Escuela de Ingeniería - Universidad de Chile

Escuela de Verano 2009 Matemáticas III

Profesor: Pablo Dartnell

Auxiliares: Roberto Castillo, Benjamín Obando

Guía de Problemas N° 1^{*}

- **P1**.- Sean p, q y r proposiciones. Demostrar con y sin tablas de verdad que las siguientes proposiciones son tautologías:
 - (i) $p \Rightarrow (p \lor q)$
 - (ii) $(p \Leftrightarrow q) \Leftrightarrow (p \land q) \lor (\sim p \land \sim q)$
 - (iii) $[(p \Leftrightarrow q) \land (q \Leftrightarrow r)] \Rightarrow (p \Leftrightarrow r)$
 - (iv) $[(p \land \sim q) \Rightarrow \sim p] \Rightarrow (p \Rightarrow q)$
 - (v) $\sim (p \Leftrightarrow q) \Leftrightarrow (\sim p \Leftrightarrow q)$
 - (vi) $[(p \Rightarrow \sim q) \land (\sim r \lor q) \land r] \Rightarrow \sim p$
 - (vii) $[p \land (p \Rightarrow q)] \Rightarrow q$
 - (viii) $[(p \land \sim q) \Rightarrow \sim p] \Rightarrow (p \Rightarrow q)$
 - (ix) $[(p \Rightarrow \sim q) \land (\sim r \lor q) \land r] \Rightarrow \sim p$
 - (x) $(p \land q) \Leftrightarrow [(p \lor q) \land (p \Leftrightarrow q)]$
 - (xi) $(p \land q \Rightarrow r) \Leftrightarrow (p \land \sim r \Rightarrow \sim q)$
 - (xii) $(p \land q) \Leftrightarrow [(p \lor q) \land (p \Leftrightarrow q)]$
- **P2**.- Sean $p \neq q$ proposiciones. Se define la proposición $p \downarrow q$, por la siguiente tabla de verdad:

p	q	$p \downarrow q$
V	V	F
V	F	F
F	V	F
F	F	V

- (i) Probar que $\sim p \iff (p \downarrow p)$ y que $(p \lor q) \Leftrightarrow \sim (p \downarrow q)$.
- (ii) Expresar las proposiciones $p \Rightarrow q \ y \ q \land p$ usando sólo $\downarrow y \sim$.

^{*}Esta guía fue extraída del material de apoyo confeccionada por el Departamento de Ingeniería Matemática para el curso de Álgebra dictado en Plan Común.

P3.- Sean p y q proposiciones. Definamos la proposición,

$$(p \vdash q) \Leftrightarrow (\text{Existe una proposición } r \text{ tal que } (p \Rightarrow r) \land (r \Rightarrow q)).$$

Pruebe que $p \vdash q \Leftrightarrow p \Rightarrow q$.

P4.- Sean p,q,r tres proposiciones tales que r es falsa, $(p \Leftrightarrow \sim q)$ es verdadera y $(q \Rightarrow r)$ es verdadera. Deduzca el valor de verdad de p.

P5.- Sean p, r, r proposiciones.

- (i) Construya la proposición lógica que es verdadera cuando exactamente una de las proposiciones p, q, r es verdadera. Entregue una forma reducida de la proposición.
- (ii) Compare la proposición obtenida en el punto anterior con la proposición $(p \vee q) \vee r$, donde

$$p \vee q \Leftrightarrow (p \vee q) \wedge \sim (p \wedge q).$$

P6.- (i) Sean p, q, r proposiciones. Construir la proposición compuesta "s" (en función de p, q, r) cuya tabla de verdad es:

p	q	r	s
V	V	V	V
V	V	F	V
V	F	V	F
V	F	F	V
F	V	V	F
F	V	F	F
F	F	V	F
F	F	F	V

(ii) Probar que $s \Rightarrow (r \Rightarrow p)$ es una tautología.

