

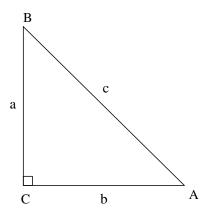
Guía de Reforzamiento Nº 2

"Teorema de Pitágoras y Trigonometría"

María Angélica Vega Guillermo González Patricio Sepúlveda

19 de Enero de 2011

1 TEOREMA DE PITÁGORAS



El Teorema de Pitágoras afirma que si el triángulo ABC es rectángulo, entonces la suma de los catetos al cuadrado es igual al cuadrado de la hipotenusa.

$$a^2 + b^2 = c^2$$

Además podemos decir que el recíproco del teorema de pitágoras también es cierto, es decir, si los tres lados de un triángulo ABC cualquiera cumplen con la relación $a^2 + b^2 = c^2$, entonces el triángulo es rectángulo.

1.1 EJEMPLOS

1. Según el triángulo ABC (rectángulo en C) de la figura, calcule el valor de c.

$$a = 12 \text{ cm.}$$
 $b = 16 \text{ cm.}$

Solución:
$$c^2 = a^2 + b^2$$

 $c^2 = 12^2 + 16^2$
 $c^2 = 144 + 256$
 $c^2 = 400$
 $c = \sqrt{400} \ cm$
 $c = 20 \ cm$

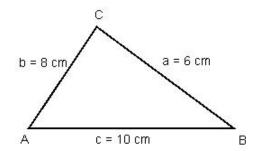
2. Según el triángulo ABC (rectángulo en B) de la figura, calcule el valor de c.

$$a = 5 \text{ mm.}$$
 $b = 13 \text{ mm.}$

Solución:
$$b^2 = c^2 + a^2$$

 $c^2 = b^2 - a^2$
 $c^2 = 13^2 - 5^2$
 $c^2 = 169 - 25$
 $c^2 = 144$
 $c = \sqrt{144} \ mm$
 $c = 12 \ mm$

3. Verifique que el triángulo ABC de la figura es un triángulo rectángulo.



Solución:

$$a^{2} = 6^{2} cm^{2} = 36 cm^{2}$$

 $b^{2} = 8^{2} cm^{2} = 64 cm^{2}$
 $c^{2} = 10^{2} cm^{2} = 100 cm^{2}$

Claramente $a^2 + b^2 = c^2$, entonces por el recíproco del teorema de pitágoras podemos afirmar que el triángulo ABC es rectángulo en C.

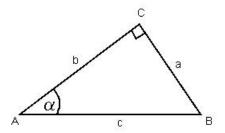
1.2 EJERCICIOS

- 1. Verifica si los siguientes lados corresponden a los de un triángulo rectángulo.
 - (a) 8 m, 10 m, 12 m.
 - (b) 5 m, 12 m, 13 m.
 - (c) 8 m, 13 m, 16 m.
 - (d) 15 m, 20 m, 25 m.
- 2. En cada caso encuentra la medida de la hipotenusa del triángulo rectángulo, sabiendo que la medida de los catetos son:
 - (a) $3 \, cm, 4 \, cm$.
 - (b) $10 \ cm, 24 \ cm.$
 - (c) 12 cm, 16 cm.
 - (d) 6 m, 8 m.
- 3. Calcula la diagonal del rectángulo sabiendo que sus lados miden:
 - (a) largo 4 cm, ancho 3 cm.
 - (b) largo 8 cm, ancho 6 cm.
 - (c) largo 5 cm, ancho 12 cm.
- 4. Para mantener en posición vertical un poste de la luz se emplea un cable de 15 m de largo que va desde lo alto del poste a una estaca clavada a 9 m de distancia de la base del poste. ¿Qué altura tiene el poste?

