Enunciado Auxiliar 7 - Matemática II

Escuela de Verano, Universidad de Chile

14 de Enero 2009

Profesor Cátedra: José Zamora

Profesores Auxiliares: Rodrigo Chi - Francisco Unda - Matías Godoy - Orlando Rivera

Pregunta 1. Definimos $\Psi_1: \mathbb{R}^2 \to \mathbb{R}$ por: $\Psi_1(x_0, x_1) = x_0 + x_1$. Luego, para cada $n \in \mathbb{N}$ definimos $\Psi_n: \mathbb{R}^{n+1} \to \mathbb{R}$ por:

$$\Psi_n(x_0,\ldots,x_n) = \Psi_{n-1}(x_0,\ldots,x_{n-1}) + \Psi_{n-1}(x_1,\ldots,x_n)$$

Pruebe por inducción que: $\Psi_n(x_0, \dots, x_n) = \sum_{j=0}^n \binom{n}{j} x_j$

Indicación: Pruebe primero que se tiene la siguiente identidad: $\binom{n+1}{j} = \binom{n}{j} + \binom{n}{j-1}$

Pregunta 2. Calcule las siguientes sumas:

- a) $1+3+\ldots+(2n-1)=\sum_{k=0}^{n}(2k-1)$ sin usar Inducción.
- b) $\sum_{k=0}^{n} f\left(1+\frac{1}{k}\right)$ con f una función que satisface: $f(x\cdot y)=f(x)+f(y)$ y $f\left(\frac{1}{x}\right)=-f(x)$

Pregunta 3. El objetivo de este problema es determinar la siguiente suma: $1^2 + 2^2 + \ldots + n^2 = \sum_{k=0}^{n} k^2$ Para ello se proponen los siguientes pasos:

- a) Demuestre, vía suma telescópica que: $\sum_{k=0}^n k = \frac{n(n+1)}{2}$
- **b)** Desarrolle $\sum_{k=0}^{n} [(k+1)^3 k^3]$ de dos formas distintas
- c) En base a las partes anteriores, concluya que: $\sum_{k=0}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$

Pregunta 4. Dado que n es un entero positivo, determinar el valor de n que satisface la ecuación

$$\frac{n^3 - 3}{n^3} + \frac{n^3 - 4}{n^3} + \frac{n^3 - 5}{n^3} + \frac{n^3 - 6}{n^3} + \dots + \frac{5}{n^3} + \frac{4}{n^3} + \frac{3}{n^3} = 169.$$

1