

Química Orgánica II Unidad 3: Compuestos nitrogenados

Susan Lühr

Fundamentos en Química Orgánica

Qca. Orgánica 1
NOMENCLATURA
(nombres)

Qca. Orgánica 1 **CONTRUCCIÓN** (enlaces, ángulos)

Qca. Orgánica 1 **ARQUITECTURA** 3D

(estereoquímica)

Qca. Orgánica 1
CARACTERÍSTICAS
(pKa, resonancia,...)

Qca. Orgánica 1/2
COMPORTAMIENTO

(reactividad: alcanos, alguenos, etc)

COMPUESTOS ORGÁNICOS

Unidad 1 **REACTIVIDAD**(Cetonas y aldehídos)

Unidad 2 **REACTIVIDAD**(Ác. carboxílicos)

Unidad 3
REACTIVIDAD
(Nitrogenados)

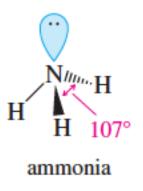
Unidad 4 **RECONOCIMIENTO- CARACTERIZACIÓN**(MS, IR, RMN ¹H, ¹³C)

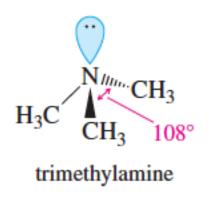
Unidad 5

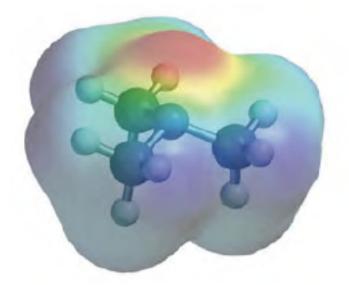
MACROMOLÉCULAS

(Polímeros)

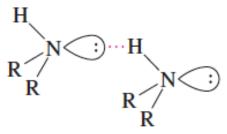
Unidad 6

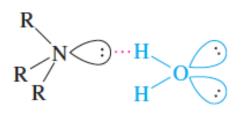

MACROMOLÉCULAS


(Biomoléculas)



Estructuras de las aminas




electrostatic potential map for trimethylamine

Propiedades físicas

1° or 2° amine: hydrogen bond donor and acceptor hydrogen bond acceptor only

3° amine:

T	A	E	31		[<u>ן נ</u>	}-	1	How Hydrogen Bonding Affects Boiling Poin	ts
---	---	---	----	--	---	------------	----	---	---	----

Compound	bp (°C)	Туре	Molecular Weight	
(CH ₃) ₃ N∶	3	tertiary amine	59	
CH ₃ -O-CH ₂ -CH ₃	8	ether	60	
CH ₃ -NH-CH ₂ -CH ₃	37	secondary amine	59	
CH ₃ CH ₂ CH ₂ —NH ₂	48	primary amine	59	
CH ₃ CH ₂ CH ₂ —OH	97	alcohol	60	

Aminas naturales y sintéticas

- NHCH₃

 CF₃
- Sistemas biológicos: neurotransmisores/ aminoácidos
- Fármacos/ drogas: Fluoxetina / MDMA

a hormone secreted in response to stress (Chapter 7, introductory molecule)

methamphetamine an addictive stimulant sold as speed, meth, or crystal meth

a neurotransmitter that increases heart rate and dilates air passages

mescaline

a hallucinogen isolated from peyote, a cactus native to the southwestern United States and Mexico

Aminas naturales y sintéticas

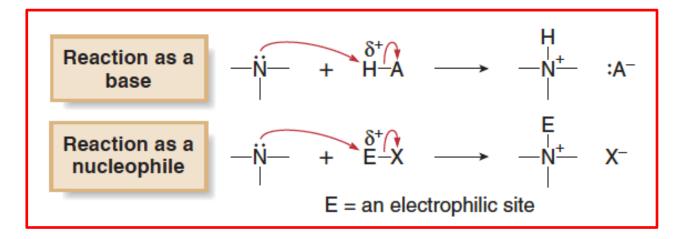

- Sistemas biológicos: neurotransmisores/ aminoácidos
- Fármacos/ drogas: Fluoxetina / MDMA
- Alacaloides: (Figura)

