,
∫

a(t)dt =
−kt, so:

e−kt dy
dt

− ke−kty = −kae−kt IF is e−kt

d
dt

(e−kty) = −kae−kt

e−kty =
∫

(−kae−kt) dt Integrate both sides with respect to t

= ae−kt + C We only need one constant of integration

so y(t) = a + Cekt . We calculate the constant of integration, C, by applying the initial
conditions

0 = a + C Set t = 0

⇒ y(t) = a − aekt !
EXAMPLE 2 Solve the differential equation

dy
dx

+ y
x

= 1
x2 , for x > 0

with initial condition y(1) = 1.

Solution This equation is of the form (8.74), with x as the independent variable and y as the
dependent variable. a(x) = 1

x and b(x) = 1
x2 . Since

∫
a(x)dx = ln x, the integrating

factor is eln x = x. So

x
dy
dx

+ y = 1
x

Multiply both sides by x.

d
dx

(xy) = 1
x

xy =
∫

1
x

dx

= ln x + C

So y = ln x
x

+ C
x

We calculate the constant of integration by applying our initial conditions

1 = 0 + C Substitute x = 1, y = 1

so
y(x) = ln x

x
+ 1

x
!

Solving differential equations using integrating factors often requires us to use
integration methods from Chapter 7.

EXAMPLE 3 Solve the differential equation:

dy
dt

+
(

2t
1 + t2

)
y = t (8.78)

with initial condition y(0) = 0.
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Solution Here a(t) = 2t
1+t2 . To calculate the integrating factor we need to find the antiderivative

of a(t):

A(t) =
∫

2t
1 + t2 dt

We can evaluate this integral by the method of substitution. Let u = 1 + t2. Then
du = 2tdt and A(t) =

∫ du
u = ln u = ln(t2 + 1).

So, the integrating factor is eA(t) = eln(t2+1) = t2 + 1, and

(t2 + 1)
dy
dt

+ 2ty = t(t2 + 1)

d
dt

(
(t2 + 1)y

)
= t(t2 + 1) Multiply both sides by the IF.

(t2 + 1)y =
∫

t(t2 + 1)dt = 1
4

t4 + 1
2

t2 + C Integrate both sides with t.

Or:

y(t) =
1
4 t4 + 1

2 t2

t2 + 1
+ C

t2 + 1
Calculate the constant C from the initial condition:

0 = 0 + C t = 0, y = 0

So

y(t) = t2

4
(t2 + 2)
(t2 + 1)

Factorize the numerator.
!

One of the most important skills for solving differential equations is to recognize
which equations are separable and which are in a form where integrating factors can
be used (remember that in some cases, such as Example 1 in this section, both methods
of solution can be used).

EXAMPLE 4 Find the general solution of the following equations:

(a)
dN
dt

= 3Nt + t3 (b)
dy
dx

= y2x + x (c)
dx
dt

= x + t − xt − 1

Solution (a) The right-hand side is not separable. If we try to separate out the function of
N, we get 3Nt + t3 = N(3t + t3/N), but the second factor contains both N and t, rather
than being a function of t alone. But we can rewrite the equation in the form of (8.74):

dN
dt

− 3tN = t3 a(t) = −3t, b(t) = t3

So the integrating factor is exp
(∫

(−3t)dt
)

= e−3t2/2:

e−3t2/2 dN
dt

− 3te−3t2/2N = t3e−3t2/2

d
dt

(e−3t2/2N) = t3e−3t2/2

e−3t2/2N =
∫

t3e−3t2/2dt Integrate both sides with t.

To evaluate the integral we make a change of variables: s = 3t2/2, ds = 3tdt:

e−3t2/2N = 2
9

∫
se−sds t3dt = t2

3 3tdt
= 2

9 s ds

= 2
9

(
−se−s +

∫
e−sds

)
Integrate by parts dv

ds = e−s, u = s

= 2
9

(−se−s − e−s + C)

= −2
9

(
3t2

2
+ 1

)
e−3t2/2 + C1 Define a new constant C1 = 2C/9 and substitute s = 3t2/2
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So:

N(t) = −2
9

(
3t2

2
+ 1

)
+ C1e3t2/2

(b) This differential equation is separable; the right-hand side can be written as:

y2x + x =

g (y)
︷ ︸︸ ︷
(y2 + 1)

f (x)
︷︸︸︷

x

So we can separate variables:

1
y2 + 1

dy
dx

= x

∫
1

y2 + 1
dy =

∫
xdx Integrate both sides with x.

tan−1(y) = 1
2

x2 + C Use Table 6.1 in Section 6.2.3.

y = tan
(

1
2

x2 + C
)

(c) The right-hand side is factorizable.

x + t − xt − 1 = (x − 1)(1 − t)

So, we can separate variables

1
x − 1

dx
dt

= (1 − t)
∫

1
x − 1

dx =
∫

(1 − t)dt Integrate both sides with t.

ln |x − 1| = t − t2

2
+ C

x − 1 = ±eC exp
(

t − t2

2

)

So, x(t) = 1 + C1 exp(t − t2/2) if we define a new constant C1 = ±eC.
This equation can also be written in the form of (8.74) by pulling the terms in x to

the left-hand side:
dx
dt

+ x(t − 1) = t − 1.

It can then be solved using integrating factors (see Problem 9). !
8.4.2 Two-Compartment Models
Solution of equations by integrating factors is particularly useful to solve two-
compartment problems. The flow of a drug through a body is often modeled by treat-
ing the body as two linked compartments. One compartment might represent the gut
(e.g., the intestines), and the other compartment, the blood. Pills containing the drug
enter the gut, and from there the drug passes into the blood, where it is used by
the body.

