

DISEÑO DE ENVOLVENTE DE ALTA EFICIENCIA

Miguel Bustamante S. miguel.bustamante@idiem.cl

Conductividad térmica, λ : Cantidad de calor que en condiciones estacionarias pasa en la unidad de tiempo a través de la unidad de área de una muestra de material homogéneo de extensión infinita, de caras planas y paralelas y de espesor unitario, cuando se establece una diferencia de temperatura unitaria entre sus caras.

Se expresa en W / (mK).

Transmitancia térmica, U : Flujo de calor que pasa por unidad de superficie del elemento y por grado de diferencia de temperaturas entre los dos ambientes separados por dicho elemento. Se expresa en W/(m²K).

Transmitancia térmica lineal, K_{l} : Flujo de calor que atraviesa un elemento por unidad de longitud del mismo y por grado de diferencia de temperatura. Se expresa en W / (mK).

Resistencia témica, R: Oposición al paso del calor que presentan los elementos de construcción. Se expresa en (m²K) /W.

Resistencia térmica total: Inverso de la transmitancia térmica del elemento. Suma de las resistencias de cada capa del elemento. Se expresa en (m²K) /W.

DISEÑO DE EDIFICACIONES OFICIENTES

NL NORTE LITORAL

ND NORTE DESERTICA

NVT NORTE VALLE TRANSVERSAL

CL CENTRAL LITORAL

CI CENTRAL INTERIOR

SL SUR LITORAL

SI SUR INTERIOR

SE SUR EXTREMO

AN ANDINA

DATOS

- **≻**Temperatura
- **≻**Insolación
- **≻**Soleamiento
- > Humedad relativa
- **≻** Nubosidad
- **≻**Precipitación
- **➤ Vientos predominantes**
- **≻**Heladas
- ➤ Orientación de muros que requieren protección contra el sol
- **➢ Pendiente de cubierta, valores mínimos**

CI CENTRAL INTERIOR

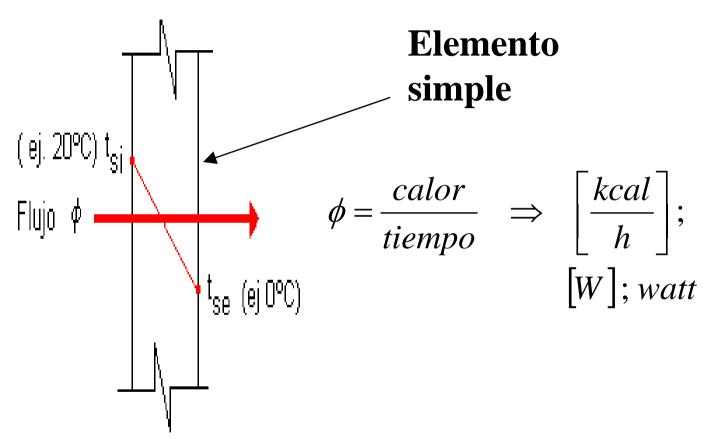
ZONA DE CLIMA MEDITERRÁNEO. Temperaturas templadas. Inviernos de 4 a 5 meses. Vegetación normal. Precipitaciones y heladas en aumento hacia el sur. Insolación intensa en verano, especialmente hacia el NE. Oscilación diaria de temperatura moderada, aumentando hacia el este. Vientos principalmente de componente SW.

CIUDADES: San Felipe, Los Andes, Santiago, Rancagua, Curicó, Talca, Linares, Cauquenes, Chillan.

MES	E	F	M	A	M	J	J	A	S	0	N	D
ARICA	22,0	22,3	21,4	19,5	17,6	16,4	15,6	15,7	16,3	17,5	19,1	20,6
ANTOFAGASTA	20,0	19,9	18,7	16,8	15,2	14	13,4	13,7	14,3	15,5	16,9	18,7
SANTIAGO	20,2	19,1	16,7	13,1	10,0	7,7	7,3	8,6	10,6	13,6	16,6	19,2
PUERTO MONTT	14,3	13,6	12,1	10,1	8,8	6,7	6,6	6,8	7,8	9,6	11,6	13,4

