

Metanol y Etanol

- Alcohol es un excelente combustible para motores de combustión interna, y es posible producirlo de muchas formas, incluyendo biomasa renovable.
- Ethyl alcohol o etanol se produce principalmente por fermentación de biomasa, principalmente maíz y caña de azúcar. Metanol es producido más económicamente a partir de gas natural, y también se obtiene de carbón o madera.
- Etanol es, en muchos sentidos, un combustible superior, sin embargo es más caro producirlo al compararlo con metano.

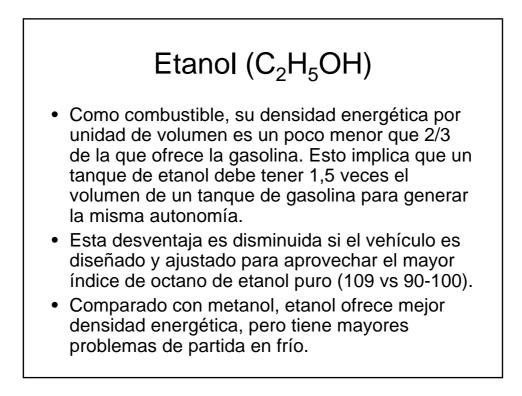
BLE 4.3 Comparison of Methanol, Ethan	ol, and Gasoline)	
	Methanol	Ethanol	Gasoline
Oxygen Content, wt%	50.0	34.8	0
Boiling Point, K	338	351	308-483
Lower Heating Value, Mj/kg	19.9	26.8	42-44
Heat of Vaporization, Mj/kg	1.17	0.93	0.18
Stoichiometric Air-Fuel Mass Ratio	16.45:1	9.0:1	14.6:1
Specific Energy, Mj/kg per Air-Fuel Ratio	3.08	3.00	2.92
Research Octane Number	109	109	90-100

Metanol (CH₃OH)

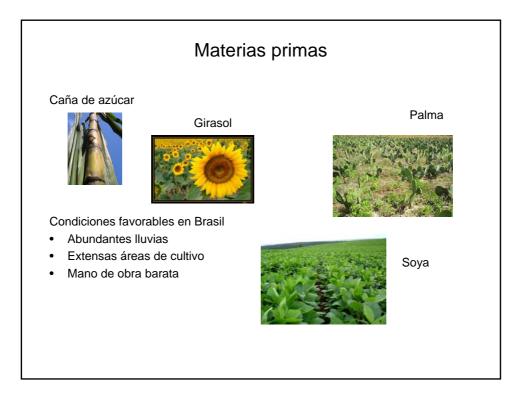
- Una de sus principales ventajas es que puede ser producido a partir de recursos abundantes tales como gas natural, carbón e incluso madera.
- Una mezcla de 85% metanol y 15% gasolina (M85) es un combustible con el cual los fabricantes de vehículos pueden adaptar sus motores con cambios menores.
- Flexible Fuel Vehicles (FFVs) pueden operar con gasolina o mezclas de gasolina/metanol. FFVs ofrecen a los usuarios un vehículo familiar, con combustible líquido, y un desempeño similar o incluso mejor que aquellos dedicados exclusivamente a gasolina.
- Sus principales desventajas son la baja densidad de energía (cercana a la mitad de la gasolina), llama invisible en M100, dificultades de partida en frío, mayores emisiones de formaldehídos, y la posibilidad que su producción se mantenga unida a los actuales países exportadores de petróleo.
- Además, metanol es tóxico y corrosivo. Su derramamiento puede producir daños a la ropa, calzado o pintura de automóviles y el contacto prolongado con la piel podría resultar en envenenamiento.