P7.- Negar las siguientes proposiciones:

(i)
$$(\exists x \in \mathbb{R})(\forall y \in \mathbb{R}) x < y$$

(ii)
$$(\forall x \in \mathbb{R})(\forall y \in \mathbb{R}) \ x \ge y$$

(iii)
$$(\exists x \in \mathbb{R})(\forall y \in \mathbb{R}) x > 1 \land y \le 1$$

(iv)
$$(\forall \epsilon \in \mathbb{R}^+)(\exists n_0 \in \mathbb{N})(\forall n > n_0) |a_n| < \epsilon$$

P8.- (i) Negar la proposición siguiente:

$$(\forall x \in \mathbb{Q})(\forall \epsilon > 0)(\exists y \in \mathbb{Q}^c) \epsilon/3 < |x - y| < \epsilon/2.$$

(ii) Indique el valor de verdad de las proposiciones cuantificadas siguientes:

2

- (a) $(\exists n \in \mathbb{N})(\forall x \in \mathbb{R})(\forall m \in \mathbb{N}) \ n(x^2 mx) \le 0.$
- (b) $(\forall x \in A)(\exists \delta > 0)$ $x^2 > \delta$, donde $A = \{x \in \mathbb{R} / 0 < x < 10\}$.
- **P9**.- Sean las proposiciones $p_1, p_2, p_3, p_4, p_5, p_6$ tales que $[(p_1 \lor p_2) \Rightarrow (p_3 \Rightarrow p_4)]$ es falsa. Determinar el valor de verdad de:
 - (i) $(p_5 \Rightarrow p_6) \lor (p_1 \lor p_2)$
 - (ii) $[(p_5 \Rightarrow p_2) \lor \sim p_1] \Rightarrow (p_4 \lor p_3)$
 - (iii) $\sim [(p_6 \vee p_5) \wedge (p_1 \wedge p_2)] \Leftrightarrow (p_4 \Rightarrow p_3)$
- **P10.** Sea S un conjunto de números reales. Se dice que x es un punto aislado de S si existe un número real positivo d tal que para todo punto $y \in S$ la distancia entre x e y es mayor o igual que d.
 - (i) Escribir la definición de punto aislado usando cuantificadores.
 - (ii) Demostrar que si $x \in S$ entonces x no es punto aislado de S.
 - (iii) Sea $S = \{1, 1/2, 1/3, 1/4, ...\}$. Probar que el origen no es un punto aislado de S.
- P11.- (a) Si q y r son proposiciones no equivalentes. Determine el valor de verdad de la proposición:

$$[\sim (q \vee r) \wedge (q \wedge r)] \Rightarrow [(p \wedge s) \vee (\sim s \vee q)]$$

- (b) Si la proposición $p \Rightarrow q$ es falsa. Cual es el valor de verdad de la proposición $p \lor (q \land r) \Leftrightarrow (p \lor r) \land q$.
- (c) Considere el conjunto $A = \{-1, -\frac{1}{2}, 0, \frac{1}{2}, 1\}$. Diga si las siguientes proposiciones son verdaderas o falsas (justifique):

(i)
$$(\forall x, y \in A) (x + y \le 1)$$

(ii)
$$(\forall x \in A)(\exists y \in A) (x^2 \le y)$$

Escriba la negación de las proposiciones anteriores.

- **P12**.- (i) Sean p, q y r proposiciones tales que $((\sim p \lor q) \Rightarrow r)$ es falsa. Entregar el valor de verdad de las siguientes proposiciones (justifique su respuesta):
 - (a) $\sim q \Rightarrow \sim p$
 - (b) $r \Rightarrow (p \Leftrightarrow \sim (q \vee r))$
 - (ii) Sean p, q y r proposiciones. Probar sin usar tablas de verdad que la siguiente proposición es una tautología:

$$((p \Rightarrow q) \land (r \Rightarrow s)) \Rightarrow ((p \land r) \Rightarrow (q \land s))$$

- **P13**.- (a) Sean p, q, r proposiciones. Determinar si la equivalencia $p \lor (q \land r) \Leftrightarrow (p \lor r) \land q$ puede ser verdadera sin que lo sea la implicancia $p \Rightarrow q$.
 - (b) Sean p,q,r proposiciones. Probar sin usar tablas de verdad que la siguiente proposición es una tautología

$$(p \lor q \Leftrightarrow p \land r) \Rightarrow ((q \Rightarrow p) \land (p \Rightarrow r)).$$

