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ABSTRACT
In adversarial systems, the performance of a classifier de-
creases after it is deployed, as the adversary learns to defeat
it. Recently, adversarial data mining was introduced, where
the classification problem is viewed as a game mechanism
between an adversary and an intelligent and adaptive clas-
sifier. Over the last years, phishing fraud through malicious
email messages has been a serious threat that affects global
security and economy, where traditional spam filtering tech-
niques have shown to be ineffective. In this domain, us-
ing dynamic games of incomplete information, a game theo-
retic data mining framework is proposed in order to build an
adversary-aware classifier for phishing fraud detection. To
build the classifier, an online version of the Weighted Margin
Support Vector Machines with a game theoretic prior knowl-
edge function is proposed. In this paper, a new content-
based feature extraction technique for phishing filtering is
described. Experiments show that the proposed classifier
is highly competitive compared with previously proposed
online classification algorithms in this adversarial environ-
ment, and promising results were obtained using traditional
machine learning techniques over extracted features.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
Data Mining ; I.5.1 [Pattern Recognition]: Design Method-
ology—classifier design and evaluation; K.4.4 [Computers
and Society]: Electronic Commerce—Security

General Terms
Email Filtering, Game Theory, Data Mining

Keywords
Spam and Phishing Detection, Adversarial Classification,
Games of Incomplete Information
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1. INTRODUCTION
In security applications, modern threats are becoming more

effective as adversaries are adapting and evolving over cur-
rent security systems. In many domains, such as fraud,
phishing, spam, intrusion detection, and other malicious ac-
tivities, a permanent race between adversaries and classi-
fiers. The evolution of the initial problem is driven by a ra-
tional change of the adversaries’ behavior. In this context,
one of the major problems of a classifier is to consider the
drift concept and incremental properties of security systems.
Recent studies on this topic [32], focus on the incremental
characteristic of these applications, leaving the adversarial
behavior as an open question in most of the previously men-
tioned domains.

In Cyber-Crime, one of the most common social engineer-
ing threats is phishing fraud. This malicious activity consists
of email scams, where attackers ask for personal information
to break into any site where victims store useful private in-
formation, such as financial institutions, e-commerce or mas-
sive services. The phishing filtering problem is not an easy
task. While client side phishing filtering techniques have
been developed by large software companies, server side fil-
tering techniques have been a large research focus [1, 3, 5,
10]. Most of this work is based on machine learning ap-
proaches to determine the relevant features to extract from
phishing emails, and data mining techniques to determine
hidden patterns associated to the relationship between the
extracted features.

There is an important issue when using data mining to
build a classifier for the phishing detection task, and many
other adversarial classification tasks: it must deal with the
uncertainty of classifying malicious or regular activities, with-
out information about the real intention of the message.
This interaction can be modeled as a Bayesian game (or in-
complete information game), where the classifier must choose
a strategy without knowing the adversaries’ real type, whether
it was malicious or just happened to be a“malicious like”reg-
ular message. All this, using just the revealed set of features
to decide.

The aim of this work is to present a game-theoretic data
mining framework using dynamic games of incomplete infor-
mation for the adversarial classification problem. A mecha-
nism is proposed to model a signaling game between an ad-
versary and a classifier, where equilibrium strategies and the
classifier beliefs are used to build an online machine learning
classifier to detect phishing emails.

Section 2 of this paper introduces previous work on adver-
sarial data mining and latest research on phishing classifica-



tion. Problem definition and game properties are introduced
in section 3. The adversary strategies definition, the clas-
sifier, and main contribution of this paper are presented in
section 4, followed by the experimental settings and results
in section 5. Finally, main conclusions and future work are
presented in section 6.

2. PREVIOUS WORK

2.1 Adversarial Machine Learning
As described by Dalvi et al. [9], an adversarial game can

be represented as a game between two players: A malicious
agent whose adversarial activity reports its benefits, and a
classifier whose main objective is to identify as many ma-
licious activities as possible, maximizing its expected util-
ity. The malicious agent tries to avoid detection by chang-
ing its behaviour (hence its features), inducing a high false-
negative rate to the classifier. The adversary is aware that
changing features to a non-adversarial behavior might not
increase its benefit. Considering this, the adversary might
try to maximize its benefit minimizing the cost of chang-
ing features. This framework, based on a single shot game
of complete information, was initially tested in a spam de-
tection domain [9] where the adversary-aware näıve Bayes
classifier had significantly less false positives and false neg-
atives than the classifier’s plain version. Then a repeated
version of the game was tested [9], where results showed that
the adversary-aware classifier outperformed consistently the
adversary-unaware näıve Bayes classifier.

Some extensions of the adversarial classification frame-
work were recently developed. M. Kantarcioglu et al. [16],
consider an adversarial stackelberg game model to define the
interaction between the classifier and the adversary. They
determine the subgame perfect equilibrium, reporting promis-
ing results.