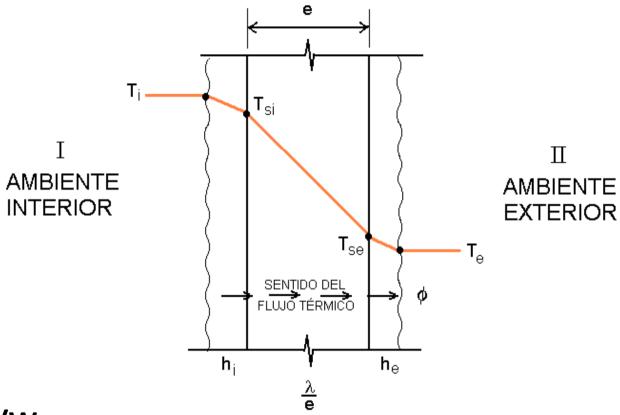
REGISTRO DE PRECIPITACIONES, mm

ANUAL SANTIAGO = 312,5 Max. 24 horas = 111,1 mm

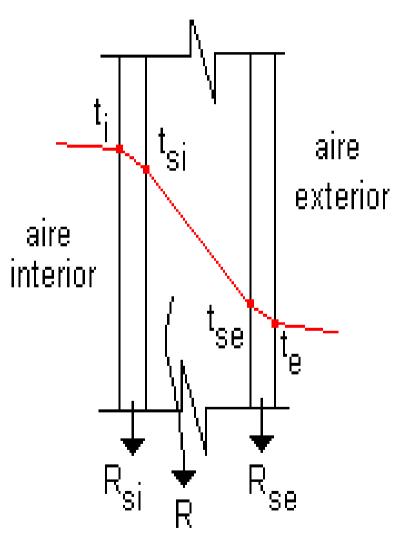

ANUAL PUERTO MONTT = 1802,5 Max. 24 horas = 133,0 mm

ANUAL CONCEPCIÓN = 1110,1 Max. 24 horas = 162,4 mm

ANUAL VALDIVIA = 1871,0 Max. 24 horas = 175,4 mm

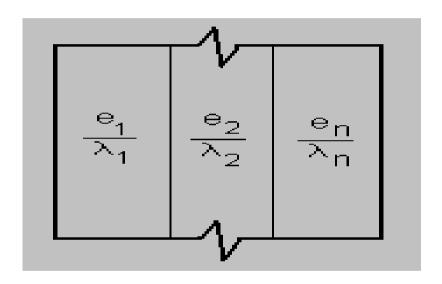


FLUJO TÉRMICO A TRAVÉS DE UN MURO


$$R= 1/U (m^2K)/W$$

$$U= 1/R W/(m^2K)$$

$$U = \frac{\varphi}{A(T_2 - T_1)}$$



					30	· ·			
	Situación del elemento								
Posición del eleme sentido del flujo de	•	ación co r o local	n espacio abierto	De separación con otro local, desván o cámara de aire					
		R_{si}	R_{se}	$R_{si} + R_{se}$	R_{si}	R_{se}	$R_{si} + R_{se}$		
Flujo horizontal en Elementos Verticales o con pendiente mayor de 60º respecto a la horizontal.		0,12	0,05	0,17	0,12	0,12	0,24		
Flujo ascendente en elementos horizontales o con pendiente menor o igual a 60º respecto a la horizontal		0,09	0,05	0,14	0,10	0,10	0,20		
Flujo descendente en elementos horizontales o con pendiente menor o igual a 60º respecto a la horizontal		0,17	0,05	0,22	0,17	0,17	0,34		

ELEMENTOS COMPUESTOS POR VARIAS CAPAS HOMOGENEAS.