Emisiones asociadas

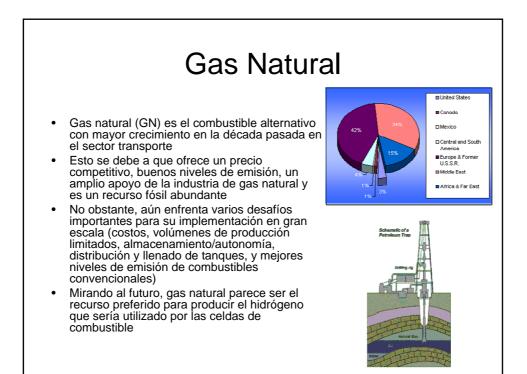
- En general, un motor de metanol produce menores emisiones nocivas de escape que un motor a gasolina comparable.
- Metanol tiene una baja temperatura de combustión de llama, produciendo menores emisiones de NOx (aprox. la mitad que gasolina)
- Es un combustible de baja volatibilidad (produciendo bajas emisiones evaporativas)
- Sus emisiones de COV tienen baja reactividad fotoquímica (tendencia a producir smog), ya que gran parte corresponden a metano (CH4)

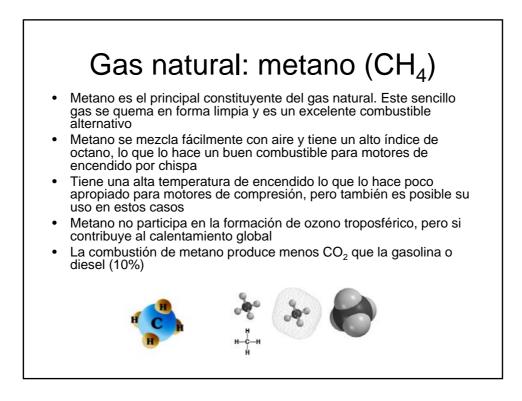


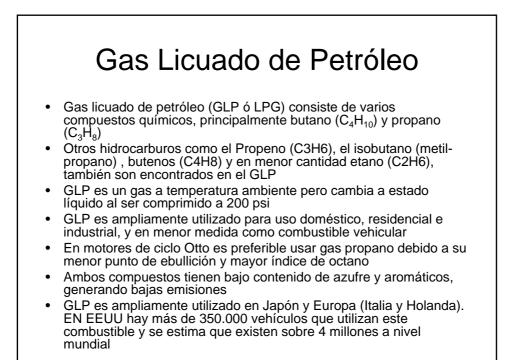
Motores alimentados con metanol

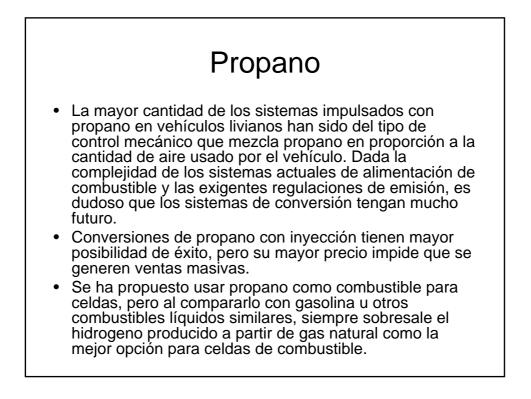


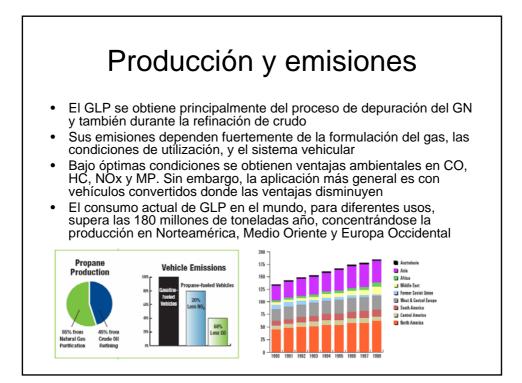
- Metanol es ideal para ser usado en motores de combustión interna de ciclo Otto.
- Entre los problemas asociados a la utilización de metanol en vehículos corrientes están:
 - Dificultades de partida en frío
 - Problemas de contaminación de aceite lubricante
 - Mayor desgaste de motor
 - Incompatibilidad de ciertos materiales debido a las características corrosivas del metanol

