

MODULO: DISEÑO PASIVO

DIPLOMADO DE EFICIENCIA ENERGÉTICA Y ENERGÍA SOLAR

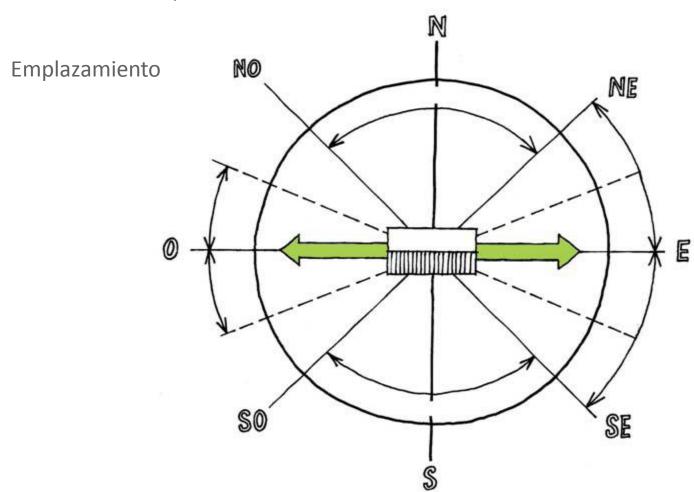
Co**térmoagenes apedificación** diseño biolizático
PÚBLICA

Consideraciones para un buen diseño Bioclimático

1. Emplazamiento


Situación climática, microclimática, urbana, de función

- **2. Distribución planta** (espacios tapones) Función, vientos, trayectoria solar
- **3. Posición y dimensión de ventanas**. Dimensión, ubicación, inclinación Función, asoleamiento, protección de la radiación, vientos, precipitaciones
- 4. Dimensionamiento de aleros y elementos de protección


5. Materiales

Necesidad de almacenar, refrigerar Comportamiento térmico de los materiales Materiales locales

Consideraciones para un buen diseño bioclimático

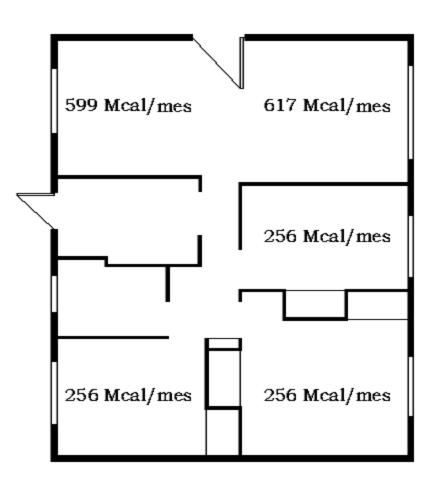
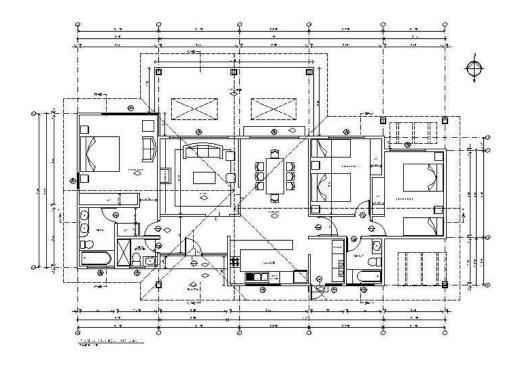
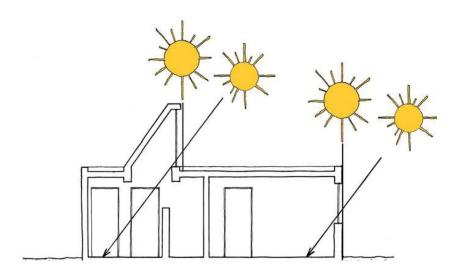