FIGURE 19-2

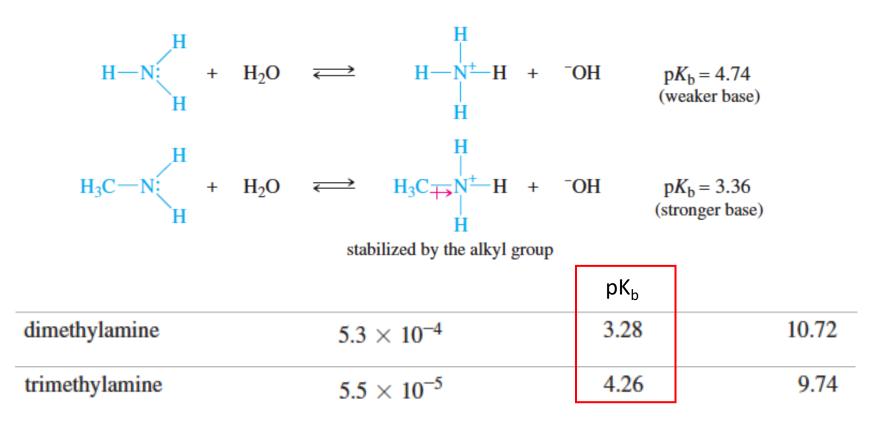
Some representative alkaloids.

Aminas como bases

A Brønsted-Lowry acid-base reaction

$$R-NH_2 + H-A \longrightarrow R-NH_3 + :A^-$$

base acid conjugate acid
 $\uparrow pK_a \approx 10-11$


To favor the products, the pK_a of HA must be < 10.

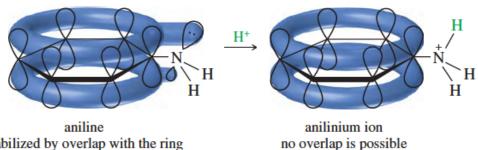
Examples
$$CH_{3}CH_{2}-\dot{N}H_{2} + H-\dot{C}I \longleftrightarrow CH_{3}CH_{2}-\dot{N}H_{3} + CI- pK_{a} = 10.8$$
 $CH_{3}CH_{2}-\dot{N}H_{3} + CI- pK_{a} = 10.8$
 $CH_{3}CH_{2})_{3}\dot{N}$
 $CH_{3}CH_{2})_{3}\dot{N}H + OCC$
 $CH_{3}CH_{2}$
 $CH_{3}CH_{2$

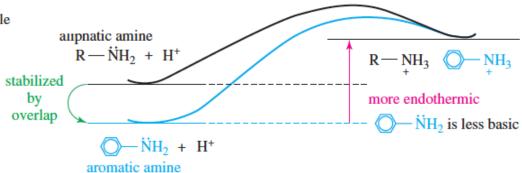
Factores que influyen en la basicidad: sustitución

Aminas 1°, 2° y 3° son más básicas que NH₃

Efectos estéricos y estabilización de productos influyen en la basicidad de aminas sustituidas

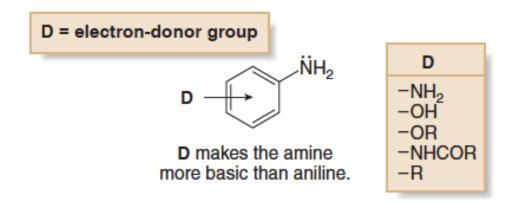
Qué tan disponibles están los pares de electrones no enlazados?

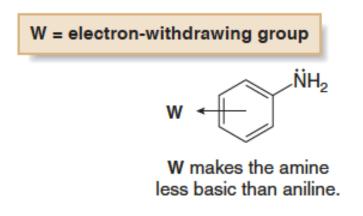


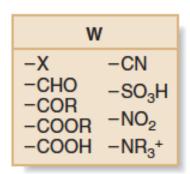


The electron pair is localized on the N atom.

The electron pair is delocalized on the benzene ring.