Let’s start the analysis of two-compartment models by adapting the single-
compartment model from Section 8.3.1. Imagine we have two tanks, of volume V1
and V2, that contain both water and solute. Suppose that the concentration in the first
tank is C1, and in the second the concentration is C2 (both C1(t) and C2(t) will vary
with time). Water flows into the first tank at a rate q. There is also an outflow, also
q, of water from the first tank. (Remember, q represents the volume of water being
added to or removed from the tank in one unit of time.) However, unlike the scenario
described in Section 8.3.1, the water flowing out of the first tank is not lost, but flows
directly into the second tank. Water must then flow out of the second tank, also at rate
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q, to keep the volume of water in this tank constant. Figure 8.51 represents the flows
of water into and out of each tank.

Tank 1

Tank 2

Flow q 

C1(t)
Flow q 

Flow q 
C2(t)

Figure 8.51 Flows of water between
two tanks.

Suppose that the concentration of solute in the water flowing into tank 1 is C∞.
We also assume, as we did in Section 8.3.1, that the solute in each tank is stirred up
well enough to mix through all of the water in the tank. Then the concentration of
solute in the flow coming out of tank 1 will be C1(t), while the concentration in the
water coming out of tank 2 will be C2(t).

We will derive differential equations for the concentration of solute in the two
tanks by starting with the word equations:

Rate of change of
amount of solute

in tank 1
=

Rate at which
solute flows into

tank 1
−

Rate at which
solute flows out

of tank 1

Since a volume q of water enters tank 1 in one unit of time, and the concentration of
solute in this inflow is C∞, the total amount of solute flowing into tank 1 in one unit
of time is (volume × concentration) = qC∞. Similarly, the rate at which solute flows
out of the tank is (volume outflow in one unit of time) × (concentration) = qC1.

So
d
dt

(C1V1) = qC∞ − qC1 Total amount of solute in tank 1 is C1 × V1.

We can write down a similar equation for the solute in tank 2.

d
dt

(C2V2) = qC1 − qC2 Rate of solute inflow into tank 2 is qC1.

Because V1 and V2 are both constants, we can rewrite these equations in the form:

dC1

dt
= q

V1
(C∞ − C1) (8.79)

and
dC2

dt
= q

V2
(C1 − C2) (8.80)

We therefore have two differential equations to solve: one for C1 and one for C2. But to
solve the differential equation for C2(t) we need to know the value of C1(t). This is an
example of a general problem in math modeling—differential equations with coupled
variables (i.e., where the terms in one differential equation change with time due to a
differential equation of their own). We will develop a general theory for solving this
kind of problem in Chapter 11. But in Equation (8.79) the concentration of solute in
tank 1 (i.e., C1) does not depend on the concentration in tank 2. This is made clear if we
draw a diagram of the flows of solute in this system (Figure 8.52). If we consider only
flows into and out of tank 1, these flows depend only on the concentration C1 (and on
C∞, which represents the constant concentration of solute in the inflow to tank 1). So
we can calculate the concentration C1(t) without knowing C2(t) (i.e., solve Equation
(8.79) separately from (8.80)).

Solute tank 1

C1V1

qC` qC1
C1V1

Solute tank 1
qC2

C2V2

Figure 8.52 Diagram showing flows
of solute in the two-compartment
model.

Equation (8.79) is of a form where we can use either integrating factors or sepa-
ration of variables to solve the equation. The full solution that accounts for arbitrary
initial conditions on C1 and C2 is messy and difficult to interpret. So we will solve the
system of differential equations in the special case where C1(0) = C2(0) = 0 (that is,
neither tank initially contains any solute). So (8.79) becomes

dC1

dt
= q

V1
(C∞ − C1) , C1(0) = 0

We solved this equation originally in Section 8.3.1. But the equation is the same as
Example 1 in this section, if we rename the variables y → C1, a → C∞, and k → − q

V1
.

From Example 1 we may read off the solution:

C1(t) = C∞ − C∞e−qt/V1 = C∞(1 − e−qt/V1 )

To calculate C2(t) we must substitute our solution for C1(t) into (8.80):

dC2

dt
= q

V2
C∞

(
1 − e−qt/V1

)
− qC2

V2
. (8.81)
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Equation (8.81) is not separable, but it can be solved by integrating factors if it is first
rewritten as

dC2

dt
+ qC2

V2
= qC∞

V2

(
1 − e−qt/V1

)
a(t) = q/V2, b(t) = qC∞

V2
(1 − e−qt/V1 ).

Then:

eqt/V2
dC2

dt
+ q

V2
eqt/V2C2 = qC∞

V2

(
eqt/V2 − eqt(1/V2−1/V1)

)
IF = eqt/V2

d
dt

(
C2eqt/V2

)
=

C2eqt/V2 = qC∞

V2

∫ (
eqt/V2 − eqt(1/V2−1/V1)

)
dt

= qC∞

V2

(
V2

q
eqt/V2 − V1V2

q(V1 − V2)
eqt(1/V2−1/V1)

)
+ C Assume V1 ̸= V2; (1/V2 − 1/V1)−1 = V1V2

V1−V2
.

