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We introduce a novel wrapper Algorithm for Feature Selection, using Support Vector
Machines with kernel functions. Our method is based on a sequential backward selection,
using the number of errors in a validation subset as the measure to decide which feature
to remove in each iteration. We compare our approach with other algorithms like a filter
method or Recursive Feature Elimination SVM to demonstrate its effectiveness and
efficiency.
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1. Introduction

Feature selection [2,7,10] is of considerable importance in classification. The reason for being so is twofold: to reduce the
computational complexity and to improve the classifier’s generalization ability on one side. This reason is quite evident,
since high-dimensional feature vectors impose a high computational cost and a high cost of data acquisition. On the other
side a low-dimensional representation reduces the risk of overfitting [6,11]. Feature selection addresses the dimensionality
reduction problem by determining a subset of available features to build a good model for classification or prediction, which
is a combinatorial problem in the number of original features [7,13].

Support Vector Machines (SVMs) [20] is an effective classification method with significant advantages such as the ab-
sence of local minima, an adequate generalization to new objects, and a representation that depends on few parameters
[5,17,20]. This method, however, does not directly determine the importance of the features used. In the present paper
we introduce a new feature selection method for binary classification using SVM and compare it to existing approaches.

This paper is organized as follows. In Section 2 we briefly introduce SVM for binary classification. Section 3 provides an
overview on recent developments for feature selection using SVM. Section 4 introduces the proposed feature selection meth-
od based on SVM. Experimental results using four real-world data sets are given in Section 5. Section 6 summarizes this pa-
per by providing its main conclusions and addresses future developments.

2. Support Vector Machines for binary classification

In this section we describe the mathematical derivation of SVMs developed by Vapnik [20]. This technique is introduced
in the following three steps. We first consider the simplest case, a linear classifier for a linearly separable problem. Then we
. All rights reserved.
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look at linear classifiers for linearly non-separable problems. Finally a non-linear classifier for linearly non-separable prob-
lems, which is the most interesting and useful case, is presented. This non-linear classifier builds the basis for the approach
proposed in this paper.

2.1. Linear classifier for linearly separable problems

For the linearly separable case, SVM determines the optimal hyperplane that separates the training patterns. The optimal
hyperplane maximizes the sum of its distances to the closest positive and negative training patterns, respectively. This sum
is called margin. To construct the maximum margin or optimal separating hyperplane, we need to correctly classify the vec-
tors xi of the training set into two different classes yi, using the smallest norm of coefficients [20]. This problem can be for-
mulated as follows:
Min
w;b

1
2

wk k2 ð1Þ
subject to
yi � ðwT � xi þ bÞP 1; i ¼ 1; . . . ;m:
In order to explain the extension to non-linear classifiers (which will be described in Section 2.3) easily, we look at the dual
formulation of the problem, using the technique of Lagrange multipliers. We construct the Lagrangian:
Lðw; b; aÞ ¼ 1
2
jjwjj2 �

Xm

i¼1

ai yi wT � xi þ b
� �

� 1
� �

; ð2Þ
where a is the vector of Lagrange multipliers corresponding to the constraints in (1). Applying the Karush–Kuhn–Tucker
(KKT) conditions we obtain:
oLðw; b; aÞ
ow

¼ w�
Xm

i¼1

aiyixi ¼ 0; ð3Þ

oLðw; b; aÞ
ob

¼
Xm

i¼1

aiyi ¼ 0: ð4Þ
The complementary slackness conditions take the following form:
a�i yi w� � xi þ b�ð Þ � 1½ � ¼ 0; i ¼ 1; . . . ;m: ð5Þ
Notice that complementary slackness conditions of this form imply that ai > 0 are called Support Vectors. From Eqs. (3) and
(5) it follows that w� ¼

Pm
i¼1a�i yixi and b� ¼ yi �w� � xi for any Support Vector xi. The decision function can be written as

follows:
f ðxÞ ¼ signðw� � xþ b�Þ ¼ sign
Xm

i¼1

yia�i ðx � xiÞ þ b�
 !