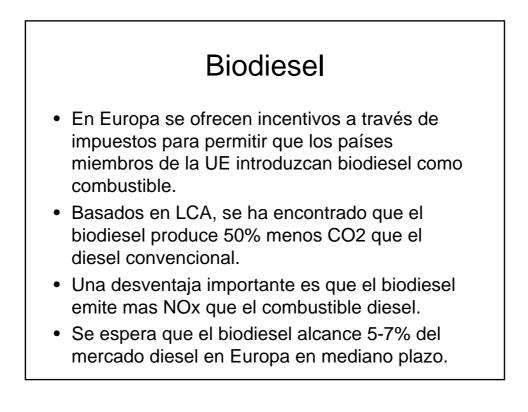


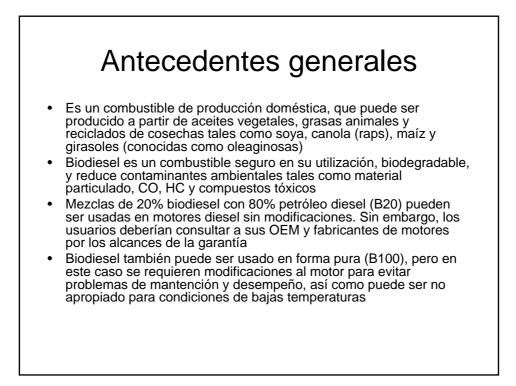

Etanol En la actualidad, el principal foco de la producción de • etanol es en reemplazo de MTBE en gasolina reformulada y oxigenada. En EEUU, casi la mitad del uso de etanol como • combustible (600 millones de barriles de un total de 1.3 billones) es como un mejorador de octanaje en mezclas de 10% con gasolina. Otro mercado potencial para etanol es usarlo como mezcla con diesel para reducir emisiones de material particulado. Se han propuesto mezclas de 10-15%. Etanol también puede ser usado como combustible para • vehículos con celdas de combustible. DaimlerChrysler cree que un combustible liquido como etanol es la única opción para vehículos con celdas de combustible, otorgando una autonomía de 200 millas por carga.

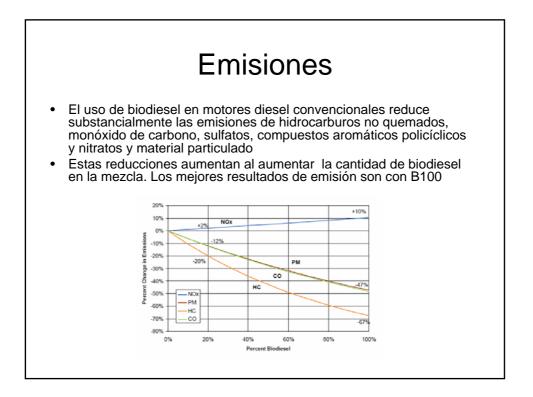



presion en materiales como carbon activado.

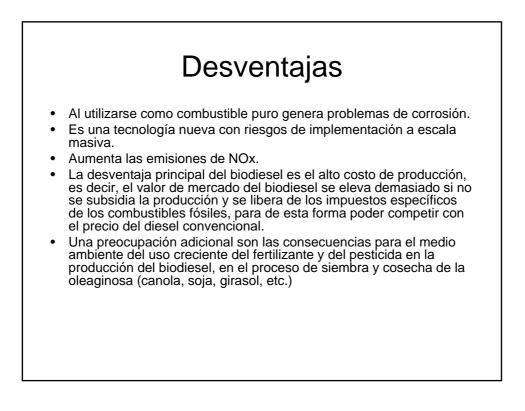

\mathbf{n}			· •
Cuadro	com	para	tivo
		8	
			d Discol Fred
able 5-3. Methane Properties		e of Gasoline an	
Fuel Property	Natural Gas (Methane) ^c	Gasoline ^a	No. 2 Diesel Fuel
Formula	CH4	C4 to C12	C ₈ to C ₂₅
Molecular Weight	16	100-105	200 (approx
Composition, Weight % Carbon Hydrogen Oxygen (oxygenated or reformulated gasolines only)	75 25 0	85-88 12-15 0-4	84-87 13-16 0
Lower Heating Value, 1000 kJ/L (1000 Btu/gal)	see Table 4	30-33 (109-119)	35-37 (126-131)
Flash Point, °C (°F)	-188 ^d (-306)	-43 (-45)	74 (165)
Autoignition Temperature, °C (°F)	540 ^e (1004)	257 (495)	316 (600)
Flammability Limits, Vol% Lower Higher	5 ^d 15	1.4 7.6	1.0 6.0
Stoichiometric Air-Fuel Ratio, Weight	17.2	14.7	14.7
Flame Visibility	Visible in all conditions ^b	Visible in all conditions ^b	Visible in all conditions ^b
Octane Number Research Motor	120 (estimated) 120 (estimated)	88-100 80-90	