(c) Sean p,q,r proposiciones. Probar sin usar tablas de verdad que la siguiente proposición es una tautología

$$(p \Rightarrow \bar{q}) \land (r \Rightarrow q) \Rightarrow (p \Rightarrow \bar{r}).$$

P14.- Los luctuosos hechos acaecidos en la mansión Ω han conducido a la brigada de homicidios a detener a 3 sicarios sospechosos del deleznable crimen. Para no enlodar a las inocentes familias de los susodichos, en lo que sigue nos referiremos a ellos como S_1 , S_2 y S_3 .

Durante el interrogatorio, las declaraciones de los sospechosos fueron las siguientes:

 S_1 : " S_2 es culpable y S_3 es inocente."

 S_2 : "Si S_1 es culpable, entonces S_3 también es culpable."

 S_3 : "Yo soy inocente, pero alguno de los otros dos es culpable."

Suponiendo que los inocentes dijeron la verdad y los culpables mintieron, determine quienes son los culpables. (Justifique matemáticamente su respuesta).

 $\mathbf{P15}.\text{-}$ Se define el conectivo * de la siguiente manera:

 $p \ast q$ es verdadera si y sólo si ambas p y q son falsas

(a) Pruebe usando tablas de verdad que:

$$p*q \Leftrightarrow [(p \Leftrightarrow q) \, \wedge \, \sim (p \wedge q)]$$

- (b) Demuestre sin tablas de verdad que las siguientes son tautologías:
 - i) $\sim p \Leftrightarrow p * p$
 - ii) $p \lor q \Leftrightarrow (p*q)*(p*q)$
- **P16.** Se tiene un mazo de naipes, los cuales por una cara tienen letras, y por la otra cara, números. Se hace la siguiente afirmación:

P: "Si un naipe tiene un dos por un lado, entonces tiene una B por el otro"

Se colocan cuatro de estos naipes sobre la mesa, de los cuales se ve un sólo lado:

uuQué naipe(s) hay que dar vuelta y cuál(es) no es(son) necesario(s) dar vuelta para determinar si P es Verdadera para estos 4 naipes? Fundamente matemáticamenente su respuesta.

P17.- (i) Sean p, q y r proposiciones lógicas. Demuestre \sin usar tabla de verdad que la siguiente proposición es una tautología:

$$(p \Rightarrow (q \Rightarrow r)) \Rightarrow [(p \Rightarrow q) \Rightarrow (p \Rightarrow r)]$$

(ii) Muestre que la siguiente proposición es verdadera

$$(\forall x)p(x) \lor (\forall x)q(x) \Rightarrow (\forall x)(p(x) \lor q(x))$$

para p(x) y q(x) proposiciones abiertas cualquiera. Además, dé un caso donde

$$(\forall x)(p(x) \lor q(x)) \Rightarrow (\forall x)p(x) \lor (\forall x)q(x)$$

es falsa.

P18.- Una mamá le dice a su querido hijo: "Si te portas bien, te regalo un dulce, **o bien**, si no te portas bien, te regalo un dulce".

Suponiendo que la mamá le dijo la verdad a su hijo, ¿se puede saber si el hijo recibirá el dulce o no? Justifique. Se espera que resuelva este problema en las dos situaciones distintas siguientes:

- a) El "o bien" de la frase de la mamá es el "o" usual " \vee ".
- b) El "o bien" es el "o" exclusivo "⊻".
- **P19**.- (i) Sean p,q,r proposiciones lógicas. Demuestre \sin usar tablas de verdad que la siguiente proposición es una tautología:

$$(p \Rightarrow q) \Rightarrow [\sim (q \land r) \Rightarrow \sim (p \land r)]$$

(ii) Sean p,q proposiciones abiertas. Se definen las proposiciones lógicas r y s por:

$$r : (\forall x)(\exists y)(p(x,y) \Rightarrow q(y))$$

$$s : ((\forall x)(\forall y)p(x,y)) \Rightarrow ((\exists y)q(y))$$

Escriba la negación de la proposición r y de la proposición s.

