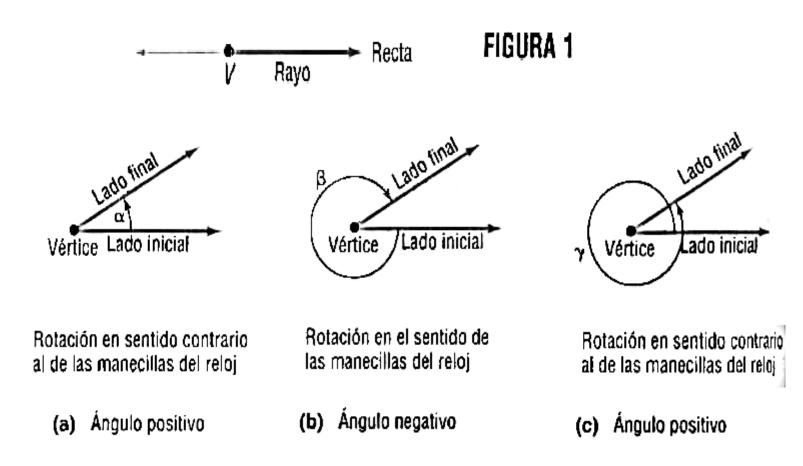
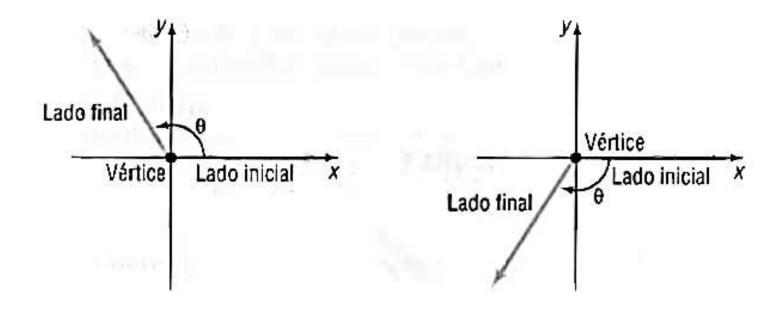
Ángulos y sus medidas

Un rayo, o semirrecta, es la parte de una recta que inicia en un punto V de la recta y se extiende indefinidamente en una dirección. El punto inicial V de un rayo es denominado vértice. Véase la figura 1.





(b)

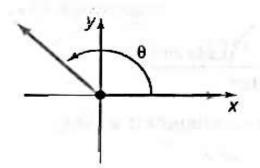
θ en posición estándar;

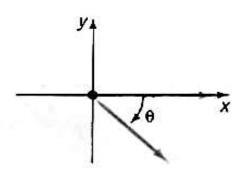
0 negativo

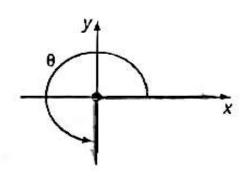
θ en posición estándar;

0 positivo

(a)







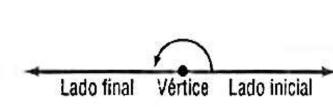
(a) θ está en el segundo cuadrante θ está en el cuarto cuadrante

(c) θ es un ángulo cuadrantal

Grados



Lado final Vértice Lado inicial



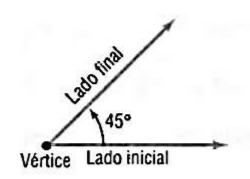
- (a) Una vuelta en sentido (b) contrario al de las manecillas del reloj, 360°
- de vuelta en sentido contrario al de las manecillas del reloj, 90°

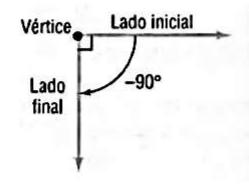
(c) ½ vuelta en sentido contrario al de las manecillas del reloj, 180°

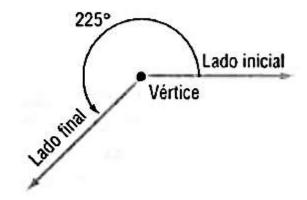
Trazado de un ángulo

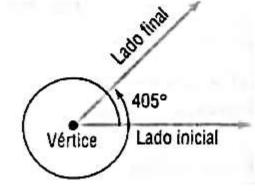
Trazar cada ángulo:

- (a) 45°
- (b) -90°
- (c) 225°
- (d) 405°









Aunque se pueden obtener subdivisiones de un grado utilizando decimales, también podemos usar la noción de *minutos* y *segundos*. Un minuto, denotado por 1'. se define como $\frac{1}{60}$ de grado. Un segundo, denotado por 1", se define como $\frac{1}{60}$ de minuto o, de manera equivalente, $\frac{1}{3600}$ de grado. Un ángulo de, digamos, 30 grados, 40 minutos, 10 segundos se escribe de manera concisa como 30° 40′ 10". Para resumin

1 vuelta en sentido contrario al de las manecillas del reloj =
$$360^{\circ}$$

 $60' = 1^{\circ}$ $60'' = 1'$

Conversión entre la forma grados, minutos, segundos y la forma decimal

- (a) Convertir 50°6'21" a un número decimal de grados.
- (b) Convertir 21.256° a la forma D°M'S" Redondear la respuesta al segundo más cercano.
- (a) Ya que 1' = $\frac{1}{60}$ ° y 1" = $\frac{1}{60}$ ' = $(\frac{1}{60} \cdot \frac{1}{60})$ °, convertimos como sigue: $50^{\circ}6'21" = (50 + 6 \cdot \frac{1}{60} + 21 \cdot \frac{1}{60} \cdot \frac{1}{60})$ ° $\approx (50 + 0.1 + 0.005833)$ ° = 50.105833°
- (b) Empezamos con la parte decimal de 21.256°, esto es, 0.256°:

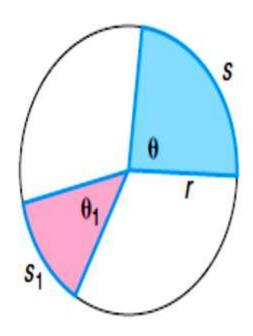
$$0.256^{\circ} = (0.256)(1^{\circ}) = (0.256)(60') = 15.36'$$

 $0.36' = (0.36)(1') = (0.36)(60'') = 21.6'' \approx 22''$
 $21.256^{\circ} = 21^{\circ} + 0.256^{\circ} = 21^{\circ} + 15.36' = 21^{\circ} + 15' + 0.36'$
 $= 21^{\circ} + 15' + 21.6'' \approx 21^{\circ}15'22''$

Radianes

$$\frac{\theta}{1} = \frac{s}{r}$$
 o $s = r\theta$

$$\frac{\theta}{\theta_1} = \frac{s}{s_1}$$



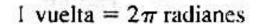
Determine la longitud del arco de un círculo

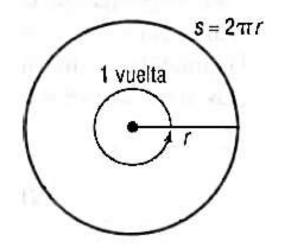
Determinar la longitud del arco de un círculo con radio de 2 metros subtendido por un ángulo central de 0.25 radianes.

Solución

Usamos la ecuación (4) con
$$r=2$$
 metros y $\theta=0.25$. La longitud s del arco es $s=r\theta=2(0.25)=0.5$ metros

Relación entre grados y radianes





$$s=r\theta$$

$$2\pi r = r\theta$$

$$\theta = 2\pi$$
 radianes

1 vuelta = 2π radianes

 $360^{\circ} = 2\pi \text{ radianes}$

 $180^{\circ} = \pi \text{ radianes}$

1 grado =
$$\frac{\pi}{180}$$
 radián 1 radián = $\frac{180}{\pi}$ grados

Conversión de grados a radianes

Convertir cada ángulo dado en grados a radianes:

- (a) 60° (b) 150° (c) -45° (d) 90°

Solución

(a)
$$60^\circ = 60 \cdot 1$$
 grado = $60 \cdot \frac{\pi}{180}$ radián = $\frac{\pi}{3}$ radianes

(b)
$$150^\circ = 150 \cdot \frac{\pi}{180}$$
 radián = $\frac{5\pi}{6}$ radianes

(c)
$$-45^\circ = -45 \cdot \frac{\pi}{180}$$
 radián $= -\frac{\pi}{4}$ radián

(d)
$$90^{\circ} = 90 \cdot \frac{\pi}{180}$$
 radián $= \frac{\pi}{2}$ radianes

Conversión de radianes a grados

Convertir cada ángulo dado en radianes a grados.

(a)
$$\frac{\pi}{6}$$
 radián

(b)
$$\frac{3\pi}{2}$$
 radianes

(a)
$$\frac{\pi}{6}$$
 radián (b) $\frac{3\pi}{2}$ radianes (c) $-\frac{3\pi}{4}$ radianes (d) $\frac{7\pi}{3}$ radianes

(d)
$$\frac{\pi}{3}$$
 radianes

Solución

(a)
$$\frac{\pi}{6}$$
 radián = $\frac{\pi}{6} \cdot 1$ radián = $\frac{\pi}{6} \cdot \frac{180}{\pi}$ grados = 30°

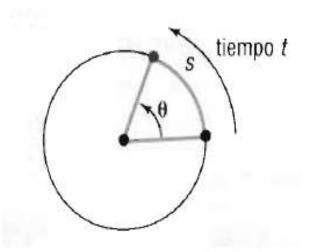
(b)
$$\frac{3\pi}{2}$$
 radianes = $\frac{3\pi}{2} \cdot \frac{180}{\pi}$ grados = 270°

(c)
$$-\frac{3\pi}{4}$$
 radianes = $-\frac{3\pi}{4} \cdot \frac{180}{\pi}$ grados = -135°

(d)
$$\frac{7\pi}{3}$$
 radianes = $\frac{7\pi}{3} \cdot \frac{180}{\pi}$ grados = 420°

grados	0°	30°	45°	60°	90°	120°	135°	150°	180°
radianes	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π
grados		210°	225°	240°	270°	300°	315°	330°	360°
radianes		$\frac{7\pi}{6}$	$\frac{5\pi}{4}$	$\frac{4\pi}{3}$	$\frac{3\pi}{2}$	$\frac{5\pi}{3}$	$\frac{7\pi}{4}$	$\frac{11\pi}{6}$	2π

Movimiento circular



$$v = \frac{s}{t}$$

$$\omega = \frac{\theta}{t}$$

$$\frac{45 \text{ vueltas}}{\text{minutos}} = \frac{45 \text{ vueltas}}{\text{minutos}} \cdot \frac{2\pi \text{ radianes}}{\text{vuelta}} = \frac{90\pi \text{ radianes}}{\text{minutos}}$$

Latitud L