Recently, several studies about the possibility that a clas-
sifier is intentionally mis-trained by the adversary or that
its optimal strategies could be revealed in adaptive adver-
sarial environments have been developed. Open questions
such as “Can machine learning be secure?” are extensively
discussed in [2]. More specifically, Nelson et al. present in
[21] how to exploit a spam classifier to render it useless us-
ing a very specific attack framework, using indiscriminate,
focused attacking and an optimal attacking function, all of
them assuming that the training model used for the spam
filter is based on näıve Bayes classifier.

Furthermore, Lowd and Meek proposed as the adversarial
learning theory [18], which enables the adversary to recon-
struct the classifier based on reasonable assumptions and re-
verse engineering algorithms. However, Biggio et al. present
a promising alternative to randomize the classifier decision
function using multi-classifier systems, in order to hide the
classifier’s strategy observed by the adversary, diminishing
the adversarial learning and the possibilities to mis-train or
learn from the classifier [6].

2.2 Phishing Classification
Spam filtering has been discussed over the last years, and

many filtering techniques have been described [14]. Never-
theless, phishing classification is different in many aspects
from the spam case, where most of the spam email just
want to inform about some product. In phishing there is
a more complex interaction between the message and the

receiver, like following malicious links, filling in deceptive
forms, or replying with useful information which is relevant
for the message to succeed. Also, there is a clear difference
among many phishing techniques, where the two main cat-
egories are known as deceptive phishing and malware phish-
ing. While malware phishing has been used to spread mali-
cious software to be installed on victim’s machines, deceptive
phishing, according to [4], can be categorized into the follow-
ing six categories: Social engineering, Mimicry, Email spoof-
ing, URL hiding, Invisible content and Image content. For
each one of these subcategories, specific feature extraction
techniques have been proposed [4] to help phishing classifiers
to use the right characterization of their respective messages.

Among the countermeasures used against phishing, three
main alternatives have been used [4]: Black listing and white
listing, network and encryption based countermeasures and
content based filtering. The first alternative, consists in us-
ing public lists of malicious phishing websites (the black list)
and lists of legitimate non-malicious websites (white list),
where each link in a message must be checked in both lists.
The main problem of this countermeasure is that phishing
websites do not persist long enough to be updated on-time
in the black list, making difficult to keep an up-to-date list
of malicious websites. The second alternative is based on
email authentication methods, where the transaction time
in encryption based methods could be a considerable com-
putational cost. Besides, it is likely that a special techno-
logical infrastructure is needed for this countermeasure [4].
Previous work on content-based phishing filtering [1, 3, 4,
5, 10] focused on the extraction of a large number of fea-
tures and the usage of popular machine learning techniques
for classification. These approaches for automatic phishing
filtering have shown promising results regarding the relative
importance of features.

3. PROBLEM DEFINITION
Consider a message arriving at time t represented by the

feature vector xt = (xt,1, ..., xt,i, ..., xt,a), where xt,i is the
ith feature of message xt. Each message can belong to two
classes: positive (or malicious) messages, and negative (or
regular) messages. We define the adversarial classification
under a dynamic game of incomplete information as a signal-
ing game between an Adversary, which attempts to defeat
a Classifier by not revealing information about his real
type, modifying xi (a message of type i) into xj (a message
of type j) by using the transformation function φ(xi) = xj .

Consider the incomplete information game, as defined by
J. Harsanyi in [15], as the tuple

Γb = (N , (An)n∈N , (Tn)n∈N , (pn)n∈N , (Un)n∈N )

where N = {1, ..., N} is the set of players, An is the set of
possible actions for player n, ∀n ∈ N . Tn is the nth player
possible types set ∀n ∈ N . pn is a probability function
pn : Tn → [0, 1] which assigns a probability distribution
over ×j∈N Tj to each possible player type (Tn), ∀n ∈ N .
Finally, the utility function of player n is denoted by Un :
(×j∈N Aj) × (×j∈N Tj) → R, which corresponds to the
payoff of player n as a function over the actions of all players
(An) and their types (tn).

Based on the previous scheme, as described in [11, 13],
dynamic games of incomplete information can be modeled
as a signaling game. The model of incomplete information
for the adversarial classification between an Adversary (A)



Figure 1: Extensive-form representation of the signaling game between the Classifier and the Adversary.
On the figure, xij is defined by φ(xi) = xj and Ij is the jth information set where the classifier has to decide
C(xj) = {+1,−1}. All intermediate nodes between Nature and information sets, represents the strategy nodes
for the adversary, where φ(xi) = xj is decided.

and a Classifier (C), i.e. N = {A, C}, behaves as the
following sequence of events.

Firstly, Nature draws a type ti for the Adversary from
T = {tR,xi}k

i=1

S{tM,xi}k
i=1, which states whether the ad-

versary is Regular (R) or Malicious (M), and defines the
initial optional message of type i, xi. Nature draws accord-
ing to the probability distribution p(ti), where p(ti) > 0, ∀i
and

Pk
i=1 p(ti) = 1. Secondly, The Adversary observes

his type ti, which can be either tR,xi or tM,xi , and chooses
a message xj from his set of actions AA = {φ(xi) = xj}k

j=1,
where xi is defined from the type tR,xi or tM,xi . The func-
tion φ : Ra → Ra transforms a feature vector xi into
xj , the message which the Classifier has to decide its
class. A non malicious adversary does not have incentives
to modify its behavior, so φ(xi) = xi, when its type is
tR,xi , ∀i = {1, ..., k}. Thirdly, The Classifier observes
xj (but not ti) and chooses an action C(xj) from its set of
actions AC = {+1,−1}. It is important to notice that the
Classifier is a single type player, so its type is common
knowledge and there is no need to be mentioned further.
Finally, payoffs are revealed by UA(ti, φ(xi), C(φ(xi))) and
UC(ti, φ(xi), C(φ(xi))).