2 TRIGONOMETRÍA

2.1 Razones trigonométricas en el triángulo rectángulo

Dado un triángulo rectángulo ABC, como el de la figura, rectángulo en C, definamos las siguientes razones trigonométricas para el ángulo agudo alfa (α) .



$$sen \ \alpha = \frac{\text{cateto opuesto a } \alpha}{\text{hipotenusa}} = \frac{a}{c}$$

$$cosec \ \alpha = \frac{\text{hipotenusa}}{\text{cateto opuesto a } \alpha} = \frac{c}{a}$$

$$\cos \alpha = \frac{\text{cateto adyacente a } \alpha}{\text{hipotenusa}} = \frac{b}{c}$$

$$sec \ \alpha = \frac{\text{hipotenusa}}{\text{cateto advacente a } \alpha} = \frac{c}{b}$$

$$tg \ \alpha = \frac{\text{cateto opuesto a } \alpha}{\text{cateto advacente a } \alpha} = \frac{a}{b}$$

$$\cot g \ \alpha = \frac{\text{cateto advacente a } \alpha}{\text{cateto opuesto a } \alpha} = \frac{b}{a}$$

2.2 Razones trigonométricas de ángulos importantes

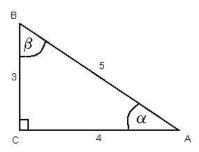
	$\mid 0_{\rm o} \mid$	30°	45°	60°	90°
sen ()	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
cos ()	1	$\left \frac{\sqrt{3}}{2} \right $	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
tg()	0	$\left \frac{\sqrt{3}}{3} \right $	1	$\sqrt{3}$	No existe

2.3 Ángulo de elevación y de depresión

Son aquellos ángulos formados por la horizontal, considerada a nivel del ojo del observador y la línea de mira, según que el objeto observado esté por sobre o bajo esta última. Con respecto a un observador, los ángulos de elevación y de depresión constituyen ángulos alternos internos entre paralelas, por lo tanto, sus medidas son iguales.

2.4 EJEMPLOS

1. Considere el triángulo ABC de la figura, con catetos AC=4 cm, BC=3 cm e hipotenusa AB=5 cm. Calculemos respecto de los ángulos agudos α y β las razones trigonométricas fundamentales.



Solución:

$$sen \ \alpha = \frac{3}{5} = 0,6$$
 $cos \ \alpha = \frac{4}{5} = 0,8$ $tg \ \alpha = \frac{3}{4} = 0,75$ $sen \ \beta = \frac{4}{5} = 0,8$ $cos \ \beta = \frac{3}{5} = 0,6$ $tg \ \beta = \frac{4}{3} = 1,\overline{3}$

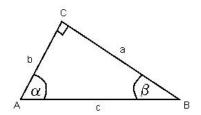
2. Considere un triángulo ABC rectángulo en C, donde $\cos \alpha = 5/7$. Determine el valor de $\sec \alpha$, $\csc \alpha$ y $\cot g$ α .

Solución:

Como $\cos \alpha = 5/7$, esto significa que en el triángulo ABC se tiene:

$$b=5u$$

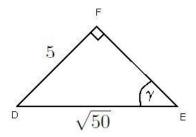
$$c=7u$$
 y $a=\sqrt{7^2-5^2}=\sqrt{24}u=2\sqrt{6}u,$ donde u es algún número real distinto de cero.



Por lo tanto

$$sec \ \alpha = \frac{7}{5} = 1,4$$
 $cosec \ \alpha = \frac{7}{2\sqrt{6}} \approx 1,43$ $cotg \ \alpha = \frac{5}{2\sqrt{6}} \approx 1,02$

3. Considerando el triángulo DEF, calcule la medida del ángulo γ .



Solución:

sen
$$\gamma = \frac{5}{\sqrt{50}} = \frac{5\sqrt{50}}{50} = \frac{5\sqrt{2}}{10} = \frac{\sqrt{2}}{2}$$
.

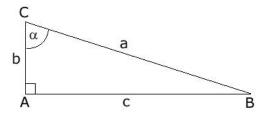
Según la tabla (sección 2.2), $\frac{\sqrt{2}}{2}$ corresponde al seno de 45°, por lo tanto, $\gamma = 45^{\circ}$.