$$R_{i} = R_{si} + \sum \frac{e_{i}}{\lambda_{i}} + R_{se}$$

$$e = 0.1$$
 m

$$\lambda = 0.6 \quad \frac{W}{m \cdot K}$$

$$R_{si} = 0.12 \quad \frac{m^2 \cdot K}{W}$$

$$R_{se} = 0.05 \quad \frac{m^2 \cdot K}{W}$$

R_{si} $\frac{e}{\lambda}$ R_{se}

PROYECTO

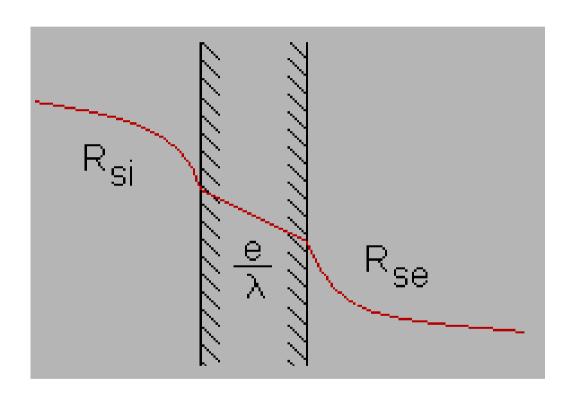
$$U = 1.5 \quad \frac{W}{m^2 \cdot K}$$

$$R_t = 0.66 \quad \frac{m^2 \cdot K}{W}$$

$$R_{t} = R_{si} + \frac{e}{\lambda} + R_{se} \quad (NCh853)$$

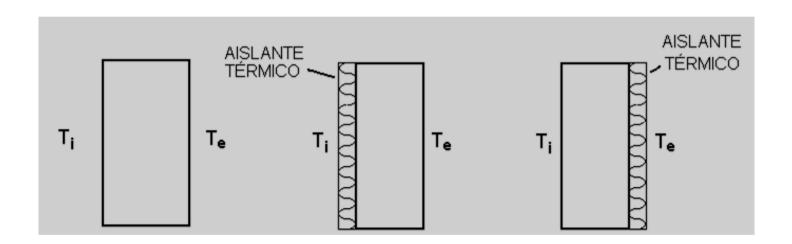
$$R_t = 0.12 + \frac{0.1}{0.6} + 0.05 = 0.34 \quad \frac{m^2 \cdot K}{W}$$

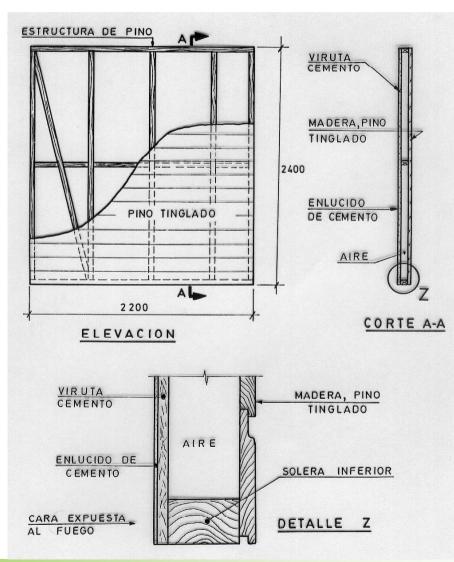
Como:
$$U = \frac{1}{R_t} \bigg| V = 3.0 \frac{W}{m^2 \cdot K} \frac{\text{No}}{\text{cumple}} \bigg|$$