In our derivation we have assumed that V1 ̸= V2 (i.e., the tanks have different sizes).
Hence:

C2(t) = C∞ − C∞
V1

V1 − V2
e−qt/V2 + Ce−qt/V2

To calculate the constant of integration, C, apply the initial conditions:

0 = C∞ − C∞

(
V1

V1 − V2

)
+ C. C2(0) = 0

We find C = −C∞ + V1
V1−V2

C∞ and so:

C2(t) = C∞
(
1 − e−qt/V2

)
+ C∞

(
V1

V1 − V2

) (
e−qt/V2 − e−qt/V1

)
(8.82)

Figure 8.53 shows one solution of the model.
Our solution for C2(t) in Equation (8.82) is quite complicated, and it is hard, even

using the techniques from Section 5.6, to determine how the shape of the graph will
depend on all of the constants in our model. From our solution forC1(t) we can see that
C1(t) → C∞ as t → ∞ because C1(t) can be decomposed as C∞ plus an exponential
term that decays to 0 as t → ∞.

1.0
1.2
1.4

0.4
0.2

0.8

0 2 4 6 8 10
0

t

C(t)

0.6

C1(t)

C2(t)

Figure 8.53 Solutions of (8.79) and
(8.80) with C∞ = 1, q = 1, V1 = 2,
V2 = 1, C1(0) = C2(0) = 0.

Since all of the exponential terms in (8.82) decay to 0 as t → ∞, C2(t) must also
converge to C∞ as t → ∞. That is, the concentration of solute in both tanks converges
to C∞, (i.e., to match the concentration in the water flowing into the first tank).

To understand how the solutions behave, it is often helpful to consider what hap-
pens if one of the constants in the equation is very small or very large. We will show
how this kind of analysis can be used, focusing on the effect of the size of the second
tank, V2, on C2(t).

If V2 ≪ V1 (the second tank is much smaller than the first), then V1
V1−V2

≈ V1
V1

= 1,
because we can neglect the V2 term in the denominator. We can approximate V2

V1−V2
≈

0, so:

C2(t) ≈ C∞
(
1 − e−qt/V1

)

But this is the same expression as we found for C1(t). So the concentrations in
the two tanks are almost identical. If V2 is very small, then the concentration in the
second tank quickly reaches equilibrium with the concentration in the inflow to the
second tank (i.e., to C1(t)). But C1(t) changes with time t. So the second tank matches
the concentration of the first tank and eventually reaches the same equilibrium con-
centration C∞. Because C2(t) is being fed with an inflow whose concentration is C1(t)
rather than C∞, it is not possible for the second tank to converge to the equilibrium
concentration C∞ faster than the first tank.
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On the other hand, if V2 ≫ V1 (the second tank is much larger than the first), then
V1

V1−V2
≈ −V1

V2
≈ 0. In this case we may approximate (8.82) by

C2(t) ≈ C∞
(
1 − e−qt/V2

)

Our expression for C2(t) is then the same as the expression for C1(t), only with the
volume V1 replaced by the (much larger) volume V2. In fact C2(t) doesn’t depend on
V1 at all in this limit. Our solution for C2(t) is the same as for a tank of volume V2
that receives an inflow with constant concentration C∞. We can understand this as
follows: If V1 ≪ V2, then the concentration in the first tank converges to C∞ much
quicker than the second tank. So quickly, in fact, that when considering the second
tank we can assume that the first tank reaches C∞ effectively instantly. So the second
tank receives an almost constant inflow concentration C∞, and can be analyzed as a
single tank reaching equilibrium at this concentration.

As we noted in the introduction, one of the most important applications of two-
compartment models is the study of how drugs move through the human body. Here
we don’t have physical tanks with flow between them, but matter moves from one com-
partment to another, and equations very similar to the above can be used to represent
this movement.

EXAMPLE 5 A Two-Compartment Model for Drug Metabolization A patient takes a pill containing a
drug. The pill enters her gut. From there it then passes into her bloodstream. A fraction
f of the drug from the gut enters the patient’s bloodstream in each unit of time. Once
the drug enters the blood it is used by the patient’s body or eliminated. A fraction k
of the drug present in the patient’s blood is removed in each unit of time. Calculate
the amount of drug in the patient’s blood as a function of time. Assume that f and k
are constants.

Solution Here we model the flow of drug using two compartments: the gut and the blood. Let
the amount of medication in the patient’s gut be g (t) and the amount in her blood be
b(t). We start with word equations for g (t) and b(t).

Rate of change of
drug in gut = −

(
Rate at which drug

passes from gut to blood

)

dg
dt

= − f g No extra drug enters gut unless
the patient takes more pills. (8.83)

At time t = 0, when the pill first enters the patient’s gut, if no drug was previously
present, then g (t) will be equal to the total amount of drug contained in a pill. Let’s
call the amount of drug in one pill g 0. Then g (0) = g 0.

Since the drug leaving the gut enters the patient’s blood,

Rate of change of
drug in blood =

Rate at which
drug passes from

gut to blood
−

Rate at which
drug is removed
from the blood

db
dt

= f g − kb (8.84)

If we assume that this is the first time the patient has taken this particular medication,
then at time t = 0 there should be no medication present in the patient’s blood (i.e.,
b(0) = 0).

We can represent the flow of drug between the two compartments by a diagram
(Figure 8.54).

Gut

g(t)
fg

g(t)

Blood
kb

b(t)

Figure 8.54 Flow of drug between
gut and blood for Example 5.

