FM1003-2 Matemática III: Límites y Derivadas

Profesor: Emilio Vilches G.

Auxiliares: Matías Azócar y Sebastián López

Auxiliar 5: Repaso pre-control

12 de enero de 2017

P1. a) Sean p, q, r, s proposiciones. Probar que $s \Rightarrow (r \Rightarrow p)$ es una tautología (por tabla de verdad)

p	q	r	s
V	V	V	V
V	V	F	V
V	F	V	F
V	F	F	V
F	V	V	F
F	V	F	F
F	F	V	F
F	F	F	V

b) Sean p,q y r proposiciones. Probar sin usar tablas de verdad que la siguiente proposición es una tautología:

$$((p \Rightarrow q) \land (r \Rightarrow s)) \Rightarrow ((p \land r) \Rightarrow (q \land s))$$

c) Sean p,q y r proposiciones tales que $((\sim p \lor q \Rightarrow r)$ es falsa. Entregar el valor de verdad de las siguiente proposición:

$$r \Rightarrow (p \Leftrightarrow \sim (q \vee r))$$

P2. a) Sean A, B, C conjuntos. Probar que $A \subseteq C \Rightarrow A \setminus B = C \setminus [B \cup (C \setminus A)]$

b) Sean A, B, C subconjuntos del universo. Probar que:

$$A \cap B \cap C = \phi \Rightarrow (A \setminus B) \cup (B \setminus C) \cup (C \setminus A) = A \cup B \cup C$$

P3. Muestre que:

$$\sum_{k=1}^{n} \frac{1}{k(k+1)(k+2)} = \frac{1}{2} \left[\frac{1}{2} - \frac{1}{(n+1)(n+2)} \right]$$

P4. Resuelva:

a)
$$\sum_{k=4}^{n} 3(4^{k-2} + 2(k-3)^2) - 4(k-4)$$

b)
$$\sum_{k=1}^{n} \frac{2k+1}{k^2(k+1)^2}$$
, (Indicación: Ajuste la suma a una telescópica.)

c)
$$\sum_{k=4}^{n^2-1} \frac{1}{\sqrt{k+1} + \sqrt{k}}$$