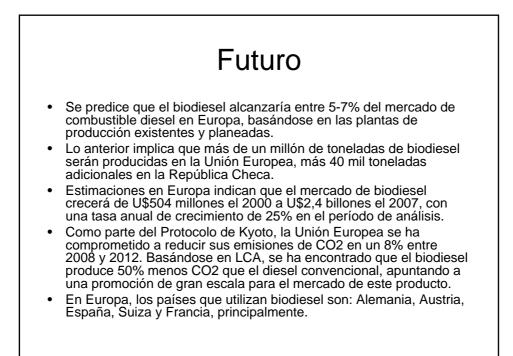


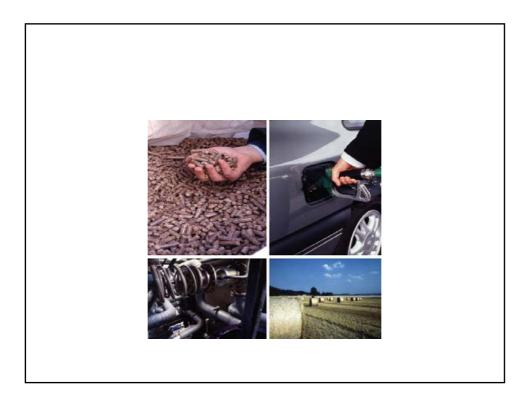




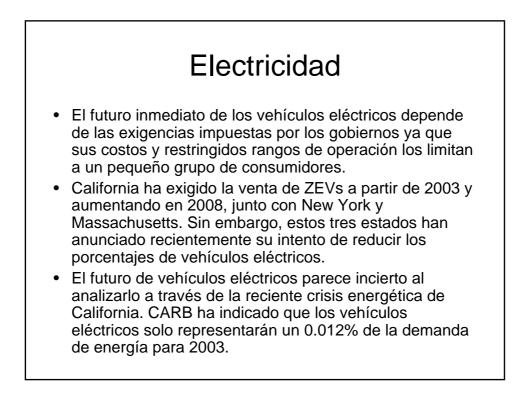
GL	.P en apl	licacione	s vehic	culares
utiliza uero muno _a tal estac	ado por el sector n consumidas pa lial estimado en 4 bla muestra el co iones surtidoras	total de GLP prod transporte. Más c ira uso automotriz 4.677.580 vehícul onsumo, número c de GLP (estadíst nde se utiliza este	le 10 millones z durante 199 los de vehículos y icas año 1998	s de toneladas 8 en un parqu y número de 8) en los
			0011100001010	pulu uso
	notriz		-	-
		CONSUMO [ton]	VEHICULOS 493000	ESTACIONES
	PAIS S. Corea	CONSUMO [ton]	VEHICULOS 493000	ESTACIONES
	notriz PAIS	CONSUMO [ton] 1759000	VEHICULOS	ESTACIONES 557
	NOTRIZ PAIS S. Corea Japón	CONSUMO [ton] 1759000 1670000	VEHICULOS 493000 296300	ESTACIONES 557 1932
	PAIS S. Corea Japón Australia	CONSUMO [ton] 1759000 1670000 1358000	VEHICULOS 493000 296300 530000	ESTACIONES 557 1932 3500
	PAIS S. Corea Japón Australia Italia	CONSUMO [ton] 1759000 1670000 1358000 1316000	VEHICULOS 493000 296300 530000 1210000	ESTACIONES 557 1932 3500 1650
	PAIS S. Corea Japón Australia Italia USA	CONSUMO [ton] 1759000 1670000 1358000 1316000 1286000	VEHICULOS 493000 296300 530000 1210000 270000	ESTACIONES 557 1932 3500 1650 4000
	PAIS S. Corea Japón Australia Italia USA Holanda	CONSUMO [ton] 1759000 167000 1358000 1316000 1286000 725000	VEHICULOS 493000 296300 530000 1210000 270000 325000	ESTACIONES 557 1932 3500 1650 4000 2000
	PAIS S. Corea Japón Australia Italia USA Holanda Canadá	CONSUMO [ton] 1759000 1670000 1358000 1316000 1286000 725000 465000	VEHICULOS 493000 296300 530000 1210000 270000 325000 121000	ESTACIONES 557 1932 3500 1650 4000 2000 3000
	PAIS S. Corea Japón Australia Italia USA Holanda Canadá México	CONSUMO [ton] 1759000 1670000 1358000 1316000 1286000 725000 465000 404000	VEHICULOS 493000 296300 530000 1210000 325000 121000 300000	ESTACIONES 557 1932 3500 1650 4000 2000 3000 1000
	PAIS S. Corea Japón Australia Italia USA Holanda Canadá México Ex Unión Soviética	CONSUMO [ton] 1759000 1670000 1358000 1316000 1286000 725000 465000 404000 343000	VEHICULOS 493000 296300 530000 1210000 270000 325000 121000 300000 80000	ESTACIONES 557 1932 3500 1650 4000 2000 3000 1000 320