: ð6Þ
Finally, the dual formulation of (1) becomes:
Max
a

Xm

i¼1

ai �
1
2

Xm

i;s¼1

aiasyiysxi � xs ð7Þ
subject to
Xm

i¼1

aiyi ¼ 0;

ai P 0; i ¼ 1; . . . ;m:
2.2. Linear classifier for linearly non-separable problems

We now consider the case in which a linear separating hyperplane does not exist, i.e. it is not possible to satisfy all the
constraints in problem (1).

In order to weight the cost of misclassification an additional set of variables ni; i ¼ 1; . . . ;m is introduced. The SVM pro-
cedure aims at solving the following optimization problem:
Min
w;b;n

1
2

wk k2 þ C
Xm

i¼1

ni ð8Þ
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subject to
yi � ðwT � xi þ bÞP 1� ni; i ¼ 1; . . . ;m;

ni P 0; i ¼ 1; . . . ;m:
The decision function remains f ðxÞ ¼ sign
Pm

i¼1yia�i ðx � xiÞ þ b�
� �

, where b� ¼ yi �w� � xi for any Support Vector xi such that
0 < ai < C (a Support Vector which is correctly classified).

2.3. Non-linear classifier

For the non-linear case, SVMs map the data points into a higher dimensional space H where a separating hyperplane with
maximal margin is constructed. The following quadratic optimization problem has to be solved.
Min
w;b;n

1
2

wk k2 þ C
Xm

i¼1

ni ð9Þ
subject to
yi � ðwT � /ðxiÞ þ bÞP 1� ni; i ¼ 1; . . . ;m;

ni P 0; i ¼ 1; . . . ;m:
where training data are mapped to the higher dimensional space H by the function x! /ðxÞ 2H and C is a penalty param-
eter on the training error [4]. Under this mapping the solution obtained by applying SVM has the form:
f ðxÞ ¼ signðw� � /ðxÞ þ b�Þ ¼ sign
Xm

i¼1

yia�i /ðxÞ � /ðxiÞ þ b�
 !

: ð10Þ
The only values one needs to compute are scalar products of the form /ðxÞ � /ðyÞ [16]. The mapping is performed by a kernel
function Kðx; yÞ ¼ /ðxÞ � /ðyÞ which defines an inner product in H. The decision function f ðxÞ given by SVM is thus:
f ðxÞ ¼ sign
Xm

i¼1

yia�i Kðx; xiÞ þ b�
 !

: ð11Þ
The optimal hyperplane is the one with maximal distance (in H) to the closest image /ðxiÞ from the training data. The dual
formulation can be reformulated as follows:
Max
a

Xm

i¼1

ai �
1
2

Xm

i;s¼1

aiasyiysKðxi;xsÞ ð12Þ
subject to
Xm

i¼1

aiyi ¼ 0;

0 6 ai 6 C; i ¼ 1; . . . ;m:
Among a variety of existing kernel functions, the polynomial and the radial basis function are chosen in many applications
[17]:

(1) Polynomial function: Kðxi;xsÞ ¼ ðxi � xs þ 1Þd, where d 2 N is the degree of the polynomial.
(2) Radial basis function (RBF): Kðxi;xsÞ ¼ exp � jjxi�xs jj2

2q2

� �
, where q > 0 is the parameter controlling the width of the

kernel.
3. Feature selection with SVM criterion

Three main directions have been developed for feature selection: filter, wrapper, and embedded methods [7,19]. Subse-
quently, we provide a brief overview on each one of these directions and present the techniques that have been compared
with our approach proposed in this paper. The first scheme (filter methods) uses statistical properties of the features to filter
out poorly informative ones. This is done before applying any classification algorithm.