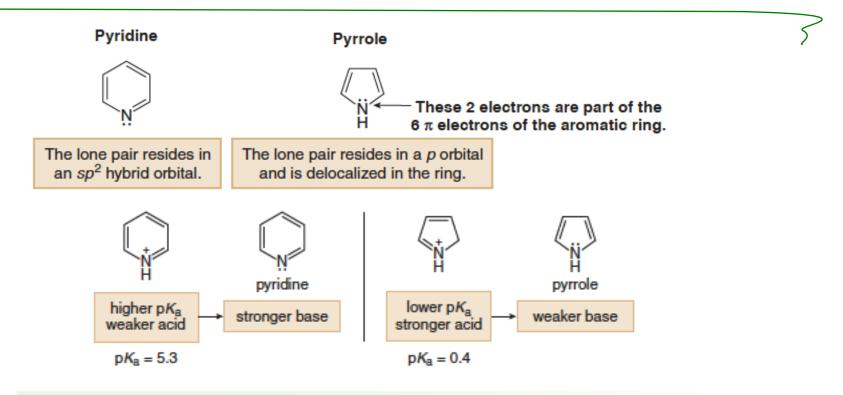

stabilized by overlap with the ring





Grupos electro-donores aumentan la basicidad de los derivados de anilina

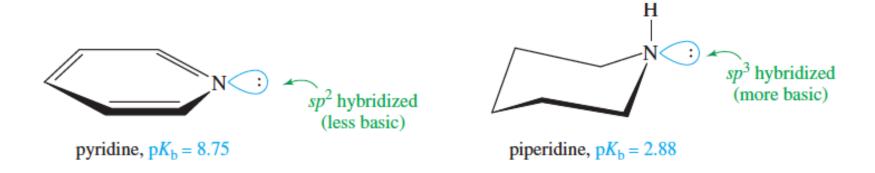
Grupos electro-atractores disminuyen la basicidad de los derivados de anilina

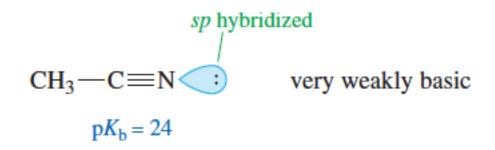


Ejercicio: orden creciente de basicidad

 Pyrrole is much less basic than pyridine because its lone pair of electrons is part of the aromatic π system.

$$N-H + H_2O \stackrel{K_b}{\longleftrightarrow} N_+ + OH$$


pyrrole $K_b = 10^{-15}$ protonated (not aromatic)

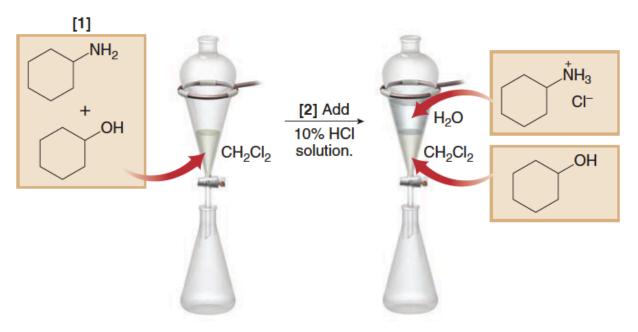


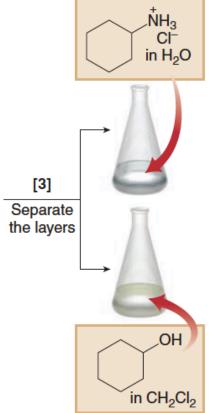
Factores que influyen en la basicidad: hibridación

A mayor carácter S menos básica es la amina

Formación de sales

pyridinium acetate

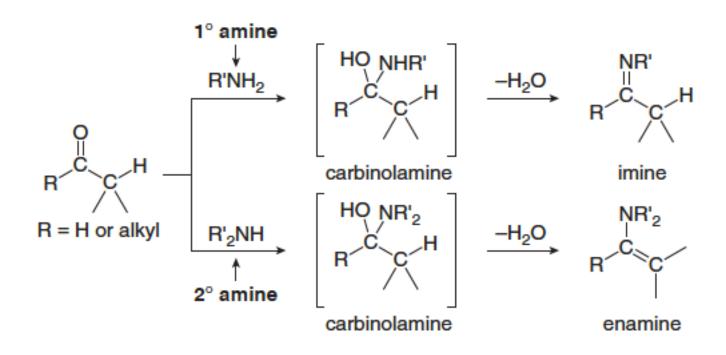

Extracción - separación



Step [1] Dissolve cyclohexylamine and cyclohexanol in CH₂Cl₂.

Step [2] Add 10% HCl solution to form two layers.

Step [3] Separate the layers.



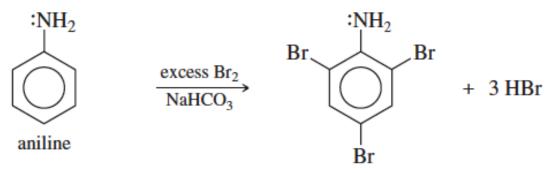
Reactividad: amina con aldehídos y cetonas

Reactividad: 1- enaminas

Reactividad: aminas con cloruros de ácido o anhídridos

ejercicios

[1] CH₃CH₂CH₂NH₂; [2] (CH₃CH₂)₂NH.


Sustitución electrofílica arómatica de arilaminas

- Promueve ataque en posición orto o para estabilizando complejo sigma.
- Son directores orto y para.
- Al reaccionar con reactivos muy ácidos pueden protonar el grupo amino, el cual es un desactivador fuerte.