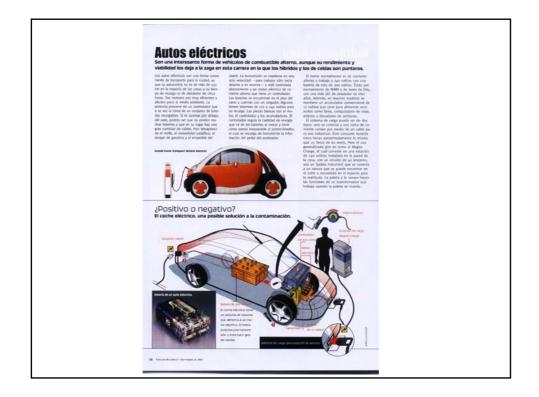

Emisiones

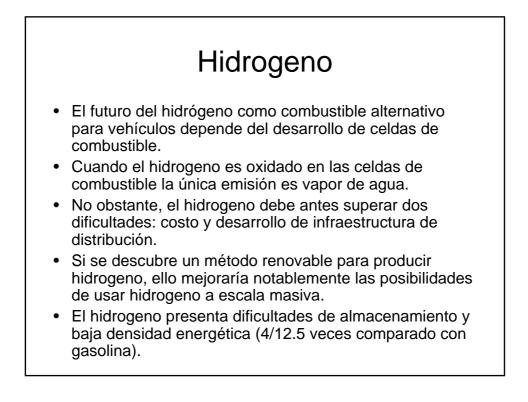

- El uso de biodiesel disminuye la fracción sólida de carbono del material particulado (el oxígeno presente en el biodiesel facilita una combustión más completa en CO₂) y reduce la fracción de sulfatos (biodiesel contiene menos de 15 ppmS), mientras que la fracción soluble asociada a compuestos orgánicos volátiles permanece igual o crece. Por este motivo, biodiesel se complementa bien con tecnologías de control de emisiones tales como catalíticos de oxidación, los cuales reducen la fracción soluble del material particulado pero no su fracción de carbón sólida.
- Las emisiones de óxidos de nitrógeno aumentan con la concentración de biodiesel en el combustible, llegando aproximadamente a 2% para B20. Algunos tipos de biodiesel producen más óxido de nitrógeno que otros, donde algunos aditivos han mostrado resultados promisorios para aminorar este problema. No obstante, es necesario dedicar más esfuerzos de I&D para resolver este tema.


Ventajas
Biodegradable. No altera el equipo de mantenimiento. No es necesario convertir ni cambiar motores. No requiere nueva infraestructura ni adiestramiento. Rendimiento similar al del diesel. No altera el torque. No altera el torque. No altera considerablemente el consumo. No altera el tiempo de recarga de combustible. Complementa las nuevas tecnologías diesel para reducción de contaminantes. Mejora la lubricación en el circuito y bomba de inyección.