The Fisher Criterion Score (F) is such a filter method which computes the importance of each feature independently of the
other features by comparing that feature’s correlation to the output labels. The respective score FðjÞ of feature j is given by:
FðjÞ ¼
lþj � l�j

ðrþj Þ
2 þ ðr�j Þ

2

�����
�����; ð13Þ
where lþj ðl�j Þ is the mean value for the jth feature in the positive (negative) class and rþj ðr�j Þ is the respective standard
deviation.
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A second approach (wrapper methods) is computationally demanding, but often provides more accurate results than filter
methods. A wrapper algorithm explores the feature space to score feature subsets according to their predictive power, opti-
mizing the subsequent induction algorithm that uses the respective subset for classification.

A wrapper method called Recursive Feature Elimination (RFE-SVM) is a feature selection algorithm described by Guyon
et al. [8]. In this paper we use the version that includes Kernel functions as described in [7,10] and in [18] for multi-class. The
goal is to find a subset of size r among n variables ðr < nÞ which maximizes the performance of the predictor, using an SVM
classifier. The method, given that one wishes to employ only r < n input variables in the final decision rule, attempts to find
the best subset of r features. It operates by trying to choose the r features which lead to the largest margin of class separation.
This problem is based on a sequential backward selection, removing one feature at a time until r features remain. The re-
moved feature is the one whose elimination minimizes the variation of W2ðaÞ:
W2ðaÞ ¼
Xm

i;s¼1

aiasyiysKðxi; xsÞ: ð14Þ
This is a measure of the model’s predictive ability and is inversely proportional to the margin. Feature elimination is done
applying the following procedure:

(1) Given a solution a, calculate for each feature p:
W2
ð�pÞðaÞ ¼

Xm

i;s¼1

aiasyiysK xð�pÞ
i ;xð�pÞ

s

� �
; ð15Þ
where xð�pÞ
i means training object i with feature p removed.

(2) Remove the feature with smallest value of W2ðaÞ �W2
ð�pÞðaÞ

��� ���.
The third approach (embedded methods) performs feature selection in the process of model building. For example, [12]

adds an extra term that penalizes the size of the selected feature subset to the standard cost function of SVM, and optimizes
the new objective function to select features. These approaches are, however, limited to linear kernels.

Another approach for feature penalization is the so-called l0-SVM or Concave Feature Selection (FSV) [3], based on the
minimization of the ‘‘zero norm”: kwk0 ¼ jfi : wi–0gj. Note that k � k0 is not a norm because, unlike lp-norms with p > 0,
the triangle inequality does not hold [3]. Since the l0-‘‘norm” is non-smooth, it was approximated by the concave function:
wk k0 � eTðe� expð�bjwjÞ; ð16Þ
with approximation parameter b 2 Rþ and e the vector ð1; . . . ;1ÞT . The l0-SVM (FSV) formulation follows:
Min
w;v;b;n

Xn

j¼1

½1� expð�bv jÞ� þ C
Xm

i¼1

ni ð17Þ
subject to
yi � ðwT � xi þ bÞP 1� ni; i ¼ 1; . . . ;m;

�v j 6 wj 6 v j; j ¼ 1; . . . ; n;

ni P 0; i ¼ 1; . . . ;m:
This embedded method can be used to establish a feature ranking in order to compare its feature selection performance with
other wrapper methods [3].

4. The proposed method for feature selection using SVM

We propose a method for feature selection using SVM and a specific kernel function. It starts with all available features
and determines each feature’s contribution to the respective classifier. The one with the least impact on the classification
performance in an independent validation subset will be removed in each iteration until a stopping criterion indicates that
a good solution has been found.

After providing the relevant notation we introduce the proposed method for feature selection which subsequently will be
related to alternative techniques at the end of this section.