Observación: Dé su respuesta final de la forma más simplicada posible, esto es, que su expresión final sólo quede en función de los conectivos \land , \lor y negaciones. (*No* deben aparecer los conectivos \Leftrightarrow , \Rightarrow ni \lor).

P20.- Usted es nombrado repartidor de bienes de un testamento pero hay confusión acerca de donde se encuentran las cosas que deben ser repartidas. Los bienes son: un piano, un auto y un retrato.

Las declariciones de los 3 herederos son:

Andrés: Carlos tiene el piano, Bonifacio el auto pero yo tengo el retrato.

Bonifacio: Si Andrés tiene el retrato, Carlos tiene el piano.

Carlos: Yo no recuerdo bien, pero estoy seguro de que, o Bonifacio tiene el auto y yo el piano, o Andrés tiene el retrato y yo el piano, o Andrés tenía el retrato y Bonifacio el auto.

- (i) Si Carlos no miente y además usted cree que los otros sí lo hacen ¿qué se puede decir de quién tiene los objetos?
- (ii) Si usted sabe que sólo uno miente ¿quién se queda con el piano? ¿Quién miente?

P21.- Sean A, B, C conjuntos. Emplear los teoremas del álgebra de conjuntos para probar que:

(i)
$$(A \setminus C) \cup (B \setminus C) = (A \cup B) \setminus C$$

(ii)
$$(A \setminus B) \cap (A \setminus C) = A \setminus (B \cup C)$$

(iii)
$$(A \setminus C) \setminus (B \setminus C) = (A \setminus B) \setminus C$$

(iv)
$$A \subseteq B \subseteq C \Rightarrow C \setminus (B \setminus A) = A \cup (C \setminus B)$$

(v)
$$B = (A \cap B^c) \cup (A^c \cap B) \Leftrightarrow A = \emptyset$$

(vi)
$$(A \cap B \cap C = \emptyset) \Rightarrow [(A \setminus B) \cup (B \setminus C) \cup (C \setminus A) = A \cup B \cup C]$$

(vii)
$$A \subseteq B \Leftrightarrow \mathcal{P}(A) \subseteq \mathcal{P}(B)$$

(viii)
$$(A \cap B) \setminus (A \cap C) = (A \cap B) \setminus (A^c \cup C)$$

(ix)
$$[A \setminus (B \setminus A)] \cup [(B \setminus A) \setminus A] = A \cup B$$

(x)
$$(A \cup B = A \cap C) \Rightarrow (B \subseteq A \land A \subseteq C)$$

(xi)
$$(A \cap C = \emptyset) \Rightarrow (A \setminus B) \setminus C = A \setminus (B \setminus C)$$

(xii)
$$A\Delta B = C \Rightarrow A\Delta C = B$$

(xiii)
$$(A \cup B \cup C) \setminus (A \cap B \cap C) = (A\Delta B) \cup (B\Delta C) \cup (A\Delta C)$$

P22.- Sea A un subconjunto fijo del conjunto U. Probar que para todo par de subconjuntos X, Y de U se tiene,

$$X = Y \Leftrightarrow X \cup A = Y \cup A \land X \cap A = Y \cap A.$$

 $\mathbf{P23}$.- Sea B un subconjunto del conjunto U. Pruebe que,

$$[(\forall A \subseteq U)(A \cup B = A)] \Rightarrow B = \emptyset.$$

- **P24.** Sean $A \subset U$ dos conjuntos. Colocar el signo de inclusión, igualdad o ninguno de ellos según corresponda entre los conjuntos siguientes:
 - (i) $\mathcal{P}(A \cup B)$ y $\mathcal{P}(A) \cup \mathcal{P}(B)$

- (ii) $\mathcal{P}(A \cap B) \vee \mathcal{P}(A) \cap \mathcal{P}(B)$
- (iii) $\mathcal{P}(U \setminus A)$ y $\mathcal{P}(U) \setminus \mathcal{P}(A)$
- **P25**.- Dar los elementos del conjunto $\mathcal{P}(\mathcal{P}(\mathcal{P}(\emptyset)))$.
- **P26.** Sean A, B, C conjuntos.
 - (i) Suponga que las siguientes proposiciones son verdaderas:

$$(x \in A \land y \in B) \Rightarrow y \in A$$

 $(x \notin A \lor y \in A) \Rightarrow y \notin B.$

Probar que $y \notin B$ es verdadera.