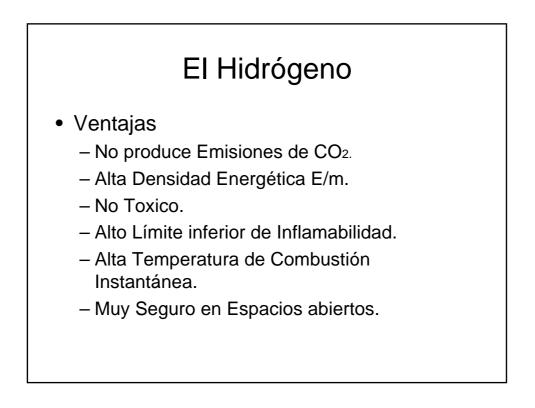
Ventajas


- El biodiesel puro tiene toxicidad acuática baja y es totalmente biodegradable en cerca de 30 días. Esta característica reduce substancialmente el impacto de derramamientos accidentales y lo hace ideal para el uso en áreas ambientalmente sensibles, incluyendo los canales. Cuando el biodiesel se mezcla con el combustible diesel regular, la biodegradación se acelera a cerca de tres veces el índice normal del combustible diesel.
- Una ventaja secundaria de la producción del biodiesel es que crea más empleo pues es tres a seis veces más trabajo intensivo por la unidad de producción que los combustibles fósiles.
- Europa, los Estados Unidos, Nueva Zelandia y Canadá han conducido extensas pruebas de biodiesel en autos, locomotoras, autobuses, tractores y barcos pequeños. La prueba ha incluido el uso de biodiesel puro y de varias mezclas con diesel convencional. Los resultados indican desgaste reducido del motor mientras que el funcionamiento sigue siendo virtualmente sin cambios. Muchas pruebas han concluido que los mejores resultados totales están obtenidos con una mezcla de 20 por ciento de biodiesel y de 80 por ciento de diesel convencional (B20).

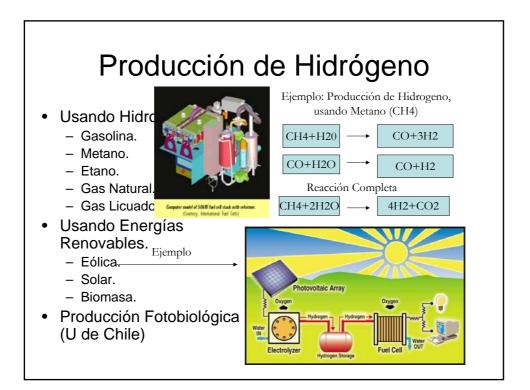


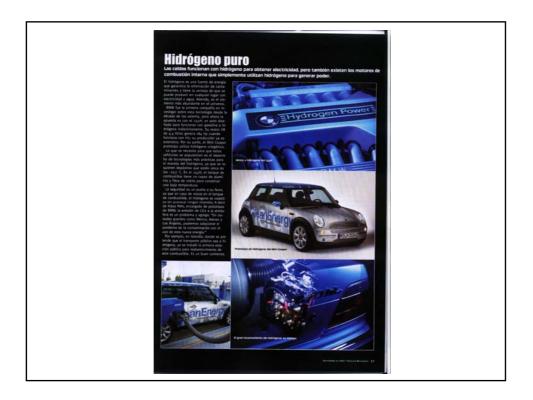






Tipo de celda	Temp. Op.	Pros Con
Polymer Electolyte Membrane (PEM)	80°C	 Bajo costo potencial, partidas rápidas Catalizadores caros (platino), sensibilidad a CO y otros venenos.
Alkaline (AFC)	100ºC	•Alto desempeño, catalizadores bajo costo •Alta sensibilidad al CO ₂
Phosphoric Acid (PAFC)	200°C	 Tolerancia a impurezas Catalizadores caros, baja densidad de potencia, partidas lentas
Molten Carbonate (MCFC)	600+°C	•Alta eficiencia, bajo costo catalizadores, reformación de gas natural en la celda
Solid Oxide (SOFC)	600+ºC	•Corrosión, durabilidad, partidas lentas


Celdas de combustible en automóviles



El Hidrógeno

- Desventajas
 - Baja Densidad Energética E/V.
 - Baja Temperatura de Licuefacción.
 - Baja Energía de Activación.
 - Extremadamente Volátil.
 - Menos Seguro en Espacios Confinados