Just as in the two tank problem, the flow to the gut (there is no inflow) does
not depend on the level of drug in the blood. That is, Equation (8.83) can be solved
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independently of Equation (8.84). In fact we can solve (8.83) by either of the methods
(separation of variables or integrating factors) that we have studied in this chapter.
We will use separation of variables:

∫
dg
g

= −
∫

f dt ⇒ g (t) = g 0e− f t

To solve (8.84) we substitute our expression for g (t) into the equation:

db
dt

= f g − kb = f g 0e− f t − kb (8.85)

Equation (8.85) is not separable but can be solved using integrating factors:

db
dt

+ kb = f g 0e− f t First, write in the form of (8.74).

ekt db
dt

+ kektb = f g 0e(k− f )t IF = ekt

d
dt

(ektb) =
∫

f g 0e(k− f )tdt.

Let’s assume that k ̸= f (the case where k = f is left to you; see Problem 30).
Then we can evaluate the integral on the right hand side, giving

ektb(t) = f g 0

k − f
e(k− f )t + C C is a constant of integration.

so

b(t) = f g 0

k − f
e− f t + Ce−kt .

To find the constant C, apply initial conditions:

0 = f g 0

k − f
+ C ⇒ C = − f g 0

k − f

Thus

b(t) = f g 0

k − f
(
e− f t − e−kt) . (8.86)

To understand our solution better it is useful to sketch a graph of how b(t) varies
over time. We can use the techniques from Section 5.6 to draw this graph. We will
assume for definiteness that k > f . Modifications for k < f will be discussed as we
proceed.

Step 1 Find zeros. b(t) = 0 only when:

e− f t − e−kt = 0 (i.e., e(k− f )t = 1).

Since k ̸= f , this occurs only when t = 0.
Step 2 Find where function is positive or negative. Since b(t) = 0 only when t = 0,
b(t) must be positive over the entire interval (0, ∞) or negative over the entire
interval). Since b(t) represents an amount of drug, we expect only the first case to
be possible. But to reason from Equation (8.86) rather than from the science of
the model, consider the two factors in (8.86): (e− f t − e−kt) and f g 0

k− f . Since we are

assuming k > f , k − f > 0, so f g 0
k− f > 0. Meanwhile e(k− f )t > 1 since e raised to

any power is positive, so e− f t > e−kt . Thus, both factors are positive, and so b(t) is
positive.
Step 3 and 4 Find b′(t) and points where b(t) or b′(t) are undefined. Both b(t) and
db/dt are defined for all t ≥ 0, and:

db
dt

= f g 0

k − f
(
− f e− f t + ke−kt)
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Steps 5 and 6 Locate local extrema and increasing and decreasing intervals of b(t).
From Step 3 we see db

dt = 0 only when ke−kt = f e− f t , that is, when e(k− f )t = k/ f so
the only candidate for a local extrema with t > 0 is at time t1 = ln(k/ f )

k− f .
Notice that t1 is a positive number whether k > f or k < f . If k > f , then

k− f > 0 and ln(k/ f ) > 0 (since ln x > 0 if x > 1). But if k < f , then k− f < 0 and
ln(k/ f ) < 0. Since our expression has both a negative numerator and a negative
denominator, t1 will be positive. The derivative b′(t) can only change sign at points
where b′(t) = 0 (i.e., at the local extremum t1). We also observe that:

b′(0) = f g 0

k − f
(k − f ) = f g 0 > 0

so b(t) starts off increasing for 0 ≤ t < t1. Moreover, since b(t) → 0 as t → ∞, and
b(t) > 0, b(t) must be decreasing as t → ∞, so b(t) is decreasing for t > t1.
Step 7 Classify extrema. b(t) switches from increasing to decreasing at t = t1, and
so t = t1 is a local maximum.
Step 8 Behavior at end points of the interval. Since b(t) > 0 for t > 0 and b(t) =
0, t = 0 is a local (in fact a global) minimum point. The other end point of interest
is the behavior of b(t) as t → ∞:

lim
t→∞

b(t) = lim
t→∞

(
f g 0

k − f
e− f t

)
− lim

t→∞

(
f g 0

k − f
e−kt

)

= 0 − 0 = 0

Figure 8.55 is a sketch of the solution, containing all of this information.
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Figure 8.55 Sketch of the solution to
the differential equations (8.83 and
8.84). Finding the maximum level of
the drug in the patient’s blood is left
as an exercise (see Problem 30).

Two-compartment models are commonly used to predict how the body uses med-
ications. For example, Albert and Gernaat (1984) collected data on the levels of
ibuprofen (sold under the name Motrin R⃝) in the blood of patients being treated for
arthritis. We can fit the model to these data, that is, estimate the parameters k and f
that make the mathematical model match experimental measurements: to determine
how quickly the ibuprofen enters and leaves a patient’s blood. The data and fit are
shown in Figure 8.56.

40

0 2 4 6 8
0

t

C(t)

b(t)

Data from Alpert
and Gernaat (1984)

30

20

10

Figure 8.56 We fit our two-compartment
model to the data of Albert and Gernaat
(1984) (red crosses). From the fit we can
estimate the parameters in our model:
k = 0.53 hr−1 and f = 1.35 hr−1.

Cell 1

VC1(t)
kC1 2 kC2

VC1(t)

Cell 2
Cell 2

VC2(t)

Cell 1

C1(t) C2(t)

Figure 8.57 Two cells exchange a small molecule through
the small region of membrane between them. In the
second panel we represent the flow between the two cells.