The extensive form game that represents the signaling
game between the Adversary and Classifier is presented
in figure 1.

In order to analyze the optimal strategies for the Classi-
fier in the proposed mechanism, special requirements and
assumptions over the traditional Bayesian Nash equilibrium
must be considered [13, 17].

Definition 1. Signaling requirement 1 (S1) After ob-
serving any message xj, from AA, the Classifier must
have a belief about which types could have sent xj. De-
note this belief by the probability distribution µ(ti|xj), where
µ(ti|xj) ≥ 0, ∀ti ∈ T and

P
ti∈T µ(ti|xj) = 1.

Definition 2. Signaling requirement 2 (S2C) For each
xj ∈ AA, the Classifier’s optimal strategy defined as the

probability distribution σ∗C over the Classifier’s actions
C(xj) ∈ AC, must maximize the Classifier’s expected util-
ity, given the beliefs µ(ti|xj) about which types could have
sent xj. That is,

∀xj , σ
∗
C(·|xj) ∈ argmax

αC

X
ti∈T

µ(ti|xj) · UC(ti, xj , αC) (1)

where

UC(ti, xj , σ(·|xj)) =
X

C(xj)∈AC

σC(C(xj)|xj)UC(ti, xj , C(xj))

(2)

Definition 3. Signaling requirement 3 (S2A) For each
ti ∈ T , the Adversary’s optimal message xj = φ(xi),
defined by the probability distribution σ∗A over the Adver-
sary’s actions xj ∈ AA, must maximize the Adversary’s
utility function, given the Classifier’s strategy σ∗C. That
is,

∀ti, σA(·|ti) ∈ argmax
αA

UA(ti, αA, σ
∗
C) (3)

where

UA(ti, σA, σC) =
X

xj∈AA

σA(xj |ti)UA(ti, xj , σC(·|xj))

and

UA(ti, xj , σC(·|xj)) =
X

C(xj)∈AC

σC(C(xj)|xj)UA(ti, xj , C(xj))

Definition 4. Signaling requirement 4 (S3) For each
xj ∈ AA, if there exists ti ∈ T such that σ∗A, then the Clas-
sifier’s belief at the information set Ij corresponding to xj

must follow from Bayes’ rule and the Adversary’s strategy

µ(ti|xj) =
σ∗A(xj |ti) · p(ti)P

tr∈T σ
∗
A(xj |tr) · p(tr) (4)

If
P

tr∈T σ
∗
A(xj |tr) ·p(tr) = 0, µ(ti|xj) can be defined as any

probability distribution.



Sequential equilibria, a subset of perfect Bayesian equilib-
rium (PBE) in the adversarial signaling game is a pair of
mixed strategies σ∗A and σ∗C and a belief µ(ti|xj) satisfying
signaling requirements S1, S2C, S2A, and S3. It is clear, by
construction of the mechanism, that requirements S1 and
S3 are satisfied by the adversarial classification game. How-
ever, signaling requirement S2A will be considered satisfied
as a first approach and a strong assumption on the game
development. Whether adversarial behavior strategies, as
described by [9], could represent a more reliable interaction
will be considered as an open question to be treated as future
work.

Recently, numerical approximation on the sequential equi-
libria refinement have been proposed by Turocy in [25], using
a transformation of the logit quantal response equilibrium
(QRE) correspondence, parameterized by a scalar precision
parameter, which as tends to infinity, a numerical approx-
imation for the sequential equilibria is obtained. This nu-
merical algorithm has been implemented in Gambit [19], an
open-source project for estimating equilibrium results in fi-
nite games.

4. STRATEGIES, TYPES AND CLASSIFIER
MECHANISM

In this section the main characterization of the signal-
ing game proposed and contribution of this work is pre-
sented. Firstly, the Adversary’s strategies and types are
determined by the usage of unsupervised learning tecniques.
Then, the classifier strategy represented by a novel data min-
ing algorithm which includes game-theoretic parameters is
extensively developed.

4.1 Phishing Features, Strategies and Types
Extraction

4.1.1 Corpus Description
The previously defined classifier was tested over an En-

glish language phishing and Ham email corpus built us-
ing Jose Nazario’s phishing corpus [20] and the Spamassas-
sin Ham collection. The phishing corpus1 consists of 4450
emails manually retrieved from November 27, 2004 to Au-
gust 7, 2007. The Spamassassin collection, from the Apache
SpamAssassin Project2, is based on a collection of 6951 Ham
email messages. The email collection was saved in a unix

mbox email format, and was processed using Perl scripts.

