Luz, Materia, y Distancias

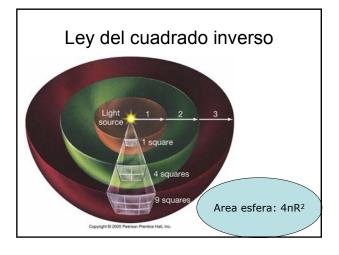
Prof: Patricio Rojo

Energía Radiativa

• Por fotón:

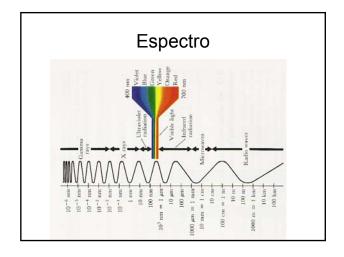
$$E_{\nu} = h \nu$$

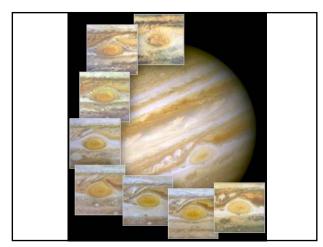
$$E_{\nu} = h\nu$$

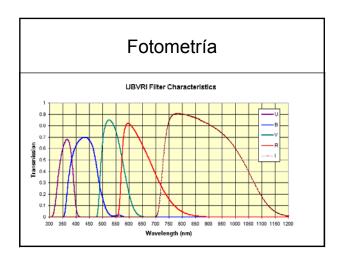

$$E_{\lambda} = \frac{hc}{\lambda}$$

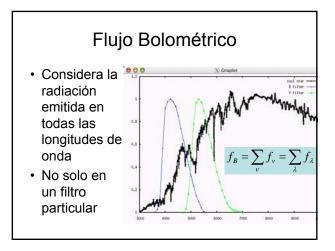
Luminosidad

- Energía (de muchos fotones)
 - por unidad de tiempo
 - por unidad de frecuencia/longitud de onda


 L_{ν} , L_{λ}


La Energía se Conserva




Flujo

- Luminosidad
 - Por unidad de área
- Energía
 - por unidad de área
 - por unidad de tiempo
 - por unidad de frecuencia/longitud de onda

Magnitudes

- Ptolomeo popularizo el uso de magnitudes
 - Escala de 1 a 6
 - Sensibilidad ocular es logarítmica.
 - 5 magnitudes equivale aproximadamente a 100x flujo

$$m = C \cdot \log f$$

Magnitudes

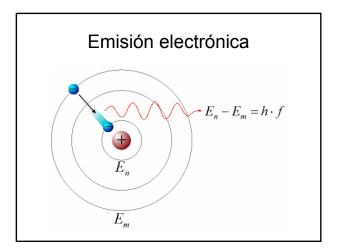
· Sistema formalizado en s. XIX - La estrella Vega se definió como el punto 0.

$$m_1-m_2=-2.5\log(f_1/f_2)$$

$$m=-2.5\log(f/f_0)+C$$
 • Magnitud aparente y absoluta.

Magnitudes

- · Magnitud Absoluta
 - Magnitud que la estrella tendría a 10 pc.
- Distance moduli

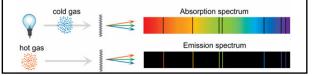

$$m - M = 5\log d - 5$$

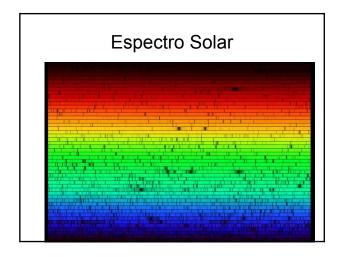
La luz interactúa con la materia a través de

- Emisión
- Absorción
- · Reflexión y refracción

Emisión

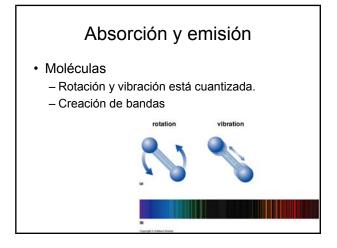
- Un átomo emite un fotón cuando su estado de energía cambia.
- pero
 - niveles de energía están, en su mayoría, cuantizados.
- · entonces
 - fotones solo pueden tener ciertas frecuencias dependiendo del átomo.

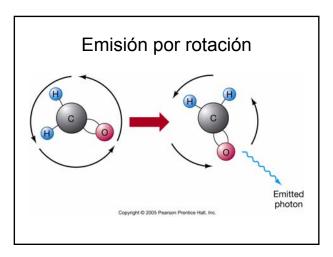


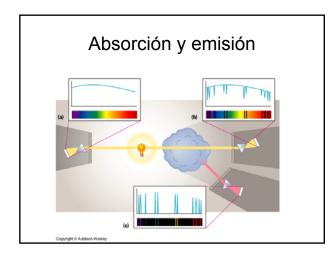

Emisión

- Pero como llega un átomo a estar en un estado excitado?
 - Emitiendo de un estado aun más excitado.
 - Colisiones.
 - Absorción.

Absorción


- · Proceso inverso a la emisión.
- Transmisión es lo que no se absorbió.
- · Absorción de un fotón con la energía precisa
- Átomos entremedio de la línea de visión a una fuente

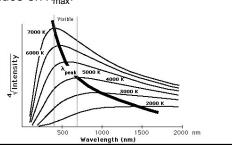




Absorción y emisión

- Cada elemento tiene su firma espectral única
 - Medir abundancias
- · Cada ión tiene su firma única
 - Medir temperaturas...
- · Cada molécula tiene su firma única...
 - Pero distinta

Equilibrio radiativo

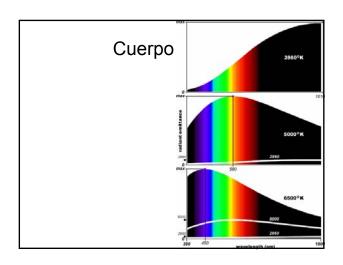

- Si las partículas absorben y emiten en forma perfecta todos los fotones que reciben...
 - Se alcanza un equilibrio radiativo
- La radiación en equilibrio tiene una forma precisa
 - Depende solo de la temperatura.
 - Radiación de Cuerpo Negro

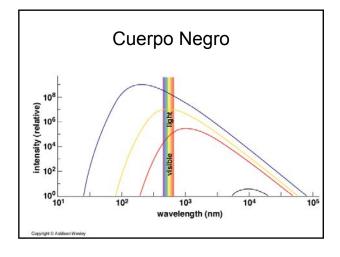
Cuerpo Negro

$$B(\lambda) = \frac{2\pi hc^2}{\lambda^5} \frac{1}{e^{hc/\lambda T} - 1}$$

Cuerpo Negro

- La mayor intensidad de radiación se produce en λ_{max} :


Cuerpo Negro


- La mayor intensidad de radiación se produce en λ_{max} :

$$\lambda_{\max} T = 2900 (\mu m \cdot K)$$

• La energía total radiada

$$E = \sigma T^4 \left(ergs / cm^2 / s \right)$$

Cuerpo Negro

- En la práctica no existen cuerpos negros.
- Si no que solo se asemejan.
- Emisividad ε
 - Los cuerpos emiten: $F = \varepsilon B$