4

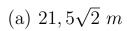
2.5 EJERCICIOS DE SELECCIÓN MÚLTIPLE

1. En la figura, $\cos\alpha=0,15$ y b=1,5 cm. Entonces, ¿cuál es la medida de la hipotenusa?

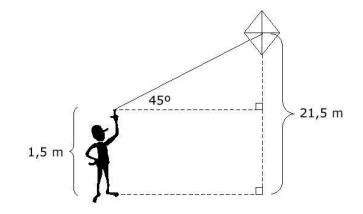
- (b) 15 cm
- (c) $12, 5 \ cm$
- (d) 10 cm
- (e) 1 cm



- 2. $tg 45^{\circ} \cdot sen 30^{\circ} + cos^2 60^{\circ} =$
 - (a) $-\frac{3}{4}$
 - (b) $-\frac{1}{4}$
 - (c) 0
 - (d) $\frac{1}{4}$
 - (e) $\frac{3}{4}$
- 3. Para determinar la altura de un poste, Cristian se ha alejado 7 metros de su base y ha medido el ángulo que forma la visual al punto más alto del poste, obteniendo un valor de 40°. Si Cristian ignora su propia altura, ¿cuál es la altura del poste?
 - (a) $7 \cdot tg(40^{\circ})$
 - (b) $7 \cdot cos(40^{\circ})$
 - (c) $7 \cdot cosec(40^{\circ})$
 - (d) $7 \cdot cotg(40^{\circ})$
 - (e) Falta información.
- 4. ¿Cuál es la longitud del hilo que sujeta el volantín de la figura, si el ángulo de elevación es de 45° ?



- (b) 21, 5 m
- (c) $20\sqrt{2} \ m$
- (d) $20 \ m$
- (e) $10\sqrt{2} \ m$



- 5. $sen^2(89) + sen^2(1) =$
 - (a) 89
 - (b) 1
 - (c) 90
 - (d) $89^2 + 1$
 - (e) No se puede determinar.

SOLUCIÓN EJERCICIOS TEOREMA DE PITÁGORAS

- 1. Consiste en verificar si satisface el teorema de pitágoras
 - (a) $8^2 + 10^2 \neq 12^2$, luego no son los lados de un triángulo rectángulo.
 - (b) $5^2 + 12^2 = 13^2$, luego si son los lados de un triángulo rectángulo.
 - (c) $8^2 + 13^2 \neq 16^2$, luego no son los lados de un triángulo rectángulo.
 - (d) $15^2 + 20^2 = 25^2$, luego si son los lados de un triángulo rectángulo.
- 2. Consiste en calcular la suma de los cuadrados de los catetos y luego encontrar el valor de la hipotenusa a través del teorema de pitágoras.
 - (a) $3^2 + 4^2 = 25$, luego la hipotenusa vale 5 cm.
 - (b) $10^2 + 24^2 = 676$, luego la hipotenusa vale 26 cm.
 - (c) $12^2 + 16^2 = 400$, luego la hipotenusa vale 20 cm.
 - (d) $6^2 + 8^2 = 100$, luego la hipotenusa vale $10 \ m$.
- 3. En este caso podemos considerar el largo y el ancho como los catetos, y la diagonal como la hipotenusa de un triángulo rectángulo. Entonces:
 - (a) $4^2 + 3^2 = 25$, luego la diagonal vale 5 cm.
 - (b) $8^2 + 6^2 = 100$, luego la diagonal vale 10 cm.
 - (c) $5^2 + 12^2 = 169$, luego la diagonal vale 13 cm.
- 4. En este ejercicio podemos considerar lo siguiente:
 - La distancia entre lo alto del poste y la estaca (que se encuentra en el suelo) se puede considerar como la hipotenusa de un triángulo rectángulo.
 - La distancia entre la estaca y el poste se puede considerar como uno de los catetos del triángulo rectángulo.
 - \bullet La altura del poste correspondería al otro cateto del triángulo rectángulo.

Aplicando el teoréma de pitágoras se obtiene:

$$15^{2} = 9^{2} + h^{2}$$
$$h^{2} = 225 - 81$$
$$h^{2} = 144$$

Por lo tanto la altura del poste es de $12\ m.$

SOLUCIÓN EJERCICIOS DE TRIGONOMETRÍA

Selección Múltiple			
Pregunta	Alternativa		
1	D		
2	В		
3	A		
4	С		
5	В		