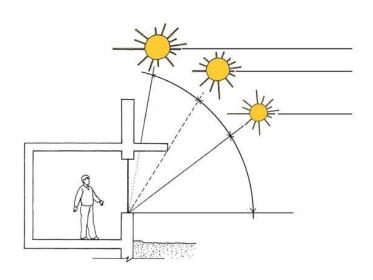
Fig. Nº1: Asoleamiento diciembre Orientación Oriente - Poniente

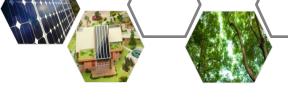

Fig. Nº2: Asoleamiento diciembre Orientación Norte - Sur

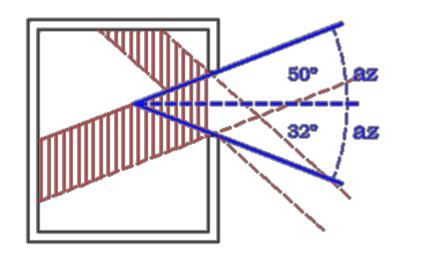
Consideraciones para un buen diseño bioclimático

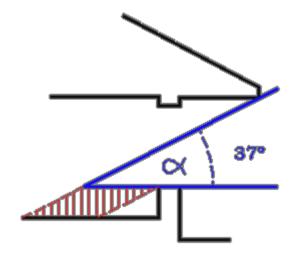
Espacios Tapones

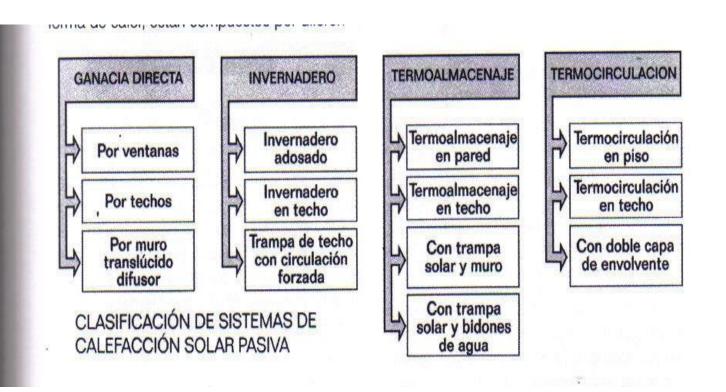





Consideraciones para un buen diseño bioclimático

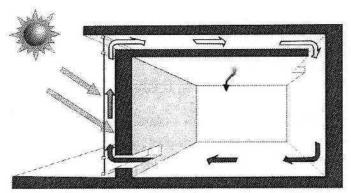

Aleros

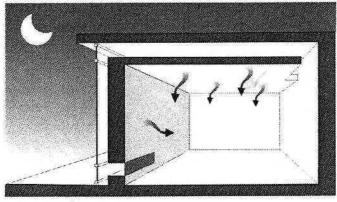


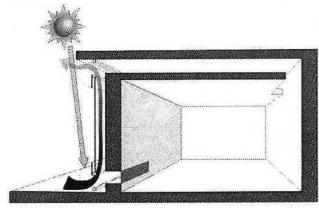

<u>Asoleamiento</u> (penetración del sol):