4.1.2 Basic Features
As initially described in [10] and then in [3, 4, 5], the

extraction of basic content-based features is needed for a
minimum representation of phishing emails. These features,
considered as binary variables for this study, are associated
to structural properties of the email, link analysis, program-
ming elements and the output of the spam filters. It is im-
portant to notice that basic features (a total of 15 features)
are directly extracted from content-based properties of an
email message, and each one can be considered as a strategy
for the Adversary to defeat the Classifier.

4.1.3 Word List and Clustering Features

1
Available at http://monkey.org/̃jose/wiki/doku.php?id=PhishingCorpus

2
Available at http://spamassassin.apache.org/publiccorpus/

Previously mentioned features are not sufficient for the ap-
propriate characterization of a phishing message, and clearly
not the complete representation of adversarial strategies.
Following the content-based extraction techniques, a new
list of features is proposed to characterize phishing emails,
which is related to the Adversary’s strategy AA.

In the following, word-based features will be described as
an approach to fulfill the needed phishing strategies’ rep-
resentation. These features will be presented as a binary
variable for each word in a list of keywords, whose value is
1 if the word is used in the document, and 0 otherwise. The
main idea is that phishing strategies are defined as a list
of words used in a message. So, for each keyword cluster
(Adversary type), a list of relevant words will be associ-
ated, representing a phishing strategy.

First, a stop-words removal and stemming pre-processing
is necessary to setup the email database. Let R be the to-
tal number of different words in the complete collection of
phishing emails, and Q the total number of emails. A vec-
torial representation of a the phishing corpus is given by
M = (mij), i = 1, ..., R and j = 1, ..., Q , where mij is the
weight word i in a document. The weights mij considered
in this research are an improvement of the basic tf-idf term
[27, 28] (Term Frequency times inverse document frequency),
and are defined by

mij = fij(1 + sw(i))× log

„
Q

ni

«
(5)

where fij is the frequency of the ith word in the jth docu-
ment, sw(i) is a factor of relevance associated to word i in a
set of words and ni is the number of documents containing

word i. On this case, sw(i) =
wi

email
TE

, where wi
email is the

frequency of word i over all documents, and TE is the total
amount of emails.

The tf-idf term is a weighted representation of the im-
portance of a given word, in a document that belongs to
a collection of documents. The term frequency indicates
the weight of each word in a document, while the inverse
document frequency states whether the word is frequent or
uncommon in the document, setting a lower or higher weight
respectively.

Based on the previous tf-idf representation, a clustering
technique must be considered for the segmentation of the
whole collection of phishing emails. k-Means clustering with
the cosine between documents, as the distance function was
used. Furthermore, the optimal number of clusters was de-
termined using as stopping rules the minimization of the
distance within every cluster and the maximization of the
distance between clusters. Then, for each cluster the most
relevant words are determined by

Cw(i) = |ζ|

sY

p∈ζ

mip (6)

for i ∈ 1, .., R, where Cw is a vector containing the geometric
mean of each word’s weights within the messages contained
in a given cluster. Here, ζ is the set of documents in each
cluster and mip as defined in equation 5. Finally, the most
important words for each cluster can be determined ordering
the weights of vector Cw. This procedure is based on previ-
ous work described in [29]. Results on this method showed
that the optimal number of clusters is 13, where the 30 most
relevant words of each cluster were considered as features (a



Table 1: Five most relevant words for each of the 13
clusters of the phishing corpus.

Cluster Word 1 Word 2 Word 3 Word 4 Word 5
1 limit use credit card provid
2 address follow bill communiti violat
3 ebay secur bank access user
4 chase repli payment answer info
5 vector area desktop loan keybank
6 account paypal messag inform updat
7 signin list partner site offer
8 amazon union never maintain world
9 ebay email page polici help
10 login respons verif window yahoo
11 area demo hidden expens image
12 use sidebar card repli review
13 union nation answer googl barclay

total of 390). The first five relevant words of each cluster
are presented in table 1.

4.1.4 Strategies and Types Extraction
Based on previously mentioned features (a total of 405

features), a feature selection algorithm is used to improve
the performance of the classification algorithms, eliminating
noisy features that do not represent the target value, and do
not provide enough information about the underlying phe-
nomenon observed by the game agents. This is a key step
for eliminating word features considered arbitrarily as the
30 most relevant words for each cluster, giving a final list
of attributes for the phishing/ham classification problem.
These attributes represent the strategy profile for a given
Adversary. An information-theoretic feature selection al-
gorithm was implemented, where the information gain for
each feature was calculated over the whole database, elimi-
nating those features that did not report a minimum thresh-
old. 153 features where eliminated, obtaining the final set
of 252 features.

The Adversary’s types ti ∈ T are extracted using k-
Means clustering over the collection of emails (phishing and
ham). Therefore, the number of clusters over the whole
set of features (Kfeatures) will represent the total number
of types for the Adversary player. For each message xj ,
represented by a vector of 252 variables, the type will be
determined by

ti = argmin
i
d(xj , Ci),∀i = {1, ..,Kfeatures} (7)

where Ci is the centroid of cluster i, and function d :
Ra ×Ra → R represents the distance between two vectors
of dimension a. The distance function used in this research
is the Hamming distance, represented by the number of bits
needed to change one vector into another.