- (ii) Probar que $C \subseteq A \cup B \Leftrightarrow (A \setminus B) \cap C = C \setminus B$.
- (ii) Probar que $A \subseteq C \implies A \setminus B = C \setminus [B \cup (C \setminus A)]$.
- **P27**.- Sea A un subconjunto fijo del conjunto E y sea $M = \{X \in \mathcal{P}(E) / A \cap X = \emptyset\}$. Probar que:
 - (i) $\emptyset \in M \text{ y } E \setminus A \in M$.
 - (ii) $A \in M \Leftrightarrow A = \emptyset \Leftrightarrow M = \mathcal{P}(E)$.
 - (iii) $(\forall X \in M)(\forall Y \in \mathcal{P}(E)) X \cap Y \in E$.
 - (iv) $[(X \in M) \land (Y \in M)] \Rightarrow [(X \setminus Y) \cup (Y \setminus X)] \in M$.
- **P28**.- Un conjunto $M \subseteq \mathcal{P}(E)$ se llama $\acute{Algebra}$ de las partes de E si verifica las siguientes propiedades:
 - (i) $E \in M$
 - (ii) $(\forall A, B \in M) \ A \cup B \in M$
 - (ii) $(\forall A \in M) A^c \in M$

Se pide:

- (a) Demostrar que $\emptyset \in M$
- (b) Demostrar que ($\forall A, B \in M$) $A \cap B \in M$
- (c) Demostrar que ($\forall A, B \in M$) $A\Delta B \in M$
- (d) Si $E = \{1, 2, 3, 4\}$, determinar si

$$M = \{\emptyset, E, \{1\}, \{2\}, \{1, 2\}, \{3, 4\}\} \subseteq \mathcal{P}(E)$$

es un $\acute{A}lgebra$. Si no lo es, agregar el menor número de conjuntos para que lo sea.

P29.- Sean $A, B \subseteq E$ y $C, D \subseteq F$. Demuestre que:

- a) $(A \times C) \cap (B \times D) = (A \cap B) \times (C \cap D)$
- b) $(A \times C) \cup (B \times D) \subseteq (A \cup B) \times (C \cup D)$ Dé un ejemplo que muestre que la otra inclusión no es siempre verdadera.
- c) $(E \times F) \setminus (A \times C) = ((E \setminus A) \times F) \cup (E \times (F \setminus C))$
- **P30**.- (i) Sean A, B, C, X subconjuntos de U (conjunto universo), tales que cumplen:

$$A \cup X = B$$

$$A \cap X = C$$
.

Encuentre X en términos de A, B y C.

(ii) Sean A, B y C subconjuntos de U (conjunto universo), Pruebe que:

$$A\Delta[(B\backslash C)\cup(C\backslash A)]=C\cup(A\Delta B)$$

- ${f P31.}$ Sean A,B,C subconjuntos de U (conjunto universo). Demuestre que:
 - (i) $A\Delta A = \emptyset$
 - (ii) $A\Delta\varnothing = A$
 - (iii) Utilizando lo anterior, demuestre que:

$$A\Delta B = C \Rightarrow A\Delta C = B$$

 $\mathit{Indicaci\'on:}$ Recuerde que Δ cumple las propiedades de conmutatividad y asociatividad.

- **P32**.- Sean A, B en el universo U. Demuestre que:
 - i) $(A \cup B \subseteq A \cap B) \Rightarrow A = B$
 - ii) $A \subseteq A^c \Leftrightarrow A = \phi$