4.1. Notation and preliminaries

The componentwise vector product operator � is defined as [21]:
a � b ¼ ða1b1; . . . ; anbnÞ: ð18Þ
The binary vector r; r 2 f0;1gn, acts as an indicator for feature selection that will be multiplied componentwise with the in-
put objects.
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Thus the kernel function as explained in Section 2.3 becomes:
Algor

(1)
(2)
(3)

(4)
all
Krðxi;xsÞ � Kðr � xi; r � xsÞ: ð19Þ
We use this vector r as a parameter for feature selection and, for a given r, we solve (15), the dual formulation of SVM, whose
mathematical derivation is shown in Section 2.2.4:
Max
a

Xm

i¼1

ai �
1
2

Xm

i;s¼1

aiasyiysKrðxi;xsÞ ð20Þ
subject to
Xm

i¼1

aiyi ¼ 0;

0 6 ai 6 C; i ¼ 1; . . . ;m:
4.2. Hold-out Support Vector Machines (HO-SVM): a novel wrapper method for feature selection

The basic idea of the proposed method is to remove features whose elimination implies only a small number of errors in a
validation subset independent of the training data. This is achieved by the following iterative algorithm:
ithm 1. HO-SVM Algorithm for Feature Selection

Model selection
Initialization
repeat
(a) Random split of the training data
(b) SVM Training
(c) for each feature p with rp ¼ 1, do determine Eð�pÞða; rÞ, the number of classification errors when feature p is
removed
(d) remove feature j with the smallest value of Eð�pÞða; rÞ
until the smallest value of Eð�pÞða; rÞ is greater than Eða; rÞ, which is the number of errors in the Validation subset using
features as indicated by the current vector r, i.e. without removing any further feature.
In order to give a complete description of the methodology, we detail each step of the previous algorithm:
Model selection: The first step is to determine the parameters for SVM (C for error penalization, the polynomial degree d

or the Gaussian kernel parameter q) when all features are selected. In our experiments we perform SVM without feature
selection in order to identify the best Kernel function for the algorithm.

Initialization: We set r ¼ ð1; . . . ;1Þ, which means we start with all features and in each iteration we remove the feature
with the smallest contribution to the respective model.

Random split of the data: We split the training data set into two subsets: a Training Subset (with approximately 70% of
the observations) and a Validation Subset (with the remaining 30% of the observations). We perform SVM on the Training
subset for the current features obtaining a certain solution. Using this solution we then evaluate each feature’s contribution
on the Validation Subset. The percentage of observations in each subset can be treated as an additional parameter of the
algorithm.

SVM Training: We train a SVM classifier (Eq. (20)) with the training subset and the features as indicated by the vector r.
Calculate Eð�pÞða; rÞ: for each feature p with rp ¼ 1, do calculate:
Eð�pÞða;rÞ ¼
X
l2VAL

yv
l � sgn

X
i2TRAIN

aiyiKr xð�pÞ
i ;xvð�pÞ

l

� �
þ b

 !�����
�����; ð21Þ
where VAL is the Validation subset and xv
l and yv

l are the objects and labels of this subset, respectively. xð�pÞ
i ðxvð�pÞ

l Þ means
training object i (validation object l) with feature p removed. Eð�pÞða; rÞ is the number of errors in the Validation Subset when
feature p is removed, using the currently selected features as indicated by r.

To reduce computational complexity of the proposed algorithm, we use the same approximation as in [8]: the vector a

used in (21) is supposed to be equal to the solution of (20) even if a feature has been removed.
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Criterion for feature elimination: Remove feature j (i.e. set rj ¼ 0) with the smallest value of Eð�jÞða; rÞ. Feature j with
the smallest value Eð�jÞða; rÞ is the one whose elimination implies the least number of errors in the Validation Subset, so it is
considered to be irrelevant.