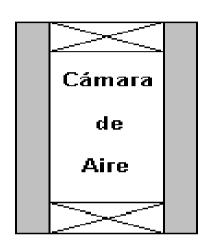

$$R_t = 0.17 + \frac{0.2}{0.6} = 0.50 \quad \frac{m^2 \cdot K}{W}$$

Luego:
$$U = 2.0 \frac{W}{m^2 \cdot K}$$
 No Cumple

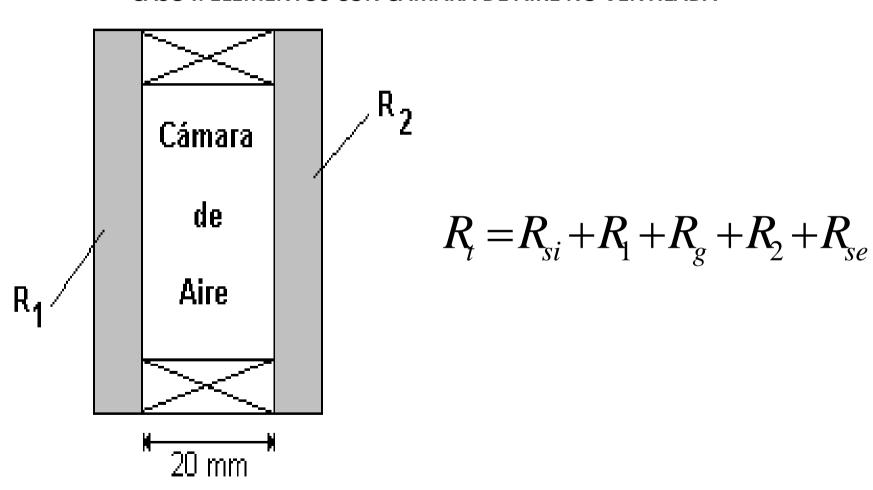
se logra con 0.3 m







$$\frac{1}{E} = \frac{1}{\varepsilon_1} + \frac{1}{\varepsilon_2} - 1$$


F = Emisividad total de la cámara

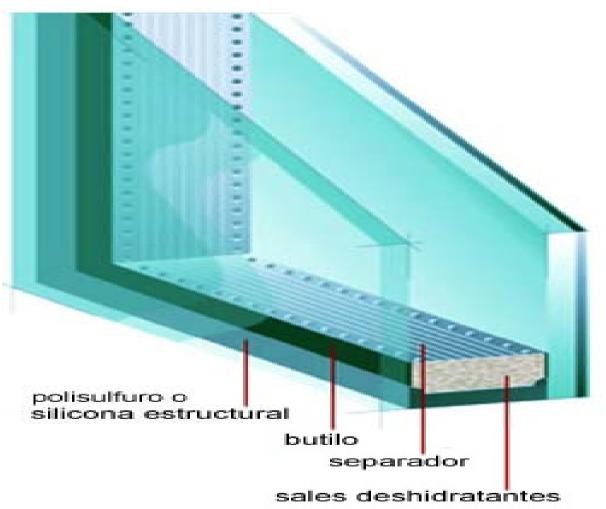
 ${\cal E}_1$, ${\cal E}_2$ = Emisividades de las superficies en contacto con la cámara considerada

CASO I: ELEMENTOS CON CÁMARA DE AIRE NO VENTILADA

$Rt = Rsi + Rg + \Sigma Rm + Rse$

Rt = Resistencia total

Rsi = Resistencia superficial interior


Rg = Resistencia de cámara de aire

Rm = Resistencia del material

Rse = Resistencia superficial exterior

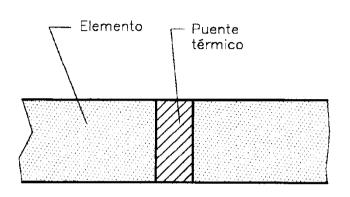
Espesor mm	Emisividad total, E									
e	0,82	0,20	0,20 0,11							
	(m ² K)/W									
5	0,105	0,17	0,20	0,20						
10	0,140	0,28	0,32	0,38						
15	0,155	0,35	0,43	0,51						
20	0,165	0,37	0,46	0,55						
25	0,165	0,37	0,46	0,55						
30	0,165	0,37	0,46	0,55						
35	0,165	0,37	0,46	0,55						
e ≥ 40	0,165	0,37	0,46	0,55						

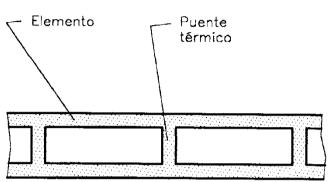
Espesor, mm		Emisividad total, E								
1	0,82	0,20	0,11	0,05						
e										
	(m ² K)/W									
5	0,10	0,16	0,17	0,19						
10	0,13	0,23	0,26	0,29						
15	0,13	0,25	0,29	0,32						
20	0,14	0,25	0,29	0,33						
30	0,14	0,26	0,31	0,35						
40	0,14	0,27	0,32	0,36						
50	0,14	0,28	0,33	0,37						
60	0,14	0,28	0,34	0,38						
70	0,14	0,29	0,34	0,39						
80	0,15	0,30	0,35	0,40						
90	0,15	0,30	0,35	0,40						
e ≥ 100	0,15	0,30	0,35	0,40						

Espesor de la cámara,		Emisivida	ad total, E					
mm	0,82	0,20	0,11	0,05				
e	(m² K)/W							
5	0,09	0,16	0,20	0,20				
10	0,14	0,29	0,34	0,37				
15	0,16	0,36	0,45	0,52				
20	0,17	0,42	0,55	0,65				
25	0,17	0,47	0,63	0,76				
30	0,175	0,51	0,68	0,87				
40	0,185	0,57	0,77	1,03				
50	0,19	0,60	0,84	1,15				
60	0,19	0,61	0,89	1,25				
70	0,19	0,62	0,94	1,33				
80	0,20	0,63	1,00	1,46				
90	0,20	0,63	1,00	1,46				
e ≥ 100	0,20	0,63	1,00	1,46				