Sustitución electrofílica arómatica de arilaminas

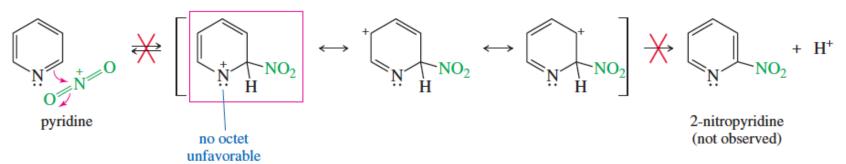
2,4,6-tribromoaniline

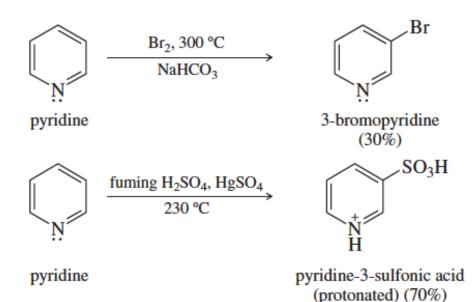
$$NH_2$$
 NO_2
 $excess Cl_2$
 $NaHCO_3$
 O -nitroaniline
 NH_2
 NO_2
 Cl
 NO_2
 Cl
 NO_2
 Cl
 NO_2

4,6-dichloro-2-nitroaniline

Sustitución electrofílica arómatica de piridina

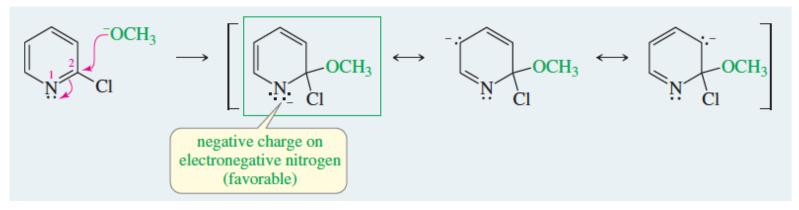
Mecanismo





Sustitución electrofílica arómatica de piridina

Attack at the 2-position (or 4-position) is not observed.



Sustitución nucleofílica arómatica de piridina

Mecanismo

$$\boxed{ \begin{bmatrix} \ddot{N} & \ddot{C} \\ \ddot{N} & C \end{bmatrix} } \longrightarrow \boxed{ \begin{bmatrix} \ddot{N} & C \\ \ddot{N} & C \end{bmatrix} }$$

Nucleophilic attack at the 3-position (not observed)

(no delocalization of negative charge onto N)

Alquilación de aminas por halogenuros de alquilo (R-X)

$$R - NH_2 + R' - CH_2 - Br \rightarrow R - NH_2 - CH_2 - R' - Br$$
 Vía SN2 (R-X 1° primary amine primary halide salt of a secondary amine

15-01-25 UChile-Lühr 26

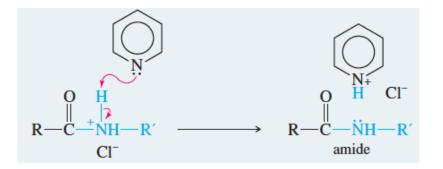
Alquilación de aminas por halogenuros de alquilo (R-X)

Alquilación exhaustiva

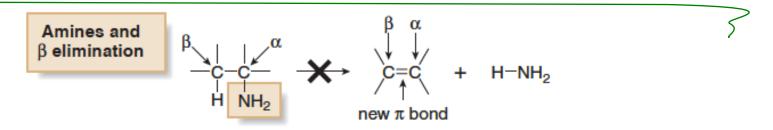
$$CH_3CH_2CH_2 - NH_2 + 3 CH_3 - I \xrightarrow{NaHCO_3} CH_3CH_2CH_2 - N(CH_3)_3 ^- I$$
(90%)

Exceso amoniaco

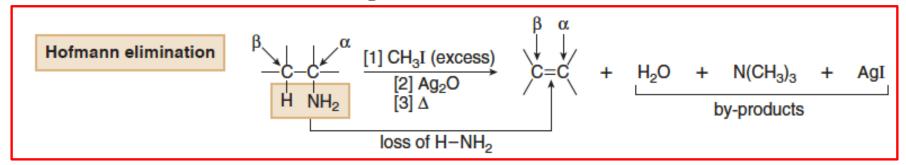
$$\ddot{N}H_3 + R - CH_2 - X \longrightarrow R - CH_2 - \ddot{N}H_3 X$$
10 moles 1 mole


Acilación de aminas por cloruros de ácido

$$R'$$
— $\ddot{N}H_2$ + R — C — Cl $\xrightarrow{pyridine}$ R — C — $\ddot{N}H$ — R' + M — M Cl


mecanismo

$$\begin{array}{c} O \\ R-C-Cl + R'-NH_2 & \longleftrightarrow R-C-Cl \\ \text{acid chloride} & \text{amine} & \text{*}NH_2-R' \\ & \text{tetrahedral intermediate} \end{array}$$


$$R \xrightarrow{O_{-}} CI \longrightarrow \\ ^{+}NH_{2} \xrightarrow{R'}$$
 tetrahedral intermediate

Problem: TNH₂ is a poor leaving group.