Stopping criterion: The algorithm stops when the smallest value of the measure Eð�pÞða; rÞ is greater or equal than Eða; rÞ,
the number of errors in the Validation Subset without removing any feature. Alternatively, we can modify this criterion in
order to remove more or less features. A stronger criterion would indicate stopping when the smallest value of Eð�pÞða; rÞ is
strictly greater than Eða; rÞ, that means, in case of a tie between the smallest value of Eð�pÞða; rÞ and Eða; rÞ, the algorithm will
keep iterating and removing features.

The training and validation subsets change in each iteration due to the random split of the data. Since the output of the
algorithm in each iteration is only the vector r of selected features, it is not necessary to explicit the iteration index in the
formula.

Fig. 1 illustrates the proposed process of feature selection for SVMs, which we call HO-SVM (Hold-out SVM).

4.3. Relation to other SVM-based feature selection methods

Several algorithms for feature selection based on SVM are already available. RFE-SVM and other wrapper methods pre-
sented in [1,14] differ regarding the measure to decide which feature to remove in each iteration and the stopping criterion.
Our approach uses the number of generalization errors (applying the hold-out technique) instead of a measure based only on
one data set ðW2ðaÞ [8], a gradient-based measure [14]) or a measure based on the Fisher Correlation Score [1]. The intuition
behind this proposed measure is that we can improve the classification performance by removing the features that directly
affect on generalization (classification errors on an independent subset) of the classifier instead of a measure that only con-
siders the training data. Additionally, our method presents an explicit stopping criterion, unlike the other wrapper algo-
rithms cited.

Compared to the wrapper method RFE-SVM, our approach requires at least the same computational effort. In
each iteration we train a SVM classifier with the training data subset and for each feature we evaluate a function
on the test data subset. RFE-SVM does the same but with the entire data set, therefore the order of both algo-
rithms is the same. Additionally, our approach splits the data set in each iteration. The explicit stopping criterion
reduces computational efforts to determine when the elimination of features affects negatively the model’s
performance.

Embedded methods differ from other feature selection methods in the way feature selection and learning interact. In con-
trast to our approach, in embedded methods such as [3,12,23] the learning part and the feature selection part can not be
separated. The method proposed by Weston et al. [21] differs from ours in the objective function (they minimize the
R2W2 bound on the leave-one-out error LOO of a trained hard margin SVM classifier instead of the number of errors in an
independent subset) and the variable space search algorithm: instead of using a greedy algorithm, they use a gradient des-
cent to minimize this bound.
Fig. 1. Feature Selection using HO-SVM.
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5. Experimental results

The proposed approach has been applied for feature selection on four data sets, two well-known benchmark data sets
used in [14,15] and two from projects that have been performed for Chilean financial institutions. The methodology we fol-
lowed consisted in each case in: (1) model selection in order to obtain the best Kernel and for parameter setting, (2) variable
ranking, and (3) measuring the test error of an SVM classifier when this predictor is provided with an increasing number of
ranked variables. A mean test error is then obtained by averaging the results over 100 realizations, as described in [14,15].
For this procedure we use the Spider Toolbox for Matlab [22].

Next, we describe briefly the mentioned data sets and provide then the classification results using different feature selec-
tion methods.

5.1. Description of data sets

Wisconsin Breast Cancer (WBC): This data set from the UCI data repository [9] contains 569 observations (212 malignant
and 357 benign tumors) described by 30 continuous features. Wisconsin Breast Cancer was created by William H. Wolberg
from the General Surgery Department of the University of Wisconsin and by W. Nick Street and Olvi L. Mangasarian from the
Computer Sciences Department of the same University, and donated in November 1995. Features are computed from a dig-
itized image of a fine needle aspirate (FNA) of a breast mass. They describe characteristics of the cell nuclei present in the
image. As preprocessing step the features were scaled between 0 and 1. The data set does not contain missing values.

Colorectal Microarray data set (CRMA): This data set contains the expression of the 2000 genes with highest minimal
intensity across the 62 tissues (40 tumor and 22 normal). The genes are placed in order of descending minimal intensity.
Following the procedure of [14,21], the training set and the test set are obtained by splitting the data set into 2 groups of
40 and 22 elements, respectively, while ensuring that the proportions of positive and negative classes are similar in both
sets. For the other data sets we split the data into 2 groups of approximately 60% of the observations for the training set
and the remaining 40% for the test subset.