Fuel Type	Advantages	Disadvantages
Vethanol	 Familiar liquid fuel Vehicle development relatively advanced Organic emissions (ozone precursors) will have lower reactivity than gasoline Lower emissions of toxic pollutants, except formaldehyde Engine efficiency should be greater Abundant natural gas feedstock Less flammable than gasoline Can be made from coal or wood (as can gasoline), though at higher cost Flexfuel "transition" vehicle available 	 Range as much as half less, or larger fuel tanks Would likely be imported from overseas Formaldehyde emissions a potential problem, especially at higher mileage; requires improved controls More toxic than gasoline M100 has nonvisible flame, explosive in enclosed tanks Costs likely somewhat higher than gasoline, especially during transition period Cold-starts a problem for M100 Greenhouse problem if made from coal (continued)

Fuel Type	Advantages	Disadvantages
Ethanol	Familiar liquid fuel	Much higher cost than gasoline
	 Organic emissions will have lower reactivity than gasoline emissions (but higher than 	 Food/fuel competition at high production levels Supply is limited, especially if
	 methanol) Lower emissions of toxic 	made from corn
	 Lower emissions of toxic pollutants 	 Range as much as one-third less, or larger fuel tanks
	 Engine efficiency should be greater 	Cold-starts a problem for E100
	 Produced from domestic sources 	
	 Flexfuel "transition" vehicle available 	
	 Lower CO with gasohol (10 percent ethanol blend) 	
	Enzyme-based production from wood being developed	
Natural Gas	 Though imported, likely North American source for moderate supply (1 mmbd or more gasoline displaced) 	 Dedicated vehicles have remaining development needs Retail fuel distribution system must be built
	 Excellent emission characteristics, except for potential of somewhat higher NO, emissions 	 Range quite limited; need large fuel tanks with added costs, reduced space (LNG range not as limited, comparable to
	Gas is abundant worldwide	methanol)
	Can be made from coal	 Dual-fuel "transition" vehicle has moderate performance, space penalities
		 Slower refueling
		 Greenhouse problems if made from coal
		(continued)

Fuel Type	Advantages	Disadvantages
Electric	Fuel is domestically produced and widely available Minimal vehicular emissions Fuel capacity available (for nighttime recharging) Big greenhouse advantage if powered by nuclear or solar Wide variety of feedstocks in regular commercial use	Range, power very limited Much battery development required Slow refueling Batteries are heavy, bulky, have high replacement costs Vehicle space conditioning difficult Potential battery disposal problem Emissions for power generation can be significant
Hydrogen	Excellent emission characteristics: minimal hydrocarbons Would be domestically produced Big greenhouse advantage if derived from photovoltaic energy Possible fuel-cell use	Range very limit. Range very limit. Range very limit. Let a state of the stateo
Reformulated Gasoline	No infrastructure change except refineries Probable small to moderate emission reduction Engine modifications not required	Emission benefits remain highly uncertain Costs uncertain, but will be significant No energy security or greenhouse advantage
	 May be available for use by entire fleet, not just new vehicles 	

BLE 4.2 Energy Density Comparison of Select A	Iternative Fuels
Energy Storage Medium (MJ/kg)	Energy Density*
Gasoline	48.24
Diesel	45.72
Methanol	22.68
Ethanol	29.52
Hydrogen (liquid)1	41.84
Hydrogen (gas)	2.34
LPG Propane	46.3
LPG Butane	45.6
Methane	5.44
Pb/Acid Battery	0.19
Regen. Fuel Cell (H ₂ /Cl ₂)**	0.44

ABLE 4.3 Comparison of Methanol, Ethanol, and Gasoline						
and the second se	Methanol	Ethanol	Gasoline			
Oxygen Content, wt%	50.0	34.8	0			
Boiling Point, K	338	351	308-483			
Lower Heating Value, Mj/kg	19.9	26.8	42-44			
Heat of Vaporization, Mj/kg	1.17	0.93	0.18			
Stoichiometric Air-Fuel Mass Ratio	16.45:1	9.0:1	14.6:1			
Specific Energy, Mj/kg per Air-Fuel Ratio	3.08	3.00	2.92			
	109	109	90-100			