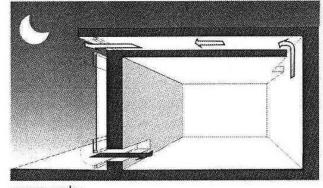
Entre az y az y bajo α

Entre 32º este y 50º oeste y bajo 37º



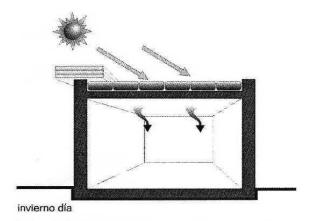


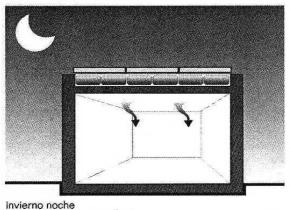

- Muro Acumulador con circulación

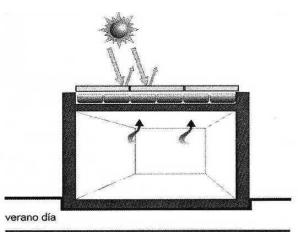

invierno día

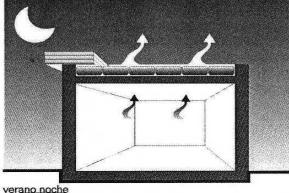
invierno noche

verano día


verano noche







- Almacenaje en techumbre

Aislación Térmica

Las pérdidas de energía de una vivienda se produce a través de su envolvente, dependiendo de:

- La forma
- El volumen
- El comportamiento térmico de los materiales de la envolvente

Compacidad

-Compacto:

A mayor superficie de contacto con el exterior, mayor pérdida de energía

- Vivienda continua

Población Salar del Carmen, Antofagasta

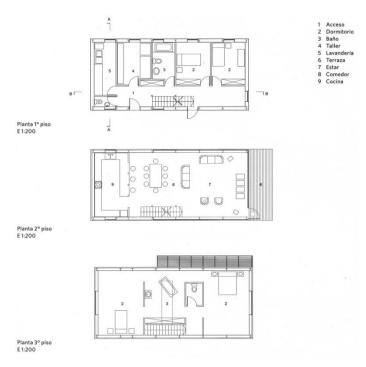
Cite Adriana Cousiño, Santiago

Compacidad

-Compacto:

A mayor contacto con el exterior, mayor pérdida de energía

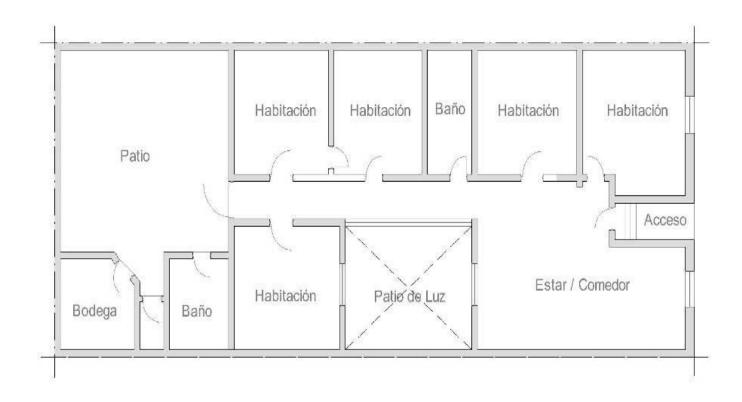
- Vivienda continua



Casa Martínez Cordero, Isla Teja, Valdivia. Sup. Construída: 200m2. Año Construcción: 2004

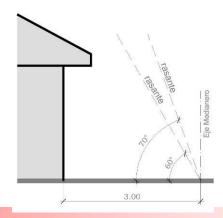
-Factor Forma:

Relación entre el volumen y el área de transmisión térmica y el volumen Cf= m2/m3


Para climas fríos : factor de forma, entre 0,5 y 0,8

Para climas cálidos: factor de forma, superior al 1,2.