In order to speed up the procedure of our approach, 20 variables are removed at each step until 100 variables remain still
to be ranked. Then features are removed one at a time. We compare our results choosing the number of variables as men-
tioned in [21]: 20, 50, 100, 250, 1000 and 2000 (no variables removed).

INDAP data set: The third data set stems from a credit scoring project performed for the Chilean organization INDAP and
is based on 49 variables describing 1464 observations (767 good and 697 bad customers) [4]. INDAP is the main service pro-
vided by the Chilean government that aims at supporting small agricultural enterprises; see www.indap.cl. It was founded in
1962 and has more than 100 offices all over Chile serving its more than 100,000 customers.

The available data set contained all credits that have been accepted between 2004 and 2006. In order to keep the results
of our analysis unbiased, the classes of this data set were balanced using random sampling. The observations with missing
values were deleted and some irrelevant features were filtered out using univariate feature selection.

BDDM data set: A credit scoring system has been developed for the Micro-Enterprises Division of the Chilean bank Banco
del Desarrollo (BDD); see: www.bdd.cl. This bank belongs to the Scotiabank Group. The Micro-Enterprises Division
(www.bddm.cl) is specialized on credits for micro-entrepreneurs and has a market coverage of approximately 30% in
2007. The goal of the mentioned project was to develop a system for automatic credit scoring that should reduce the time
needed for revision of a credit.

The available data set contained all credits that have been accepted between 2004 and 2006. For each one of these 4780
credits a decision had to be taken so as to classify the customer’s behavior as good or bad. Additionally, we had a set of 677
features describing the respective credits, customers, and their paying behavior in the past (in the case of customers who
already had a credit previously).

After data cleaning, data set balancing and univariate feature selection using simple statistical tests as filters we obtained
a data set with 3003 credits (rows of the data matrix) and 24 features (columns of the data matrix). To this data set we ap-
plied our proposed feature selection approach as well as other techniques described above.

5.2. Results

First, we compared the results of the best model found on the model selection procedure by each Kernel function. Table 1
presents mean and standard deviation of the test error using 10-fold cross-validation. We use the following set of values for
the parameters:
C ¼ f0:1;0:5;1;10;20;30;40;50;60;70;80;90;100;200;300;400;500;1000g; d ¼ f2;3;4;5;6;7;8;9g and
q ¼ f0:1; 0:5;1;2;3;4;5;6;7;8;9;10;20;100g:
In this step we prove that for our data sets the best Kernel is the Gaussian.
We compared the classification performance of the different feature selection methods presented in this paper (RFE-SVM,

FSV and our approach HO-SVM). Furthermore, we applied the filter technique Fisher Criterion Score (Fisher) for feature
selection prior to classifier design. Figs. 2–5 display the mean test error for an increasing number of ranked features used

http://www.indap.cl
http://www.bdd.cl
http://www.bddm.cl


Fig. 2. Mean test errors for WBC vs. the number of ranked variables used for training.

Table 1
Mean and standard deviation of effectiveness on four data sets using three different SVM with different Kernel functions.

SVM linear SVM poly SVM RBF

WBC 94.55 ± 2.4 96.49 ± 2.2 98.25 ± 2.0
CRMA 80.30 ± 6.4 80.30 ± 6.4 85.70 ± 5.6
INDAP 71.10 ± 4 75.27 ± 3.3 75.54 ± 3.6
BDDM 68.70 ± 0.7 69.26 ± 1.0 69.33 ± 1.0

Fig. 3. Mean test errors for CRMA vs. the number of ranked variables used for training.

