
CRITERIOS DE DECISIÓN EN LA EVALUACION DE PROYECTOS

CRITERIOS DE DECISIÓN

Temario

- Valor Actual Neto (VAN)
 - ➤ Valor Actual de los Costos (VAC)
- > Tasa Interna de Retorno (TIR)
- ➤ Valor Anual Equivalente (VAE)
 - ➤ Costo Anual Equivalente (CAE)
- > Periodo de Recuperación del Capital (PRC)
- > Razón VAN / Inversión inicial (IVAN)

Valor Actual Neto (VAN)

- Un peso hoy vale más que un peso mañana, existe costo de oportunidad que es la tasa de interés o de descuento (r)
- Los flujos deben sumarse en un solo momento del tiempo, por convención se usa el año 0, pero puede ser cualquiera.

Si r es el costo de oportunidad del inversionista y recibe n flujos al final de cada periodo F1, F2, ... Fn, el valor actual (presente) neto de esos flujos será:

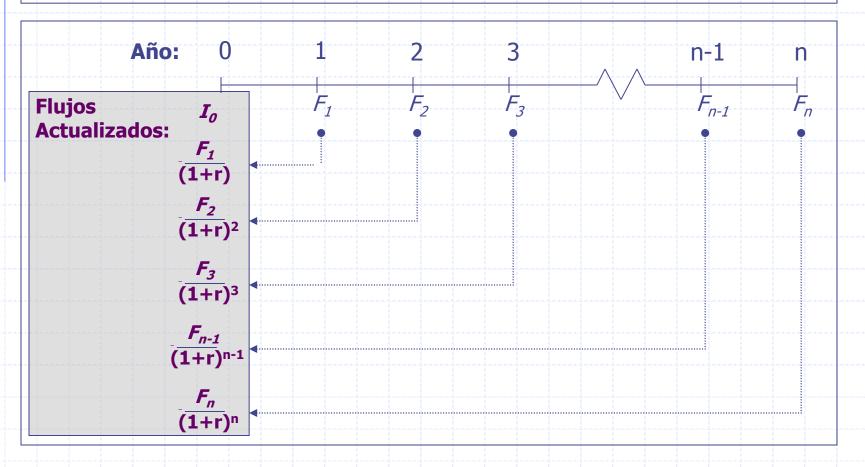
$$VAN = -I_0 + \sum_{t=1}^{n} \frac{Ft}{(1+r)^t}$$

Donde:

Ft = Bt - Ct

Ft = Flujo neto al final del periodo t

Bt = Beneficios o ingresos al final del periodo t


 $Ct = Costos \ o \ gastos \ al \ final \ del \ periodo \ t$

 $I_0 = Inversi\'on inicial$

r = tasa de descuento

n = número de periodos

Flujo actualizado de ingresos y gastos de un proyecto

El costo de oportunidad o tasa de interés (r) puede cambiar año a año, entonces la fórmula más general es:

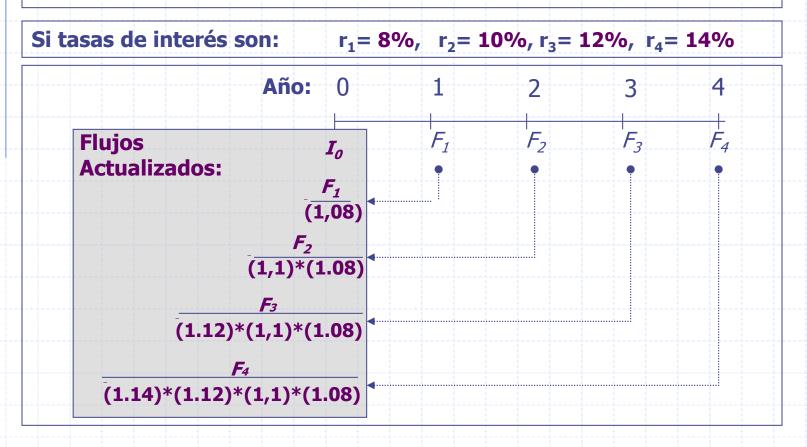
$$VAN = -I_0 + \sum_{t=1}^{n} \left(\frac{F_t}{\prod_{j=1}^{t} (1 + r_j)} \right)$$

Donde:

Ft = Bt - Ct

 $Ft = flujo \ neto \ al \ final \ del \ periodo \ t$

 $Bt = Beneficio\ al\ final\ del\ periodo\ t$

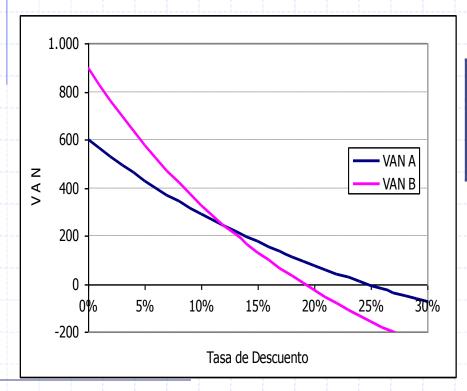

 $Ct = Costos \ al \ final \ del \ periodo \ t$

 $I_0 = Inversi\'on inicial$

 r_i = tasas de descuento para cada periodo

n = número de periodos

Flujo actualizado de ingresos y gastos de un proyecto con cambios en la tasa de interés



Las alternativas con mayor Valor Actual Neto (VAN) son aquellas que maximizan la riqueza.