4.2 Classifier Strategy
As mentioned before, the Classifier’s optimal strategies

are defined by the set AC = {+1,−1}. From the signal-
ing requirement S2C, it can be shown that the Classifier’s
optimal strategy C∗(xj) can be solved by the following con-
ditional statement,

C∗(xj) =

(
+1 if condition 9 is satisfied

−1 Otherwise
(8)

X
ti∈TM

µ(ti, xj)∆U
ti
C,M (xj) >

X
ti∈TR

µ(ti, xj)∆U
ti
C,R(xj) (9)

Where TM = {tM,xi}k
i=1, TR = {tR,xi}k

i=1, µ(ti|xj) is
defined by equation 4,

∆U ti
C,R(xj) = σ∗C(−1|xj)UC(tR,xi , xj ,−1)

− σ∗C(+1|xj)UC(tR,xi , xj ,+1)

and

∆U ti
C,M (xj) = σ∗C(+1|xj)UC(tM,xi , xj ,+1)

− σ∗C(−1|xj)UC(tM,xi , xj ,−1)

In the following, these expressions will be considered as

∆U ti
C,M (xj) = ·(σ∗C(+1|xj)·εM +σ∗C(−1|xj)·γM )·(wT ·xj +b)

and

∆U ti
C,R(xj) = ·(σ∗C(−1|xj)·εR+σ∗C(+1|xj)·γR)·(wT ·(e−xj)+b)

where γM . γR, εM and εR must be defined based on mi-
croeconomic assumptions on the primitives of the game, and
e is a vector of ones, whose dimension is a. The modeling
intuition and the final analytical expression of the utility
functions are intentionally omitted in this paper.

The previous game-theoretic result (condition 9), can be
considered as a prior knowledge constraint in a classification
problem, associated with the regularized risk minimization
from the statistical learning theory proposed by Vapnik in
[26]. All this, is formulated as the following quadratic prob-
lem,

min
w,b,ξ

1

2

aX
i=1

w2
i + C

NX
i=1

ξi

s.t yi

“
wT · xi + b

”
·Ψ(xi) ≥ (1− ξi)

∀i ∈ {1, .., N}
ξi ≥ 0 ∀i ∈ {1, .., N}

(10)

Where,

Ψ(xi) =
1 + ψ(xi)Pa

k=1 wk + 2 · b
and

ψ(xi) =

P
tr∈TM µ(tr|xi) · (εM · σ∗C(+1|xi) + γM · σ∗C(−1|xi))P
tr∈TR µ(tr|xi) · (εR · σ∗C(−1|xi) + γR · σ∗C(+1|xi))

The online algorithm to solve the proposed minimization
problem, is based on solving its dual formulation using the
Sequential Minimal Optimization (SMO) described by Platt
in [22]. The SMO algorithm is used to train SVMs breaking
up the large Quadratic Programming (QP) representation of
the dual into small series of QP problems, which are solved
analytically by the algorithm. Small changes in the SMO
algorithm, such as explained in previous prior knowledge
inclusion in SVMs [31] were considered. Based on previ-
ous work on Online Support Vector Machines algorithms
described by Gentile in [12] and later by Sculley in [23], the
proposed adversary-aware classifier is stated as follows,



Algorithm 4.1: Bayesian Adversary-Aware Online
SVM

Data: (x1, y1), ..., (xn, yn), γM , γR, εM , εR,m, τ,Gp,C
Result: f(xt) = wT · xt + bt
Initialize w0 := 0, b0 := 0, seenData := {};1

foreach xt, yt do2

Classify xt using f(xt) = wT
t−1 · xt + bt−1;3

if yt

`
wT

t−1 · xt + bt−1

´
Ψ(xt) < τ then4

Find w′, b′ with prior knowledge SMO with5

parameter C on seenData, with wt−1 and bt−1

as seed hypothesis, and Ψ(xt);
set wt := w′ and bt := b′;6

if size(seenData) > m then7

remove oldest example from seenData;8

if T mod Gp = 1 then9

Approximate sequential equilibrium strategies10

using logit QRE;

add xt to seenData;11

update p(ti) based on observed messages on12

seenData;
update beliefs µ(ti|x),∀ti ∈ T, x ∈ seenData using13

signaling requirement S3 ;
update Ψ(xi), ∀i ∈ seenData;14

return 1 ;15

Previous algorithm 4.1 presents the online learning al-
gorithm, Bayesian Adversary-Aware Online SVM (BAAO-
SVM). Based on the Classifier’s beliefs and sequential
equilibrium strategies, the hyperplane parameters are up-
dated, incorporating as prior knowledge constraints the game
theoretic results. The main idea of the algorithm, is that
given an incoming message xt, a label is assign using the
classification function f(xt) = wT

t−1 ·xt + bt−1. If the Clas-
sifier’s optimal strategy is not satisfied (equation 9), the
hyperplane parameters are updated using a modified version
of the SMO algorithm over the seen messages (seenData set).
A memory parameter m is used to set the number of mes-
sages in seenData. Then, every Gp periods, the sequential
equilibrium strategies are updated using logit QRE. Finally,
xt is added to seenData and the type’s probabilities are up-
dated, hence beliefs and Ψ(xi)∀i ∈ seenData. At t = 0,
Ψ(xi) is initialized with all mixed strategies set to 1

2
, as

with no prior information, all outcomes can be considered
equally likelly to happen. It is important to notice that the
algorithm evolves dynamically as messages are presented to
the Classifier.