Esquema Vivienda Patio Interior Central

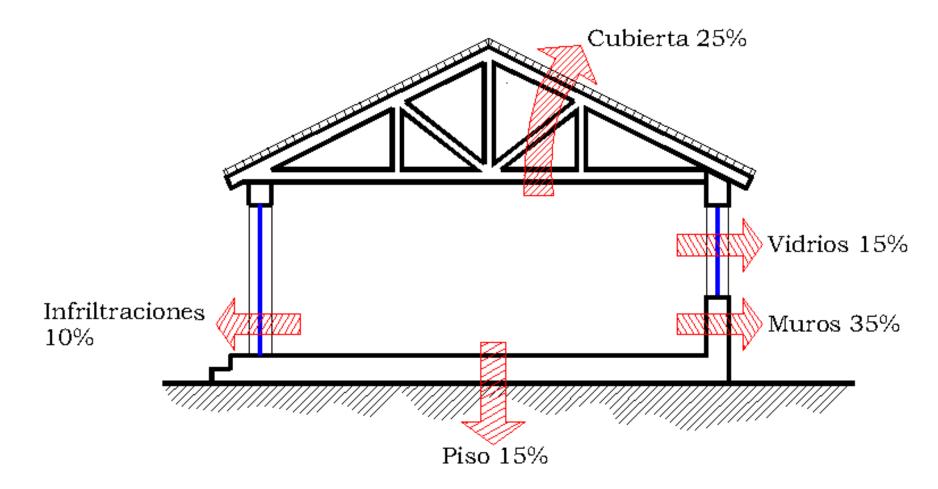

Rasantes y Distanciamientos

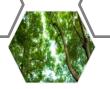
Altanon als las Falificansis a	Distanciamiento	
Altura de la Edificacion	Fachada con vano	Fachada sin vano
Hasta 3,5 m.	3,0 m	1,4 m
Sobre 3,5 m y hasta 7,0 m	3,0 m	2,5 m
Sobre 7,0 m.	4,0 m	4,0 m

© 2010 www.asesoriasavc.cl

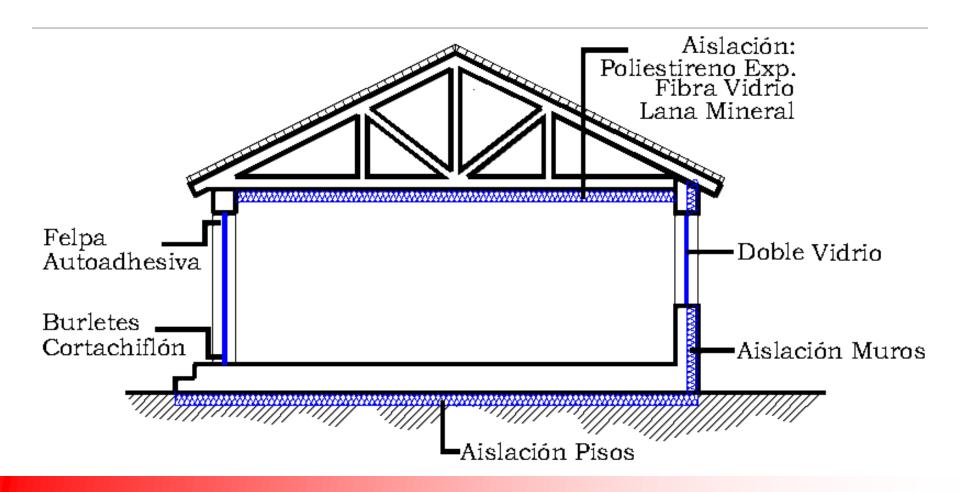
3.00	3.00
3.00 CASA AISLADA	 CASA PAREADA
Línea de Edificación	Línea de Edificación
Línea Oficial de Cierro	 Línea Oficial de Cierro

Regiones	Angulo de las Rasantes	
I a III y XV Región	80°	
IV a IX Región y R.M.	70°	
X a XII y XIV Región	60°	