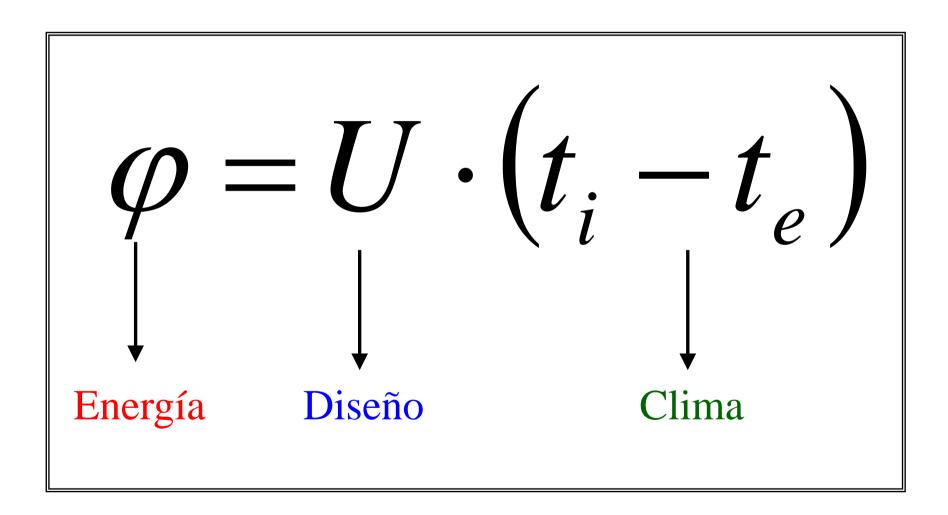
Elementos con heterogeneidades simples:

Por ejemplo:


Muros con ladrillos no industrializados


Muros con bloque huecos de hormigón

$$\overline{U} = rac{\sum U_i \cdot A_i}{\sum A_i}$$



Un **puente térmico** es una zona donde se transmite más fácilmente el <u>calor</u>, por ser de diferente material o espesor.

$$\overline{U} = \frac{1}{R_T} = \frac{\sum U_i \cdot A_i}{\sum A_i}$$

Flujo de calor a través de un elemento de transmitancia U.

$$\varnothing = U \times S \times \Delta T$$

 \emptyset = Flujo térmico

U = Transmitancia Térmica

S = Superficie

 ΔT = Diferencia de temperatura

Flujo de calor

Ø	W	cal/s	Kcal /h	вти/н
W	1	0,2388	0,8598	3,412
cal/s	4,1868	1	3,6	14,29
Kcal/h	1,163	0,2778	1	3,968
BTU/h	0,2931	0,2931	0,252	1

Donde

N = Número de renovaciones de aire

C_{ev} = Calor específico volumétrico

V = Volumen

 ΔT = Diferencia de temperatura

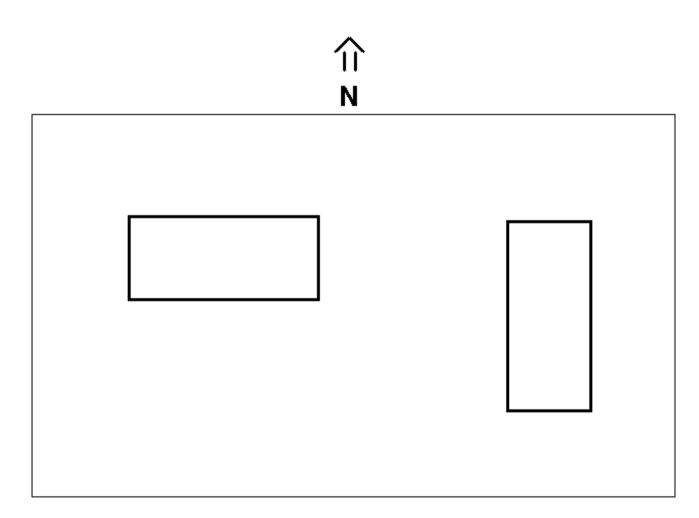
Donde

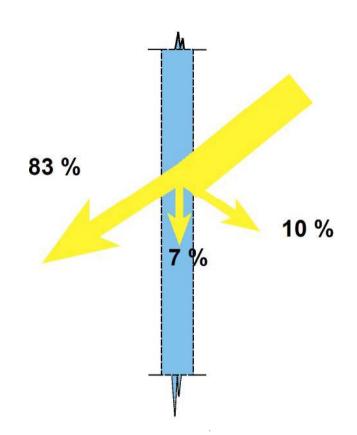
K_I = Transmitancia térmica lineal, W / (mk)

