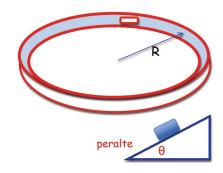
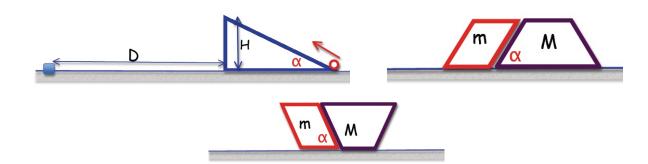


Profesor Nelson Zamorano


Profesor Auxiliar Sergio Cofre

CONTROL # 2 Duración: 120 minutos

PROBLEMA # 1


Considere una pista circular de radio R por donde circulan automóviles como se indica en la Figura. A las carreteras en estas curvas se les da un peralte: una pequeña inclinación (ver figura adicional) para ayudar a evitar que los autos que circulen por este tramo de la pista se salgan de ella.

Calcule el ángulo θ necesario dar al peralte para que un vehículo no resbale (o mejor, está a punto de resbalar) al transitar por ella. Considere los siguientes datos para este cálculo: un vehículo típico, de masa M circula con una rapidez V por la pista.

PROBLEMA #2

Dada la configuración de la Figura: un plano inclinado con un ángulo α en el vértice de la base y altura **H** en el cateto opuesto y otro objeto situado a una distancia $\bf D$ de este cateto. Calcule cuál es el valor de la velocidad $\bf V_o$ que le debo imprimir a un objeto situado en la base de este triángulo, para que alcance al objeto situado a distancia D. Calcule el ángulo con el cual llega al punto D.

PROBLEMA #3

a.- ¿Cuál es el máximo valor de la fuerza \mathbf{F}_o que le puedo aplicar por el lado derecho al sistema de dos masas de la Figura superior, sin que la masa m comience a despegarse del piso? ¿Cuál es el valor de la aceleración del sistema de dos masas?

b.- ¿Cómo cambia (si es que cambia) el resultado si invertimos las masas (ver Fig. Inferior) y pedimos aplicar la máxima fuerza \mathbf{F}_o posible por la izquierda (sobre \mathbf{m}) y que no levante la masa \mathbf{M} ? ¿Cuál es el valor de la aceleración del sistema en este caso?