Aislación Térmica

Pérdidas en una casa sin aislación

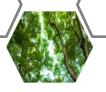


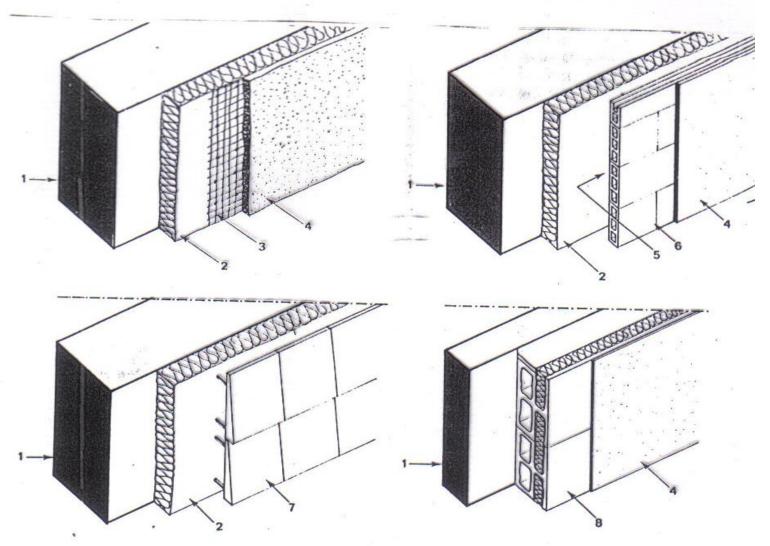
Casa correctamente aislada

Aislación Térmica

El tipo de aislación y la posición del material dependerá de:

- 1. La ubicación geográfica y las condiciones climáticas
- Evitar pérdidas ó sobrecalentamiento
- 2. El uso del edificio
- Diurno: Aislación interna
- Permanente: Aislación externa
- 3. La necesidad de inercia térmica
- Tipo de uso
- La ubicación geográfica
- 4. Manual de Reglamentación Térmica


Resistencia Térmica Materiales


Material	Espesor	R (hr/m2 ºC/kcal)
Plancha Acero Cincado	0,6 mm.	0,000
Vidrio	0,1 mm.	0,001
Ladrillo	14 cm.	0,23
Hormigón	15 cm.	0,09
Madera	2,5 cm.	0,21
Poliestireno Expandido	2,5 cm.	0,71
Lana Mineral	2,5 cm.	0,66
Poliuretano	2,5 cm.	1,00

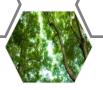
Proceso de Diseño

- Condiciones climáticas :

Establecer los requerimientos de confort térmico

- Conocer Terreno:

- Trayectoria solar
- Relieve
- Dirección vientos
- Sombras


- Proyectar:

- Emplazamiento
- Distribución
- Posición ventanas
- Dimensión de las ventanas
- Necesidad de aleros
- Materiales

Cuadro resumen elementos arquitectónicos

	Captación Solar de Invierno		Protección Solar de Verano	
	A Interior	A Evitar	A Interior	A Evitar
Medio Ambiente Exterior	Que no hayan obstáculos entre Oriente y Nor Poniente	Obstáculos entre Oriente y Nor Poniente	Protección entre Nor Oriente y Sur Poniente	Las superficies reflectantes
Exposición de la Ventana	Entre Oriente y Nor Poniente	Sur Oriente, Sur y Sur Poniente	Norte y Sur Oriente a Sur	Poniente
Tipo de Acristalamiento	Doble vidrio	Vidrios Simples, Cristales Reflectantes	Doble Vidrio, Cristales Reflectantes	Vidrios Simples, Cristales Absorbentes
Obstáculos Arquitectónicos		Retranqueos entre fachadas Sur Oriente y Nor Oriente y Poniente y Sur Poniente Salientes de paredes divisorias en exposición Sur Oriente y Nor Oriente y entre Nor Poniente y Sur Poniente	Salientes de elementos horizontales en exposiciones norte y poniente	
Sistema de Protección	Sistemas movibles ubicadas al interior de vano	Sistemas fijos de protección exterior (persianas no regulables)	Sistemas movibles ubicadas al exterior del vano	Sistemas movibles ubicadas al interior de la construcción

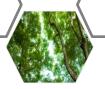
Consideraciones para un buen diseño bioclimático

