Escuela de Verano Universidad de Chile

FM1001 Matemática I: Bases del Álgebra Lineal Profesores: Rodrigo López, Emilio Molina, Nicolás Zalduendo

Tarea 2

16 de enero de 2019

a) Considere la siguiente identidad:

$$(AX + B + 3X)(CD)^t = E$$

- (i) Si se sabe que $A, B, E \in \mathcal{M}_{22}(\mathbb{R}), C \in \mathcal{M}_{23}(\mathbb{R})$ y $D \in \mathcal{M}_{32}(\mathbb{R})$ ¿Qué dimensiones debe tener X para que la igualdad anterior tenga sentido?
- (ii) Encuentre X en función de A, B, C, D y E.
 Indicación: Si necesita asumir la invertibilidad de alguna matriz, hágalo, indicándolo claramente en su respuesta.
- (iii) Encuentre explícitamente X para el caso en que $A=\begin{pmatrix}1&3\\2&-1\end{pmatrix},\ B=\begin{pmatrix}0&3\\0&2\end{pmatrix},\ C=\begin{pmatrix}0&1&3\\2&-1&1\end{pmatrix},$ $D=\begin{pmatrix}1&2\\0&-1\\2&3\end{pmatrix}\ y\ E=\begin{pmatrix}0&1\\1&0\end{pmatrix}$
- b) ¿Es cierto que si $A, B \in \mathcal{M}_{22}(\mathbb{R})$ entonces $\det(AB) = \det(A) \det(B)$? Demuestre o enuncie un contraejemplo.
- c) Muestre que si $A, B \in \mathcal{M}_{22}(\mathbb{R})$, entonces $A \vee B$ son invertibles sí y sólo si AB lo es.
- d) Considere el plano Π y la recta L de ecuaciones

$$\Pi: \begin{pmatrix} 1\\2\\0 \end{pmatrix} + s \begin{pmatrix} 1\\0\\3 \end{pmatrix} + t \begin{pmatrix} -1\\1\\2 \end{pmatrix} \text{ y } L: \begin{pmatrix} 2\\1\\3 \end{pmatrix} + a \begin{pmatrix} 3\\1\\-1 \end{pmatrix}$$

- (i) Escriba el sistema de ecuaciones cartesianas de $\Pi \cap L$ como una ecuación de la forma $A\vec{x} = \vec{b}$, especificando A, \vec{b} y sus dimensiones.
- (ii) Calculando el determinante de A, determine si $\Pi \cap L$ es un punto, una recta o el conjunto vacío
- (iii) Usando la calculadora matricial en https://matrixcalc.org/es encuentre la inversa de A y determine $\Pi \cap L$.