P = Perímetro, m

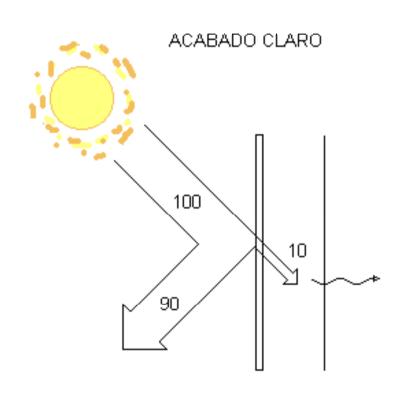
ΔT = Diferencia de temperatura, ^oC

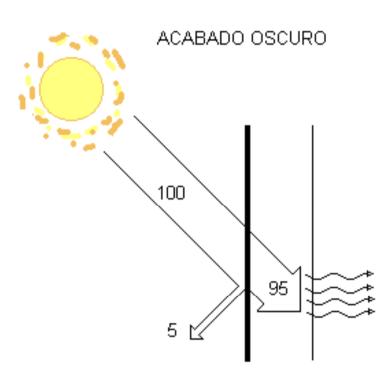
Aislación de piso	Resistencia térmica total, R _t (m ² C)/W	Transmitancia térmica lineal, K _I
Piso corriente	0,15 - 0,25	1,4
Piso medianamente	0,26 - 0,6	1,2
aislado	0,20 0,0	- /-
Piso aislado	> 0,60	1,0



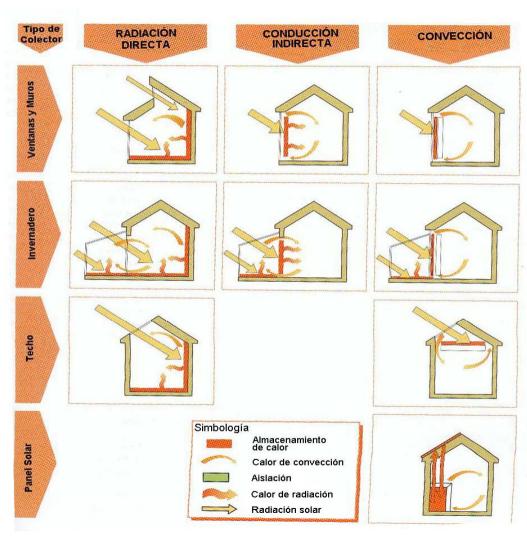


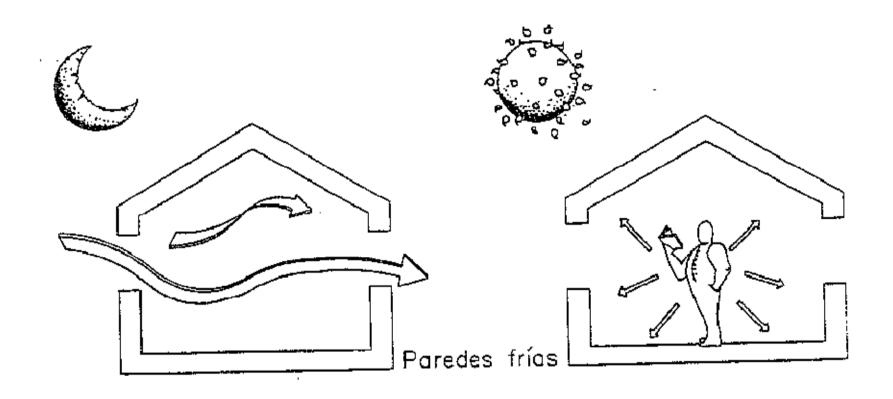
El vidrio es 83 % transparente a las ondas cortas de la radiación solar que calienta los recintos a unos 300 K (30°C) emitiendo, en longitudes de 10 micras para la cual el vidrio es opaco.

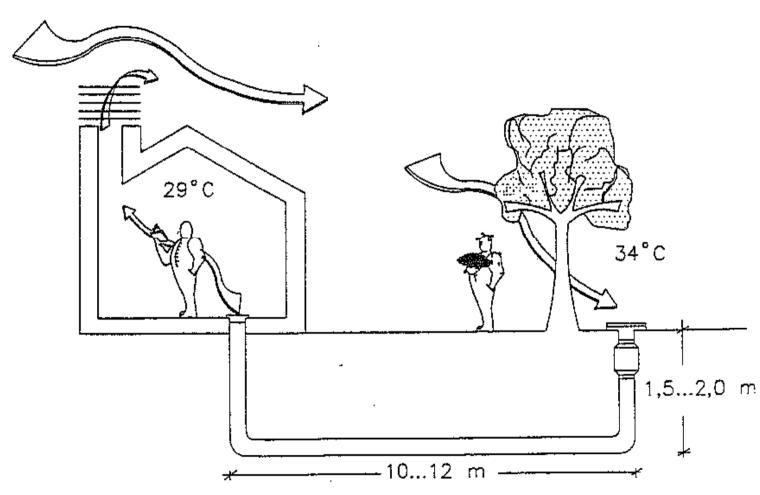

Resultado: el recinto gana calor.