ENERGIA SOLAR

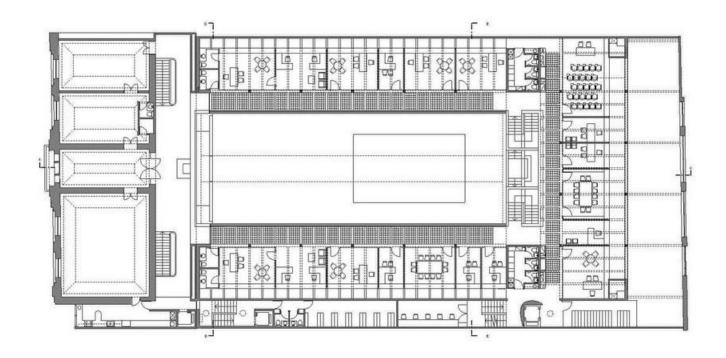
DIMENSIONAMIENTO DE SUPERFICIES VIDRIADAS EN SISTEMAS DE GANANCIA SOLAR PASIVA ORIENTADOS AL NORTE PARA MANTENER TEMPERATURAS DE ESPACIOS INTERIORES ENTRE 18,3° y 21,1°C DURANTE LA MAYOR PARTE DEL INVIERNO

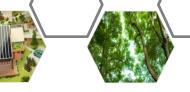
SISTEMA PASIVO	CLIMAS FRIOS - 6,5° A - 1°C T. PROM. INVIERNO	CLIMAS TEMPI ADOS 1,50 A 70C T. PROM. INVIERNO	ESPESOR ELEMENTO ACUMULADOR
GANANCIA DIRECTA	0,19 a 0,38 m2 DE SUPERFICIE VIDRIADA POR m2 DE PISO	0,11 a 0, 25 m2. VIDRIO x m2 PISO	- MUROS Y PISOS - MINIMO 10 cm. 1. PISOS COLOR OSCURO 2. MUROS CUALQUIER COLOR 3. ELEMENTOS LIGEROS COLOR CLARO 4. EVITAR ASOLEAMIENTO DIRECTO PROLONGADO EN SUPERFICIES OSCURAS 5. NO USAR ALFOMBRAS MURO A MURO
PARED ACUMULADORA	ALBAÑILERIA C/2 VIDRIOS 0,43 a 1 m2 VIDRIO x m2 PISO	ALBAÑILERIA 0,22 a 0,6 m2 VIDRIO x m2 PISO	ADOBE 20 - 30 cm LADRILLO 25 - 35 CONCRETO 30 - 46 AGUA 15 o Más H
(MURO TROMBE Y AGUA)	MURO AGUA C/2 VIDRIOS 0,31 a 0,85 m2 VIDRIO x m2 PISO	MURO AGUA 0,16 a 0,43 m2. VIDRIO x m2 PISO	$-\text{TRONERAS P/TERMOCIRCULACION}$ $A1 + A2 = L \times H / 100$
INVERNADERO	2 VIDRIOS 0,65 a 1,5 m2 VIDRIO x m2 PISO	0,33 a 0,9 m2 VIDRIO x m2 PISO	ADOBE 20 – 30 cm LADRILLO 25 – 35 CONCRETO 30 – 46 AGUA 15 o Más (6 0,67 m3 x m2 VIDRIO AL NORTE)

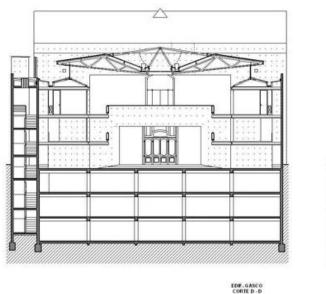
Ejemplos

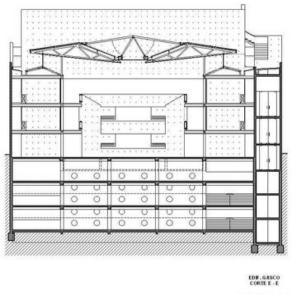

Edificio Gasco, Santo Domingo 1061, Santiago. Año Construcción: 1999. Superficie terreno: 1.850,66 m2