5. EXPERIMENTAL SETTINGS AND RE-
SULTS

In this section, the experimental settings for batch and
online learning performance evaluation, as well as the eval-
uation criteria is presented.

5.1 Experiments
The classification of phishing emails is a natural extension

of text mining, where the most promising classification algo-
rithms are Support Vector Machines, näıve Bayes, Random
Forest, among other text categorization algorithms [24]. In
the online setting, the problem associated to the email in-
box nature, where messages arrive from an undetermined
set of messages. In this context, the following experiments

will be determined to give the right benchmark results for
the proposed feature extraction between previous results and
batch learning SVMs. Likewise, the main objective of the
experimental setting is to show the accuracy and effective-
ness between different online classification algorithms and
BAAO-SVM, the proposed online adversary aware classifier.

Firstly, a 10 times 10 cross validation learning schema
using SVM on the complete database characterized with
265 features was developed, using the libSVM-library [7],
and the same learning schema was used to train a näıve
Bayes model implemented in Weka [30]. Then, for the on-
line setting, the Relaxed Online SVM (ROSVM) proposed
by Sculley in [23] was used, as well as an incremental eval-
uation of näıve Bayes, and BAAO-SVM were evaluated in
this schema.

The adversary aware classifier was developed using the
265 features as possible Adversary’s strategies, and the
{+1,−1} set as the Classifier’s strategies. Types where
considered as previously described type extraction method,
where a total of 7 clusters were obtained. Approximation on
the sequential equilibria was determined using logit QRE,
implemented in Gambit [19] software command-line tool
(gambit-logit). The Classifier’s strategy (adversary-aware
classifier) described in section was implemented in C++, ex-
tending D. Sculley’s Online SVM implementation [23], with
a modified version of SMO for prior knowledge described in
[31]. BAAO-SVM parameters tunning were estimated over
a 20% subset from the overall dataset, setting m = 100 for
the time window, τ = 0.6 for the threshold, Gp = 250 for the
game period, and C = 100 for the SVM objective function.

The values of γM . γR, εR and εM where defined as an
initial estimation over the primitives of the game. More
details on this model parameters finding where intentionally
omitted by the authors.

5.1.1 Evaluation Criteria
The resulting confusion matrix can be described using four

possible outcomes: Correctly classified phishing messages
or True Positives (TP), correctly classified ham messages
or True Negative (TN), wrong classified ham messages as
phishing or False Positive (FP) and wrong classified phish-
ing messages as ham or False Negative (TN). The evaluation
criteria considered are: The False Positive Rate (FP-Rate)
and the False Negative Rate (FN-Rate) as the proportion of
wrongly classified ham and phishing email messages respec-
tively. Precision, as the classifier’s safety, states the degree in
which messages identified as phishing are indeed malicious.
Recall, as the classifier’s effectiveness, states the percentage
of phishing messages that the classifier manages to classify
correctly. F-measure, the harmonic mean between the Pre-
cision and Recall, and Accuracy, the overall percentage of
correct classified email messages.

5.2 Results

5.2.1 Batch Learning Performance
As shown in Table 2, the F-measure obtained for a 10

times 10 fold cross-validation SVM is 99.32% and for the
näıve Bayes algorithm under the same learning schema the
F-measure obtained is 94.84%. Previous results for the same
email corpus reported an F-measure of 99.89% obtained by
Bergholz et al. in [5]. In some evaluating measures, these
results are slightly worst than previously obtained results,



Table 2: Experimental results for the benchmark
machine learning algorithms in the Batch Learning
context.

Model FP-Rate FN-Rate Accuracy

Bergholz’s SVM 0.07% 1.11% 99,52%
10x10xv SVM 1.21% 0.33% 99.48%
Näıve Bayes 4.47% 6.60% 94.31%

Model Precision Recall F-measure
Bergholz’s SVM 99.89% 99.89% 99.89%
10x10xv SVM 99.67% 98.97% 99.32%
Näıve Bayes 93.35% 96.38% 94.84%

Table 3: Experimental results for the benchmark
machine learning algorithms in the online learning
context.

Model FP-Rate FN-Rate Accuracy
Inc. Näıve Bayes 1.33% 25.66% 81.18%
ROSVM 15.45% 14.26% 85.20%
BAAO-SVM 14.69% 12.26% 86.63%
Model Precision Recall F-measure
Inc. Näıve Bayes 99.78% 74.34% 85.20%
ROSVM 85.20% 86.83% 86.01%
BAAO-SVM 87.64% 87.74% 87.69%

but are highly competitive. This points out an interesting
open question: as a future work, a combined feature extrac-
tion technique could achieve better results. However, results
for the False Positive Rate is considerable better than pre-
viously obtained with a value of 0.33%, compared to 1.11%
respectively.