EXAMPLE 6 Equilibration Across a Membrane Although the membrane of a cell may appear to be
solid when the cell is viewed through a microscope, at the molecular scale the mem-
brane is riddled with holes that allow small molecules to diffuse into and out of the
cell, either into the cell’s environment or into nearby cells. Controlling what enters and
what leaves is one of the cell’s most important tasks. Here we will consider a simplified
model for the process by which two cells exchange small molecules.

Imagine the cells are in contact via a region of membrane. The two cells have
the same volume V , and their respective concentrations of the molecule are C1(t) and
C2(t) (see Figure 8.57).
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The flow of molecules between the two cells will depend on the difference in con-
centration between the two cells. A commonly used model for the process of diffusion
states that:

Rate of flow from
cell 1 to cell 2 = k(C1 − C2). (8.87)

The constant k is called the permeability of the membrane—it depends both on
the properties of the membrane (the area of contact between the two cells, the size
of the holes in the membrane) and upon the molecule (e.g., small molecules typically
diffuse across the membrane more readily—that is, they have higher values of k than
large molecules).

Now if C1 < C2, then the rate of flow predicted by (8.87) is negative. In that case
molecules flow from cell 2 to cell 1. That is, molecules always tend to diffuse from the
cell where the concentration is higher to the cell where the concentration is lower.

Hence, we can write down a word equation for the concentration in the two cells
starting with the first cell:

Rate of change of
number of molecules

in cell 1
= −

Rate at which
molecules diffuse

from cell 1 to cell 2

which may then be written in mathematical form, i.e.:

d
dt

(C1V) = −k(C1 − C2).

Similarly for cell 2:

Rate of change of
number of molecules

in cell 2
=

Rate at which
molecules diffuse

from cell 1 to cell 2

Molecules diffusing from cell 1 to cell 2
are subtracted from cell 1 and added to cell 2.

d
dt

(C2V) = k(C1 − C2)

Or, on dividing all equations by the constant V :

dC1

dt
= − k

V
(C1 − C2) (8.88)

dC2

dt
= k

V
(C1 − C2) (8.89)

Previously we were able to solve one of our equations independently of the other. In
this model, however, to calculate the concentration C1, we need to solve an equation
that involves C2. But to solve the equation for C2, we need to solve an equation that
involves C1. The two equations are coupled. In general, solving this kind of differential
equation system requires techniques that will be introduced in Chapter 11. However,
in this case a trick allows us to decouple the equations. Suppose that instead of solving
(8.88) and (8.89) directly for C1 and C2 we try to solve for the quantity

C(t) = 1
2

(C1(t) + C2(t)),

which represents the average concentration of molecules in the two cells.
Why do we introduce this new dependent variable? If we look at how C(t) changes

with time we see:
dC
dt

= d
dt

[
1
2

(C1 + C2)
]

= 1
2

dC1

dt
+ 1

2
dC2

dt

= − k
2V

(C1 − C2) + k
2V

(C1 − C2) = 0 (8.90)

So C is a constant. This makes sense, physically. When a molecule leaves cell 1, it enters
cell 2, and conversely, so the total number of molecules in both cells must remain
constant, so the average must also be constant.
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Now if we know C, we can substitute for C2(t) in Equation (8.88) because C2(t) =
2C(t) − C1(t). So:

dC1

dt
= − k

V

(
C1 − (2C(t) − C1(t)

)

= −2k
V

C1 + 2k
V

C C(t) is a constant.

We can then solve this differential equation by the method of integrating factors.

dC1

dt
+ 2kC1

V
= 2kC

V
Write in the form of (8.74)

dC1

dt
e2kt/V + 2kC1

V
e2kt/V = 2kC

V
e2kt/V ∫

a(t) dt = 2kt
V

d
dt

(
C1(t)e2kt/V )

= 2kC
V

e2kt/V

C1(t)e2kt/V = 2kC
V

∫
e2kt/V dt

= Ce2kt/V + A

that is,
C1(t) = C + Ae−2kt/V (8.91)

where A is a constant that is determined by the initial conditions on C1(t). We then
solve for C2(t) from:

C2(t) = 2C − C1(t)

= C − Ae−2kt/V . (8.92)

Now let’s consider a specific problem. Assume that at time t = 0, the concentra-
tion in cell 1 is A1 and the concentration in cell 2 is A2. Find C1(t) and C2(t).

Solution To solve the problem we need to use the initial conditions to solve for the coefficients
C and A that appear in our expressions for C1(t) and C2(t).

First, note that:

C = 1
2

(C1(t) + C2(t))

and since C is a constant:

C = 1
2

(
C1(0) + C2(0)

)
= 1

2
(A1 + A2)

Now since C1(0) = A1, substituting into (8.91) we obtain:

C + A = A1

or A = A1 − C = 1
2

(A1 − A2)

So by substituting for C and A in (8.91) and (8.92) we obtain:

C1(t) = 1
2

(A1 + A2) + 1
2

(A1 − A2)e−2kt/V

C2(t) = 1
2

(A1 + A2) − 1
2

(A1 − A2)e−2kt/V

That is, both C1 and C2 converge monotonically to 1
2 (A1 + A2). The level of small

molecule in cells equilibrates at the same value ( 1
2 (A1 + A2)). A plot of the solution is

given in Figure 8.58. !
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Figure 8.58 Plot of the solution of
the two-compartment model for
equilibration of the concentration of
a small molecule between two cells.
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Section 8.4 Problems
8.4.1
Find the general solution of the differential equations in
Problems 1–12 using the method of integrating factors:

1.
dy
dt

+ y
t

= 1
t2

2.
dy
dt

+ 3y
t

= t

3.
dy
dt

− y = t + 1 4.
dy
dt

+ y = t2

5.
dy
dx

+ y
x + 2

= x − 1 6.
dy
dx

+ y
x + 2

= x

7.
dy
dx

− y
x(x + 1)

= 1 8.
dy
dx

+ 2(x + 1)y
x(x + 2)

= x

9.
dx
dt

+ (t − 1)x = t − 1 10.
dx
dt

+ tx
t2 + 1

= t

11.
dy
dx

+ y
x

= y 12.
dy
dx

+ x = y

For each of the Problems 13–24 you should determine whether
the problem needs to be solved using separation of variables or
integrating factors (some of the problems may be solved using
either method). Then solve the differential equation.

13.
dy
dt

= y
t

− t2 14.
dy
dt

= y
t + 1

15.
dy
dt

= y2t + y2 16.
dy
dt

= y − yt

17.
dy
dt

= cos t 18.
dy
dt

= 1 − y

19.
dy
dt

= t3 + yt 20.
dy
dt

= t + yt

21.
dy
dx

= (x + 1)y + (x + 1) 22.
dy
dx

= (x + 1)y + (x + 1)y2

23.
dy
dx

= xy
x + 1

24.
dy
dx

= x
y + 1

8.4.2
In Problems 25–28 consider the two-compartment model for
two tanks with respective volumes V1 and V2.

dC1

dt
= q

V1
(C∞ −C1) (8.93)

dC2

dt
= q

V2
(C1 −C2) (8.94)

where C1(t) is the concentration in the first tank and C2(t) is the
concentration in the second tank, and q is the volume of water
flowing between the two tanks in one unit of time.

25. When we analyzed (8.93) and (8.94) in the main text we as-
sumed that V1 ̸= V2. Now consider how the analysis must be
modified if V1 = V2, and C1(0) = C2(0) = 0.

(a) Show that C1(t) = C∞(1 − e−qt/V1 ) and C2(t) =
C∞

(
1 −

(
1 + qt

V1

)
e−qt/V1

)

(b) Show that limt→∞ C1(t) = C∞ and limt→∞ C2(t) = C∞.

26. Let C∞ = 0, so that the fresh water is pumped into tank 1 and
flushes solute from tank 1 into tank 2. Now assume that C1(0) = 1
and C2(0) = 0. If q = 1, V1 = 1, and V2 = 2, solve the pair of
differential equations to find C1(t) and C2(t). Sketch both func-
tions of time.

27. Let C∞ = 0, so that the fresh water is pumped into tank 1 and
flushes solute from tank 1 into tank 2. Now assume that C1(0) = 1
and C2(0) = 0. If q = 1, V1 = 3, and V2 = 1, solve the pair
of differential equations to find C1(t) and C2(t), and sketch both
functions of time.

28. Let C∞ = 0, so that the fresh water is pumped into tank 1 and
flushes solute from tank 1 into tank 2. Now assume that C1(0) = 1
and C2(0) = 0. If q = 1 and V1 = V2 = 1, solve the pair of differ-
ential equations to find C1(t) and C2(t), and sketch both functions
of time.

29. Consider a two-compartment model where, instead of hav-
ing a separate reservoir feeding into tank 1, the two tanks are
separated by two pipes, one of which carries water from tank 1
to tank 2, at rate q, and the other carries water from tank 2 to
tank 1, at the same rate q. A schematic and diagram of the flows
is given in Figure 8.59.

C1V1

qC1

q

q
qC2

C1V1 C2V2

Tank 1 Tank 2 Flows of solute

Figure 8.59 Schematic of two-compartment model for Problem 29.

(a) Explain why, although there is no net flow between the tanks,
we would expect the concentrations in the tanks to change over
time.

(b) Explain why the change in concentrations over time can be
modeled using differential equations:

dC1

dt
= q

V1
(C2 − C1)

dC2

dt
= q

V2
(C1 − C2) (8.95)

(c) To solve the differential equations in (8.95) start by assuming

that V1 = V2. Then define C(t) = 1
2

(C1 + C2) and by deriving a

differential equations for dC/dt and explain why C(t) is constant.

(d) Using the fact that C(t) is a constant, eliminate C2(t) from the
equation for dC1

dt . Solve the equation you then obtain, and write
down expressions for C1(t) and C2(t).

(e) Use the expression from part (d) to explain why, no matter
what the starting values for C1(0) and C2(0) are, we expect C1(t)
and C2(t) to converge to the same limit as t → ∞.

(f) To solve the differential equations in (8.95) in the most gen-

eral case (V1 ̸= V2), let C(t) = V1C1 + V2C2

V1 + V2
(the weighted aver-

age of the concentrations in the two tanks). Explain why C(t) is
a constant.

(g) Using the fact that C(t) is a constant, eliminate C2(t) from the
equation for dC1

dt . Solve the equation you then obtain, and write
down expressions for C1(t) and C2(t).

(h) Use the expression from part (g) to explain why, no matter
what the starting values for C(t) and C2(t) are, we expect C1(t)
and C2(t) to converge to the same limit as t → ∞.

30. Drug Modeling In Example 5 we analyzed the flow of a medi-
cation from a patient’s gut to their blood. Reanalyze this model
assuming the rate of elimination of medication from the patient’s
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blood is the same as the rate at which medication passes from the
gut into blood. Then, if the amount of medication in the patient’s
blood is b(t) and the amount in the patient’s gut is g (t):

dg
dt

= − f g

and
db
dt

= f g − f b

where f is a positive constant.