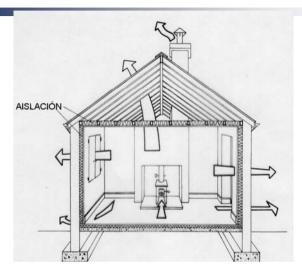

Este fenómeno llamado <u>efecto</u> <u>de invernadero</u> sirve para captar calor solar en colectores, invernaderos, cocinas y destiladores solares, etc.

A veces se convierte en un problema en buardillas, recintos con grandes ventanas y edificios de cristal.

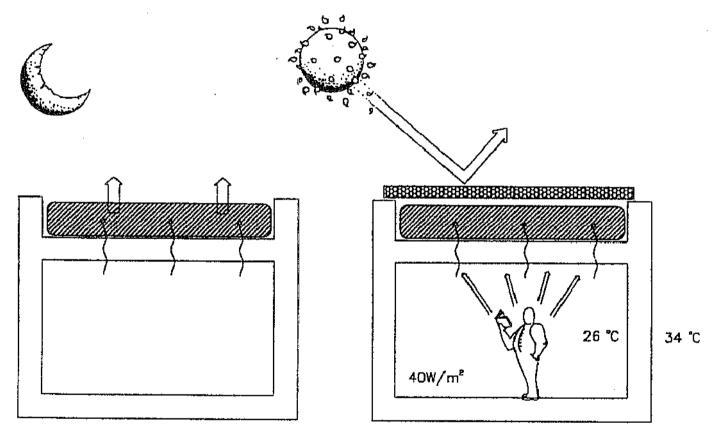


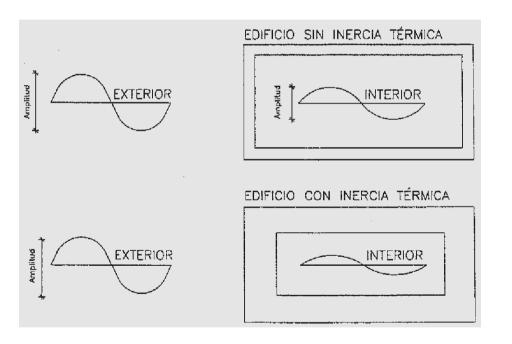






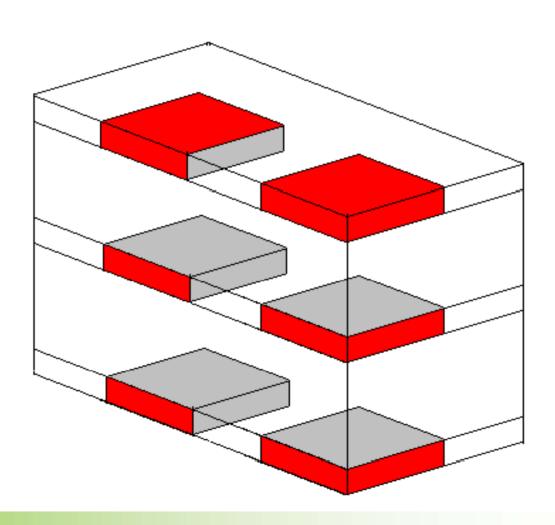
Calcular pérdidas térmicas


Elemento	Espesor	λ	R_{si}	R _t	U	S	Δτ	Ø
	е	W/(mK)	+	(m²K)/W	W/(m²K)	m²	∘C	W
			R_{se}					
Muros								
Ventanas								
Puertas								
Losa -Cielo								
Ventilación								
Piso								
Pérdidas totales								



DIFICULTAD QUE OFRECE UN CUERPO A CAMBIAR SU TEMPERATURA

- **→ MASA**
- **⇒** DENSIDAD
- **⇒** CALOR ESPECÍFICO



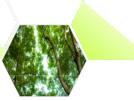
SUSTANCIA O ELEMENTO	CALOR ESPECÍFICO			
	kJ / (kg°C)	kcal / (kg°C		
Agua a 4 °C	4,18	1,00		
Hielo	2.09	0,50		
Roca sólida	1,25	0,30		
Aire	1,00	0,24		
Hormigón	0,89	0,22		
Aislante térmico	0,84	0,20		
Vidrio	0,80	0,19		
PVC	0,75	0,18		