5.2.2 Online Algorithms Performance
To identify the online property of learning algorithms is

not an easy task. In this work, a first approach using previ-
ously mentioned classification performance measures in sec-
tion 5.1.1, the applicability and accuracy of the overall pro-
posed algorithm were tested. Here, as shown in table 3,
ROSVM obtained an F-measure of 86.01% with an accu-
racy of 85.20%, for an online version of näıve Bayes the
F-measure is 85.20% whose accuracy is 81.18% and for the
proposed adversary aware classifier (BAAO-SVM) the F-
measure is 87.69% whose accuracy is 86.63%, with a better
performance than previously used online classification algo-
rithms on these evaluating criteria.

6. CONCLUSIONS AND FUTURE WORK
An extension of the Adversarial Classification framework

for Adversarial Data Mining was presented, considering dy-
namic games of incomplete information as a new approach
to make classifiers improve their performance in adversar-
ial environments. This work considered strong assumptions
on the Adversary strategies, the utility function modeling
for the Classifier, and experimental setups related to the
database processing.

The proposed adversary-aware classifier, BAAO-SVM, whose
core is mainly the Support Vector Machines model, considers
a signaling game where beliefs, mixed strategies and proba-

bilities for the messages’ types are updated and incorporated
as prior knowledge, as new email messages arrives. This en-
ables the classifier to change the margin error parameter
dynamically as the game evolves, considering an embedded
awareness of the adversarial environment. More specifically,
this is considered in the miss-classification constraint in the
optimization problem for the SVM algorithm. As a first ap-
proach, the experimental settings showed promising results
over previous online text categorization algorithms used for
email filtering.

Feature extraction is a key component for the game strate-
gies and types for the game proposed. Results showed that
the proposed strategies used as features are highly competi-
tive in comparison with previous feature extraction work in
phishing filtering. Future work could be oriented to con-
sider a mixture of former and present feature extraction
techniques. This could estimate a better strategy space for
the Adversary, therefore improving the Adversary types.
This is an important topic that affects directly the definition
of the signaling game, hence the Classifier’s performance.

Determining the actual drift concept of the game, e.g. Ad-
versary learning new phishing strategies, is an important
open question. An experimental setup to show the impact
on the classifier’s performance related to the inclusion of
new Adversary strategies within an already defined set of
strategies (features) might help to answer this question in
future work.

In game modeling, adversaries must be considered as strate-
gic agents. For this, their strategies could be estimated using
linear programming, as previous authors recommended in
the original Adversarial Classification framework [9]. How-
ever, this first approach in adversarial classification with dy-
namic games of incomplete information showed interesting
empirical and theoretical results. An extension on theoret-
ical aspects of the game theoretical framework, such as re-
finements on these equilibria, using for example the intuitive
criteria proposed by Cho and Kreps [8], among other special
refinements for the perfect Bayesian [11] equilibria could be
considered.

7. ACKNOWLEDGMENTS
Support from the Millennium Science Institute on Com-

plex Engineering Systems (www.sistemasdeingenieria.cl) and
the Center for Analysis and Modeling for Security
(www.ceamos.cl) is greatly acknowledged.

8. REFERENCES
[1] S. Abu-Nimeh, D. Nappa, X. Wang, and S. Nair. A

comparison of machine learning techniques for
phishing detection. In eCrime ’07: Proceedings of the
anti-phishing working groups 2nd annual eCrime
researchers summit, pages 60–69, New York, NY,
USA, 2007. ACM.

[2] M. Barreno, B. Nelson, R. Sears, A. D. Joseph, and
J. D. Tygar. Can machine learning be secure? In
ASIACCS ’06: Proceedings of the 2006 ACM
Symposium on Information, computer and
communications security, pages 16–25, New York, NY,
USA, 2006. ACM.

[3] R. Basne, S. Mukkamala, and A. H. Sung. Detection
of Phishing Attacks: A Machine Learning Approach,
chapter Studies in Fuzziness and Soft Computing,
pages 373–383. Springer Berlin / Heidelberg, 2008.



[4] A. Bergholz, J. D. Beer, S. Glahn, M.-F. Moens,
G. Paass, and S. Strobel. New filtering approaches for
phishing email. Journal of Computer Security, 2009.
Accepted for publication.

[5] A. Bergholz, J.-H. Chang, G. Paass, F. Reichartz, and
S. Strobel. Improved phishing detection using
model-based features. In Fifth Conference on Email
and Anti-Spam, CEAS 2008, 2008.

[6] B. Biggio, G. Fumera, and F. Roli. Multiple classifier
systems for adversarial classification tasks. In J. A.
Benediktsson, J. Kittler, and F. Roli, editors, MCS,
volume 5519 of Lecture Notes in Computer Science,
pages 132–141. Springer, 2009.

[7] C.-C. Chang and C.-J. Lin. LIBSVM: a library for
support vector machines, 2001.