Criterio de decisión:

- VAN > 0: Conviene hacer el proyecto
- VAN = 0: Indiferente
- VAN < 0: No conviene hacer el proyecto</p>

- El VAN disminuye conforme aumenta la tasa de descuento.
- Hay proyectos más sensibles que otros a variaciones en la tasa de descuento.

Proy.	$ \mathbf{I}_{0}$	- F1	F2	F3	F4	F5
A	-1000	700	300	200	100	300
В	-1000	100	300	300	300	900

Beneficios de utilizar el VAN como indicador para la toma de decisiones de inversión

- Reconoce que un peso hoy vale más que un peso mañana
- Depende únicamente del flujo de caja y el costo de oportunidad
- Propiedad aditiva: VAN (A+B) = VAN (A) + VAN (B)
- No sólo permite reconocer un proyecto bueno, sino que también permite comparar proyectos

Valor Actual de Costos (VAC)

El valor actual de costos se utiliza cuando:

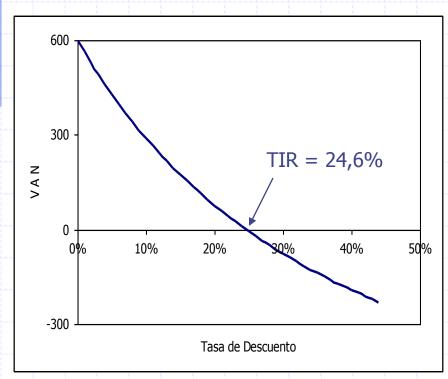
- Beneficios difíciles de medir, pero se reconoce son deseables.
- Los beneficios de dos alternativas son idénticos.
- En ambos casos se busca alternativa de mínimo costo.

$$VAC = I_0 + \sum_{t=1}^{n} \frac{C_t}{(1+r)^t}$$
 Donde:
$$Ct = Costos \ al \ final \ del \ periodo \ t$$

- Cuando se relaciona el VAC con alguna variable del proyecto, se convierte en indicador costo – eficiencia
 - Nº beneficiarios atendidos por año
 - Calorías-niño-mes
 - Nº atenciones médicas

Tasa Interna de Retorno (TIR)

- La **TIR** mide la rentabilidad de un proyecto o activo. Representa la rentabilidad media intrínseca del proyecto.
- Se define como aquella tasa a la cual se hace cero el valor actual neto.

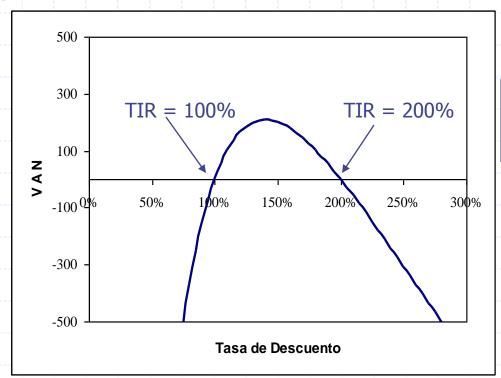

$$VAN = -I + \sum_{t=1}^{n} \frac{F_t}{(1 + TIR)^t} = 0$$

 Criterio de decisión: un proyecto debe ser elegido si la TIR es mayor que el costo de oportunidad del capital:

Tasa Interna de Retorno (TIR) ...continuación...

Ejemplo:

Si tasa de descuento (r) es menor que TIR = 24,5%, el proyecto será rentable (VAN > 0)



Proy.	\mathbf{I}_0	F1	F2	F3	F4	F5
С	-1000	700	300	200	100	300

Tasa Interna de Retorno (TIR) ...continuación...

Defectos de la TIR

a) Puede haber más de una TIR.

Proy.	\mathbf{I}_0	F1	F2
D	-5.000	25.000	-30.000

Sucede comúnmente en proyectos donde los flujos cambian de signo

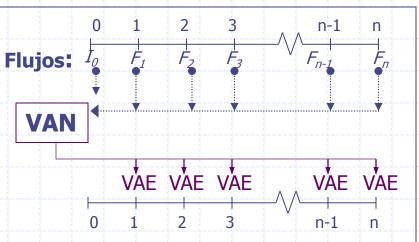
Tasa Interna de Retorno (TIR) ...continuación...

Defectos de la TIR ...continuación...