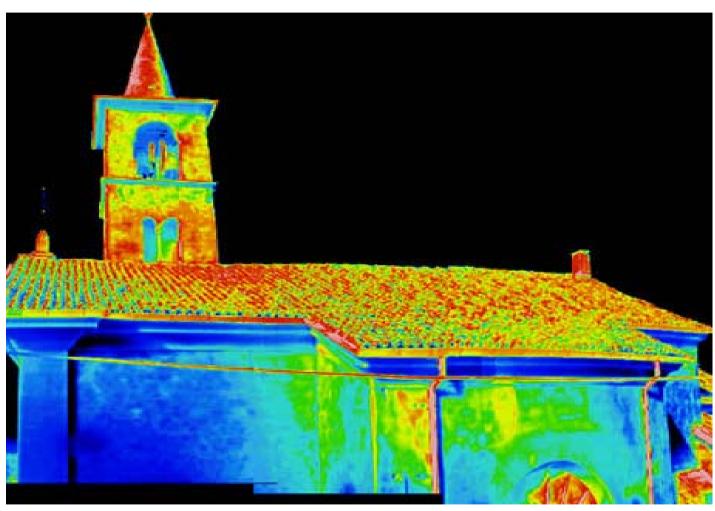
$$G = U \cdot \frac{Superficie\ envolvente}{Volumen\ total}$$

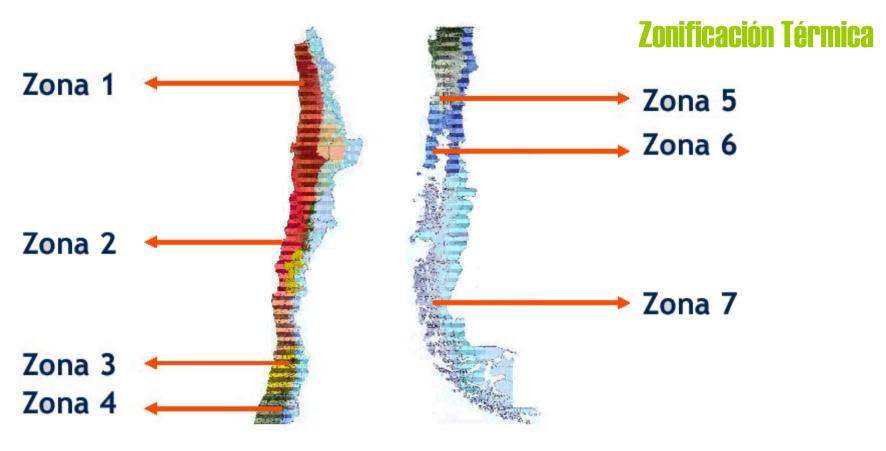
$$\left[\frac{W}{m^3 \cdot {}^{\circ}C}\right]$$

TERMOGRAFÍA

- Revisar el aislamiento de las paredes
- Revisar penetraciones ocultas
- Revisar hermeticidad
- Revisar si se evitan puentes térmicos







REGLAMENTACIÓN TÉRMICA

	TECHUMBRE		MUROS		PISOS VENTILADOS		
ZONA	U	Rt	U	Rt	U	Rt	
	W/m2K	m2K/W	W/m2K	m2K/W	W/m2K	m2K/W	
1	0,84	1,19	4,0	0,25	3,60	0,28	
2	0,60	1,67	3,0	0,33	0,87	1,15	
3	0,47	2,13	1,9	0,53	0,70	1,43	
4	0,38	2,63	1,7	0,59	0,60	1,67	
5	0,33	3,03	1,6	0,63	0,50	2,00	
6	0,28	3,57	1,1	0,91	0,39	2,56	
7	0,25	4,00	0,6	1,67	0,32	3,13	

DISEÑO DE EDIFICACIONES

ENERGÉTICAMENTE EFICIENTES REGLAMENTACIÓN TÉRMICA

ZONA	TECHUMBRE		MUROS		PISOS VENTILADOS		
	U	Rt	U	Rt	U	Rt	
	W/m ² K	m ² K/W	W/m ² K	m ² K/W	W/m ² K	m ² K/W	
1	0,84	1,19	4,0	0,25	3,60	0,28	
2	0,60	1,67	3,0	0,33	0,87	1,15	
3	0,47	2,13	1,9	0,53	0,70	1,43	
4	0,38	2,63	1,7	0,59	0,60	1,67	
5	0,33	3,03	1,6	0,63	0,50	2,00	
6	0,28	3,57	1,1	0,91	0,39	2,56	
7	0,25	4,00	0,6	1,67	0,32	3,13	