[8] I.-K. Cho and D. M. Kreps. Signaling games and
stable equilibria. The Quarterly Journal of Economics,
102(2):179–221, May 1987.

[9] N. Dalvi, P. Domingos, M. Sumit, and
S. DeepakVerma. Adversarial classification. In
Proceedings of the Tenth International Conference on
Knowledge Discovery and Data Mining, volume 1,
pages 99–108, Seattle, WA, USA, 2004. ACM Press.

[10] I. Fette, N. Sadeh, and A. Tomasic. Learning to detect
phishing emails. In WWW ’07: Proceedings of the
16th international conference on World Wide Web,
pages 649–656, New York, NY, USA, 2007. ACM.

[11] D. Fudenberg and J. Tirole. Game Theory. MIT Press,
October 1991.

[12] C. Gentile. A new approximate maximal margin
classification algorithm. Journal of Machine Learning
Research, Vol. 2:213–242, December 2001.

[13] R. Gibbons. Game Theory for Applied Economists.
Princeton University Press, 1992.

[14] J. Goodman, G. V. Cormack, and D. Heckerman.
Spam and the ongoing battle for the inbox.
Communications of the ACM, Vol. 50(2):24–33, 2007.

[15] J. C. Harsanyi. Games with incomplete information
played by bayesian players. the basic probability
distribution of the game. Management Science,
14(7):486–502, 1968.

[16] M. Kantarcioglu, B. Xi, and C. Clifton. A game
theoretic framework for adversarial learning. In
CERIAS 9th Annual Information Security Symposium,
2008.

[17] D. M. Kreps and R. Wilson. Sequential equilibria.
Econometrica, 50(4):863–94, July 1982.

[18] D. Lowd and C. Meek. Adversarial learning. In KDD
’05: Proceedings of the eleventh ACM SIGKDD
international conference on Knowledge discovery in
data mining, pages 641–647, New York, NY, USA,
2005. ACM.

[19] R. D. McKelvey, A. M. McLennan, and T. L. Turocy.
Gambit: Software tools for game theory, version
0.2007.01.30, 2007.

[20] J. Nazario. Phishing corpus, 2004-2007.

[21] B. Nelson, M. Barreno, F. J. Chi, A. D. Joseph,
B. I. P. Rubinstein, U. Saini, C. Sutton, J. D. Tygar,
and K. Xia. Exploiting machine learning to subvert
your spam filter. In LEET’08: Proceedings of the 1st
Usenix Workshop on Large-Scale Exploits and

Emergent Threats, pages 1–9, Berkeley, CA, USA,
2008. USENIX Association.

[22] J. Platt. Sequential minimal optimization: A fast
algorithm for training support vector machines. In
B. Schoelkopf, C. Burges, and A. Smola, editors,
Advances in Kernel Methods - Support Vector
Learning. MIT Press, 1998.

[23] D. Sculley and G. M. Wachman. Relaxed online svms
for spam filtering. In SIGIR ’07: Proceedings of the
30th annual international ACM SIGIR conference on
Research and development in information retrieval,
pages 415–422, New York, NY, USA, 2007. ACM.

[24] F. Sebastiani. Text categorization. In A. Zanasi,
editor, Text Mining and its Applications to
Intelligence, CRM and Knowledge Management, pages
109–129. WIT Press, Southampton, UK, 2005.

[25] T. L. Turocy. Using quantal reponse to compute nash
and sequential equilibria. Economic Theory, Vol. 42,
Issue 1, 2010.

[26] V. N. Vapnik. The Nature of Statistical Learning
Theory (Information Science and Statistics). Springer,
1999.

[27] J. Velasquez, H. Yasuda, T. Aoki, and R. Weber. A
new similarity measure to understand visitor behavior
in a web site. IEICE Transactions on Information and
Systems, Special Issues in Information Processing
Technology for web utilization, vE87-D i2.:389–396,
2004.

[28] J. D. Velasquez and V. Palade. Adaptive Web Sites: A
Knowledge Extraction from Web Data Approach. IOS
Press, 2008.

[29] J. D. Velasquez, S. A. Rios, A. Bassi, H. Yasuda, and
T. Aoki. Towards the identification of keywords in the
web site text content: A methodological approach.
International Journal of Web Information Systems
information, Vol. 1(1):pp. 53–57, 2005.

[30] I. H. Witten and E. Frank. Data Mining: Practical
machine learning tools and techniques. Morgan
Kaufmann, San Francisco, 2nd edition, 2005.

[31] X. Wu and R. Srihari. Incorporating prior knowledge
with weighted margin support vector machines. In
KDD ’04: Proceedings of the tenth ACM SIGKDD
international conference on Knowledge discovery and
data mining, pages 326–333, New York, NY, USA,
2004. ACM.

[32] P. Zhang, X. Zhu, and Y. Shi. Categorizing and
mining concept drifting data streams. In KDD ’08:
Proceeding of the 14th ACM SIGKDD international
conference on Knowledge discovery and data mining,
pages 812–820, New York, NY, USA, 2008. ACM.