(a) Show that just as in Example 5, g (t) = g 0e− f t where g 0 is the
amount of drug in the pill the patient takes at time t = 0.

(b) Solve for b(t), assuming b(0) = 0, and sketch the graph of
b(t) against t.

31. Find the maximum level of medication in a patient’s blood, if
the passage of medication through the patient’s body is modeled
using Equation (8.86).

32. Filling Box Models In Problem 10 of Section 8.3 we analyzed
the concentration in a tank whose volume changes over time be-
cause the inflows and outflows are not matched. For such a tank it

can be shown that if the concentration in the inflow is CI , and the
inflow and outflow rates are respectively qin and qout, then both
concentration, C(t), and volume of water in the tank, V(t), vary
with time and can be modeled by a pair of differential equations:

d
dt

(CV) = qinCI − qoutC

and (8.96)
dV
dt

= qin − qout.

(a) Show that the differential equations (8.96) imply that

((qin − qout)t + V0)
dC
dt

+ qinC = qinCI (8.97)

where V0 is the initial volume of water in the tank.

(b) Assuming that qin = 2, qout = 1, V0 = 1, C(0) = 0, and
CI = 1, solve (8.97) using integrating factors to find C(t).

(c) Assuming that qin = 1, qout = 2, V0 = 1, C(0) = 0, and
CI = 1, solve (8.97) using integrating factors to find C(t). What
does your model predict will occur when t = 1? Explain whether
this answer makes sense given that V(1) = 0.

Chapter 8 Review

Key Terms
Discuss the following definitions and
concepts:

1. Differential equation

2. Separable differential equation

3. Solution of a differential equation

4. Pure-time differential equation

5. Autonomous differential equation

6. Exponential growth

7. Von Bertalanffy equation

8. Logistic equation

9. Allometric growth

10. Equilibrium

11. Stability

12. Eigenvalue

13. Single-compartment model

14. Patchy habitat model

15. Colonization rate

16. Mortality rate

17. Allee effect

18. Chemical reaction model

19. Reaction rate

20. Evolutionary game theory

21. Snow-drift game

22. Cooperator

23. Cheater

24. Pay-off matrix

25. Epidemic model

26. Susceptible

27. Infected

28. SI-model

29. Infection rate

30. Recovery rate

31. Endemic disease

32. Integrating factor

33. Two-compartment model

34. Coupled equations

Review Problems
1. For each of the following differential equations, find the

general solution:

(a) dx/dt = 2 − x,

(b) dy/dx = 1
y − 1

y2 ,

(c) dy/dx = yx − x,

(d) dy/dx = y
x + x2.

2. For each of the following differential equations, sketch the
vector field plot, and identify any equilibria as well as
determining their stability.

(a) dN
dt = N(N − 1)(3 − N),

(b) dN/dt = N(1 − N),

(c) dx/dt = x3 − 1.

3. Newton’s Law of Cooling and Time of Death Suppose that an ob-
ject has temperature T and is brought into a room that is kept at
a constant temperature Ta. Newton’s law of cooling states that
the rate of temperature change of the object is proportional to
the difference between the temperature of the object and the
surrounding medium.

(a) Denote the temperature at time t by T(t), and explain why
dT
dt

= k(Ta − T) (8.98)

is the differential equation that expresses Newton’s law of cool-
ing.

(b) Derive the solution to the differential equation, assuming
that at time t = 0, the temperature of the object is T = T0.

Newton’s law of cooling can be used to estimate the time
of death of a person during criminal investigations. When we
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are alive, our bodies tend to maintain a constant temperature
of around 37◦C. On death, bodies start to cool. Assume that a
cooling dead body obeys Equation (8.98). Molnar et al. (1969)
found that cooling bodies have a cooling coefficient between
k = 0.04 hr−1 and k = 0.09 hr−1.

(c) A body is found at 10 p.m. The body’s temperature when
it was found was 27.0◦C, and the temperature of the room is
20.0◦C. Estimate the range of possible times of death if k is
between 0.04 hr and 0.09 hr.

(d) To make a more accurate estimate of time of death it can
be helpful to measure k directly. To do this, the body’s temper-
ature is measured at 11 p.m. At this time, the body temperature
is found to be 26.4◦C (you may assume the room temperature
remains constant at 20.0◦C). Using the temperatures measured
at 10 p.m. and 11 p.m., estimate k.

(e) Use your new measurement of k from part (d) to make a
new estimate of the time of death.

4. Photosynthesis (Adapted from Horn, 1971) The following
model is a simplified model of photosynthesis: Suppose that a
leaf contains a number of traps that can capture light. If a trap
captures light, the trap becomes energized. The energy in the
trap can then be used to produce sugar, which causes the en-
ergized trap to become unenergized. The number of traps that
can become energized is proportional to the number of unener-
gized traps and the intensity of the light. Denote by T the total
number of traps (unenergized and energized) in a leaf, by I the
light intensity, and by x the number of energized traps. Then the
following differential equation describes how the number of en-
ergized traps changes over time:

dx
dt

= k1(T − x)I − k2x

Here, k1, k2, and I are positive constants. Find all equilibria and
their stability.

5. Chemical Reactions A chemical reaction between chemical A
and chemical B produces chemicalC. Two molecules from chem-
ical C can then combine to produce chemical D. The chain of
reactions can be written as

A + B → C with rate constant kAB

2C → D with rate constant kC.