- b) Hay proyectos para los que no existe TIR.
- c) En proyectos mutuamente excluyentes puede diferir de criterio del VAN e inducir a engaño

Proy.	Io	F1	TIR	VAN _{10%}
E	-1.000	2000	100%	818
F	-20.000	25.000	25%	2.727

Valor Anual Equivalente (VAE)


Convierte el VAN de un proyecto en un flujo constante de "beneficios netos anuales" para el periodo vida del proyecto

Paso 1

Trae a VA flujos de n periodos y obtiene VAN

Paso 2

Convierte VAN en flujo constante durante n periodos

$$VAE = VAN \cdot \frac{r(1+r)^n}{(1+r)^n - 1} = VAN \cdot \frac{r}{(1-(1+r)^{-n})}$$

Valor Anual Equivalente (VAE) ...continuación...

 El VAE se utiliza para comparar proyectos de distinta vida útil.

Caso 1: Considere los siguientes 2 proyectos:

Proy. Io		F1	F2	F3	
J	-120	100	250	250	

Proy.	Io	-F1	F2	F3	F4	F5	F6
K	-400	150	200	250	250	200	150

	Vida Util	VAN ₈	VAE
J	3	385	150
K	6	523	113

VAN K > VAN J, pero vida útil de K es el doble de la J.

El VAE hace comparables ambos proyectos: VAE J > VAE K

Valor Anual Equivalente (VAE) ...continuación...

 Alternativamente: Repetir proyectos hasta que finalicen en el mismo momento.

Caso 2: Considere los siguientes 2 proyectos:

Proy.	Io	F1	F2	F3
J	-120	100	250	250

	Proy.	Io	-F1	F2	F3	F4	F5	F6
-	K	-400	150	200	250	250	200	150

Si repito 2 veces el proyecto J

Proy.	Io	F1	F2	F3	F4	F5	F6
J	-120	100	250	250-120	100	250	250

	Vida Util	VAN ₈	VAE
		%	
J * 2	6	691	150
K	6	523	113

VAN (J*2) > VAN KVAE J > VAE K

Valor Anual Equivalente (VAE) ...continuación...

Defectos del VAE

- Supone que:
 - Los proyectos pueden repetirse.
 - Los proyectos pueden repetirse bajo iguales condiciones de rentabilidad, es decir, no cambia proyección de flujos.
 - •Al repetirse no se está comparando proyecto "K" con proyecto "J", sino " α *K" con " β *J"

Costo Anual Equivalente (CAE)

- Similar al VAE en cálculo y defectos, pero en este caso solamente está asociado a los <u>costos</u> de un proyecto.
- Su uso recide en que existen tipologías de proyectos sociales que poseen beneficios que no son posibles de cuantificar, tal es el caso de salud y educación, entre otros.
- Similar al caso del VAE, el <u>CAE</u> se define como:

$$CAE = VAC \cdot \frac{r(1+r)^n}{(1+r)^n - 1} = VAC \cdot \frac{r}{(1-(1+r)^{-n})}$$

VAC = Valor Actual de los Costos, incluyendo inversión inicial

Periodo de Recuperación del Capital (PRC)

El PRC estima el número de años requeridos para recuperar la inversión inicial

Caso 1

Si los flujos anuales son iguales durante todos los períodos:
Donde:

$$egin{aligned} PRC &= rac{I_0}{BN} & rac{Donde:}{I_o = Inversi\'on inicial} \ BN &= Beneficios anuales netos \end{aligned}$$

Ejemplo caso 1:

Proy.	\mathbf{I}_0	F1	F2	F3	F4	F5
G	-1.000	250	250	250	250	250

$$PRC = \frac{Io}{BN} = \frac{1000}{250} = 4$$

Periodo de Recuperación del Capital (PRC)

...continuación...

Caso 2

Si los flujos son variables durante los períodos:

Se debe ir sumando los benefios anuales netos de cada período hasta que éstos alcancen la inversión

Ejemplo caso 2:

Proy.	I_0	F1	F2	F3	F4	F5
	-1.000	300	400	300	251	100
Suma F _t		300	700	1000		

En este caso el PRC = 3 años

Periodo de Recuperación del Capital (PRC)

...continuación...

Defectos del PRC

- Normalmente ignora la tasa de descuento ya que no descuenta los flujos al momento cero.
- Ignora ganancias posteriores a periodo de recuperación

Replanteamiento Caso 1:

Proy.	I_0	F1	F2	F3	F4	F5
G	-1.000	250	250	250	250	250
VABN _t		227	434	622	792	948

Antes: PRC = 4 años

Ahora: Si r = 10%

Inversión no se recupera nunca

Replanteamiento Caso 2:

 Proy.	\mathbf{I}_0	F1	F2	F3	F4	F5
 Н	-1.000	300	400	300	251	100
 VABN _t		273	603	829	1.000	1.062

Antes: PRC = 3 años

Ahora Si r = 10% Capital se recupera en año **4**

Razón VAN / Inversión (IVAN)

- El IVAN permite priorizar proyectos cuando existe racionamiento de fondos.
 - IVAN indica cuánto es el VAN logrado por unidad monetaria invertida.

$$IVAN = \frac{VAN}{I_0}$$

Donde:

 $I_0 = Inversi\'on Inicial$