Fig. 4. Mean test errors for INDAP vs. the number of ranked variables used for training.
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for learning. They show that HO-SVM outperforms the other methods in all 4 data sets in terms of mean classification error
in the respective test sets for all analyzed numbers of selected features.

In order to emphasize the importance of HO-SVM’s stopping criterion, we study the performance of each feature selection
algorithm when it reaches this number of features. Table 2 shows the mean and standard deviation of the effectiveness at
this point on our four data sets.



Fig. 5. Mean test errors for BDDM vs. the number of ranked variables used for training.

Table 2
Number of selected features, mean and standard deviation of effectiveness using four different feature selection methods on four data sets.

n Fisher + SVM FSV RFE-SVM HO-SVM

WBC 12 94.91 ± 1.2 94.70 ± 1.3 95.47 ± 1.1 97.69 ± 0.9
CRMA 100 87.55 ± 7.5 91.17 ± 6.7 95.61 ± 5.4 96.36 ± 5.3
INDAP 21 69.02 ± 1.5 66.70 ± 1.7 71.07 ± 1.8 73.65 ± 1.5
BDDM 9 66.66 ± 1.2 68.09 ± 1.0 64.89 ± 1.2 68.63 ± 1.0
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As can be concluded from Table 2, the proposed method outperforms all other approaches in terms of classification error
for a given number of features (our stopping criterion). The gain in terms of effectiveness is significant in all cases. The sec-
ond best method is RFE-SVM but it fails on the BDDM data set.

6. Conclusions and future work

We presented a novel wrapper approach for feature selection using SVM. This method performs a sequential backward
elimination of features, using the number of errors in a validation subset as the measure to decide which feature to remove
in each iteration.

A comparison with other techniques for feature selection and classification shows the advantages of our approach:

� It outperforms other filter and wrapper methods, based on its ability to adjust better to a data set because of the validation
error measure, but avoiding overfitting doing a random split of the data set in each iteration.

� It presents an explicit stopping criterion, indicating clearly when removing further features begins to affect negatively the
performance of the classifier.

� It can be used with any Kernel function.
� It can be easily generalized to variations of SVM, such as Support Vector Regression and multi-class SVM.

An important characteristic of our method is that different runs of the algorithm may select different features. This is due
to the random data split in each iteration. An unfortunate split of the data set may also remove an important feature, affect-
ing thus negatively the classifier’s performance. To avoid this situation, we recommend to perform 3-4 runs of the algorithm,
compare the eliminated features and remove them only if they have been discarded in more than one run. We can also check
the performance of the algorithm by analyzing the number of errors and identifying incorrectly removed features, improving
the method’s effectiveness.

Empirically we prove the method’s robustness regarding feature selection by verifying that most of the time the same
features are selected in different runs providing high classifier performance. For example, after running the proposed method
five times on the WBC data set, 9 from the original 30 features have been selected five times. We also recommend to order
the features in terms of relevance, using a fast filter method for example, before running the algorithm, in order to decide
which variable to remove in case of equal number of validation errors. This point is particularly important in high-dimen-
sional data sets with a small number of observations.

Our algorithm relies on a backward feature elimination, which is computationally treatable but expensive if the number
of input features is large. We could improve its performance by applying filter methods for feature selection before running
our wrapper algorithm [11,19]. This way we can identify and eliminate irrelevant features at low cost. In our Credit Scoring
projects we use univariate analysis (Chi-Square Test for categorical features and the Kolmogorov–Smirnov Test for contin-
uous ones) as a first filter for features selection with excellent results.
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Future work has to be done in various directions. First, it would be interesting to use the proposed wrapper technique for
feature selection in combination with the variations of SVM, such as different Kernel functions and Support Vector Regres-
sion. Second, it would be attractive to apply the approach HO-SVM together with weighted Support Vector Machines to com-
pensate for the undesirable effects caused by unbalanced data sets in model construction; an issue which occurs frequently
e.g. in the domains of fraud and intrusion detection.
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