Chemicals A and B are continuously added to the system to keep
A and B at constant concentrations a and b respectively. Then,
the concentration x(t) of C can be modeled using a differential
equation:

dx
dt

= kABab − 2kCx2 (8.99)

(a) Analyze (8.99); that is, find the equilibria of the equation
and their stability.

(b) Assume that kAB = 1, kC = 1, a = 1, b = 1. Draw the vector
field plot for (8.99).

(c) Now sketch the graph of the solution x(t) against t if x(0) = 0
(it is not necessary to solve the differential equation to sketch the
solution).

6. Island Biogeography Preston (1962) and MacArthur and
Wilson (1963) investigated the effect of area on species diversity
in oceanic islands. In their model, animals and plants of different
species continuously travel to the island from the mainland. The
fraction of mainland species that can be found on the island is
p, which we call the diversity of the island. We want to derive a
model for how p(t) will change with time, t.

The number of different species present on the island will
be affected by extinction and immigrations; species may die out,
while other species from the mainland start new populations on
the island. In general we expect:

dp
dt

= Rate of immigrations − Rate of extinctions

Assume that a fraction m of species go extinct in one unit of
time. Assume that, if a species is present on the mainland, then
there is a probability c that it will emigrate to the island in one
unit of time. But only species not present already on the island
will add to the number of species there.

(a) Explain why we may model the diversity of the island using
a model:

dp
dt

= c(1 − p) − mp. (8.100)

(b) Find the equilibria for p and determine their stability.

(c) Assume that, for a particular island, c = 2 and m = 1. If
p(0) = 1 (that is, initially the island contains all species found
on the mainland) solve Equation (8.100) to calculate p(t).

(d) One question of interest in the field of biogeography—how
diversity is affected by the physical environment—is how the
area of the island affects its diversity. Assume that the extinc-
tion rate m decreases as island area, A, increases. But the rate
of colonization, c, is unaffected. Will the equilibrium value of p
increase or decrease if A is increased?

7. The Prisoner’s Dilemma In this problem we will discuss a classic
model for organism interactions based on Nowak (2006). This
model is based on a game called prisoner’s dilemma. Two indi-
viduals are charged with a crime. If neither confesses (i.e., they
cooperate with each other) then it cannot be proven that they
committed the crime, and they will be sentenced for a more mi-
nor crime. However, each prisoner has the option of confessing,
and blaming their partner for the crime. In this case the person
who confesses walks free, while the other person is sent to jail.
We may regard this as a form of cheating—the cheater (person
who confesses) receives a reward (no prison time), but at the ex-
pense of the cooperator (the partner who doesn’t confess). But
if both partners confess, then both will be sent to prison (though
sharing the blame means that their sentences are reduced).
We will imagine a community of organisms interacting via this
game. We can summarize net benefit to each player using a pay-
off matrix.

We will put specific numbers in the payoff matrix to make
the analysis clearer.

Opponent
Cooperate Cheat

Cooperate 3 0
Player

Cheat 6 1

Assuming that each organism interacts with n others in unit
time, and that reproductive rate is proportional to the total ben-
efit from all of these interactions, then it can be shown that the
proportion x(t) of cooperators will obey a differential equation:

dx
dt

= knx(x − 1)(2x + 1) (8.101)

where k > 0 is a constant (as in Section 8.3.4). The proportion
y(t) of cheaters can be determined from y = 1 − x.

(a) Find the stable and unstable equilibria of Equation (8.101).

(b) What is the long time behavior of x(t)?
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(c) Consider a population made up only of cooperators (x = 1).
What is the total benefit that each individual in this population
receives in one unit of time?

(d) Now consider a population made up only of cheaters
(x = 0). What is the total benefit that each individual in this
population receives in one unit of time?

Your answers from (c) and (d) illustrate an effect known
as tragedy of the commons. Although in populations of coop-
erators all individuals get more benefits than in populations of
cheaters, cheaters always prosper and eventually take over in a
mixed population.

8. Insulin Infusion An insulin pump is used to treat diabetes by
continuously infusing insulin into the fat in a patient’s abdomen
or thigh. From there the insulin enters the patient’s bloodstream.
We will model this process using a two-compartment model.

Assume that insulin is pumped into a small region of fat at
a constant rate r. This region will be the first compartment in our
model. A fraction f of the insulin in the fat then diffuses into the
patient’s blood in each unit of time. Within the patient’s blood, a
fraction k of the insulin present is eliminated in one unit of time

r, and f and k are constants. So if we denote the amount of in-
sulin in the patient’s fat by x, and the amount in their blood by
y then:

dx
dt

= r − f x. (8.102)

dy
dt

= f x − ky. (8.103)

(a) By analyzing Equation (8.102) find the equilibrium level of
insulin in the patient’s fat (that is, the equilibrium value of x) and
determine whether this equilibrium is stable or unstable.

(b) Assuming that x(t) converges to its equilibrium value
(found in part (a)), what is the equilibrium value for y(t); that
is, find the value of y that ensures that dy/dt = 0?

(c) Assuming the following parameter values: r = 2, f = 1,
k = 1, and that at time r = 0, there is no insulin present either
in the patient’s fat or in their blood (that is, x(0) = y(0) = 0),
solve the system of equations (8.102) and (8.103), and confirm
that x(t) and y(t) converge to the equilibrium values that you
calculated in parts (a) and (b).