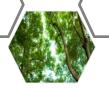
Arqtos: Izquierdo - Lehmann Superficie construida: 5.037,81 m2 + 4.074,27 m2 subterráneos


Ejemplos





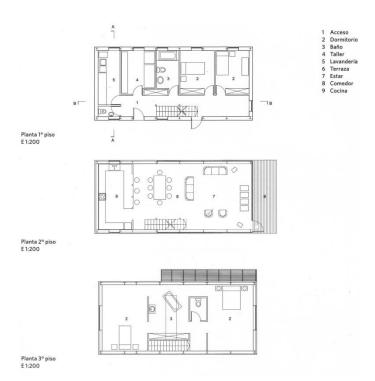




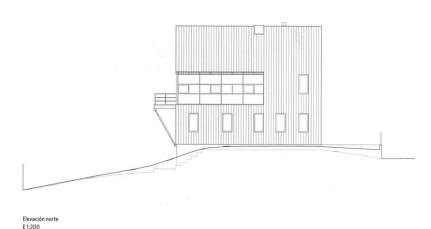
Ejemplos

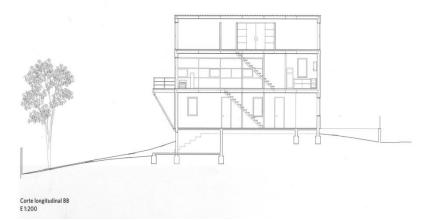
Casa Martínez Cordero, Isla Teja, Valdivia. Sup. Construída: 200m2. Año Construcción: 2004

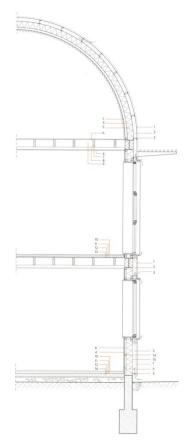
Arquitecto: Roberto Martínez Kraushaar



Costos en calefacción :1.9 UF mensuales (durante 5 meses) Envolvente de 25 cm. de aislamiento térmico Ganancia solar a través de los ventanales orientados hacia el norte y losas acumuladoras Celosías sobre el ventanal norte y ventilación cruzada Costo construcción: 15 UF/m2







- 1. Plancha metálica acanalada
- Cámara de aire
- 3. Poliestireno expandido 150mm
- 4. Polietileno
- 5. Terciado marino
- Perfil C80/40 perforado para ventilación

- 1 Plancha metálica acanalada Cámara de aire
- 3 Perfil Fe c 80 x 40 con perforación para
- 4 Polietileno
- Poliestireno expandido 150 mm
- Terciado marino 20 mm Envigado de madera 2 x 8 "

- 9 Lana de vidrio 150 mm 10 Mortero afinado vitrificado 20 mm
- 11 Loseta 50 mm
- 12 Polietileno
- 13 Tablero osa 15 mm
- 14 Pieza de madera 2 x 2"
- 16 Poliestireno expandido 80 mm

Ejemplos

Colegio Alemán Puerto Varas, Km 1,4 Camino Ensenada. Año construcción: 2006. Sup.: 8.000m2

Arqto.: Jaime Bartsch J. Calefacción mediante geotermia

Ejemplos

Edificio Enap Punta Arenas, Avda. Parque Presidente Bulnes. Sup. Construída: 1.776 m2 + 324 invernadero. Argtos: Patricio Gross, Harley Benavente, Alberto Contesse, Cristóbal Gross.

Materiales: Hormigón, madera, acero y cristal

Costo construcción: 29,8 UF/m2

Ahorro Energético: 32% Amortización: 18 años

Volúmenes paralelos a la dirección del viento predominante para evitar la pérdida de calor.

Edificio Enap Punta Arenas