3

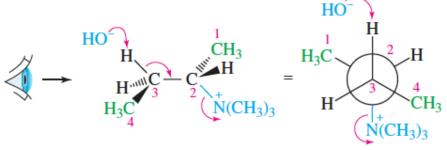
The steps in the Hofmann elimination

S_N2

Cambio de anión

E2 base fuerte Nuevo enlace pi

mecanismo


Exhaustive methylation and conversion to the hydroxide salt

$$\begin{array}{c} \overset{1}{\text{CH}_3} \overset{2}{-\text{CH}} \overset{3}{-\text{CH}} \overset{4}{-\text{CH}_2} \overset{(1) \text{ excess CH}_3\text{I}}{(2) \text{ Ag}_2\text{O}, \text{ H}_2\text{O}} \\ \vdots \text{ NH}_2 \\ \text{butan-2-amine} \end{array} \quad \begin{array}{c} \overset{1}{\text{CH}_3} \overset{2}{-\text{CH}} \overset{3}{-\text{CH}} \overset{4}{-\text{CH}_2} \overset{4}{-\text{CH}_3} \\ \overset{1}{-\text{CH}_3} \overset{2}{-\text{CH}_3} \overset{3}{-\text{OH}} \\ \text{quaternary ammonium hydroxide} \end{array}$$

Heating and Hofmann elimination

Looking along the C2—C3 bond

needed for E2 (less stable)

The most stable C2—C3 conformation

$$H_3C$$
 H_3C
 H_3C

more stable (E2 is impossible in this conformation)

Looking along the C1—C2 bond

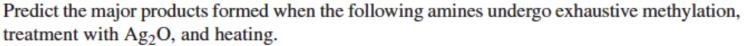
- Volumen grupo saliente (arreglo-coplanar)
- Estado de transición estable o más probable

Dibuje el producto al tratar los siguientes compuestos con :

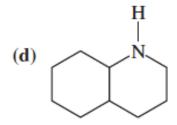
1) CH_3I en exceso, 2) Ag_2O , 3) calor (Δ)

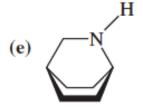
- a. $CH_3CH_2CH_2-NH_2$ b. $(CH_3)_2CHNH_2$

Predict the major product(s) formed when the following amine is treated with excess iodomethane, followed by heating with silver oxide.

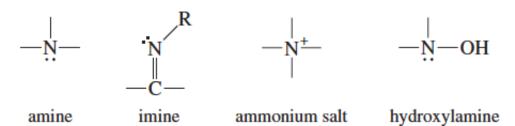


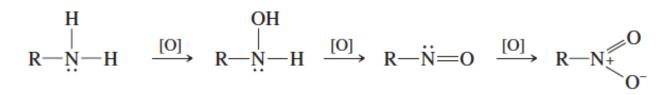
Predict the major product(s) formed when the following amine is treated with excess iodomethane, followed by heating with silver oxide.


$$\xrightarrow{\text{excess CH}_{3}\text{I}} \xrightarrow{\text{Ag}_{2}\text{O}} \xrightarrow{\text{heat}} \xrightarrow{\text{CH}_{3}} \xrightarrow{\text{N}^{+}} \xrightarrow{\text{CH}_{3}} \xrightarrow{\text{N}^{+}} \xrightarrow{\text{CH}_{3}} \xrightarrow{\text{N}^{+}} \xrightarrow{\text{CH}_{3}} \xrightarrow{\text{N}^{+}} \xrightarrow{\text{CH}_{3}} \xrightarrow{\text{N}^{+}} \xrightarrow{\text{CH}_{3}} \xrightarrow{\text{N}^{+}} \xrightarrow{\text{CH}_{3}} \xrightarrow{\text{CH}_{3}} \xrightarrow{\text{N}^{+}} \xrightarrow{\text{CH}_{3}} \xrightarrow{\text{CH}_{3}} \xrightarrow{\text{H}} \xrightarrow{\text{CH}_{3}} \xrightarrow{\text{CH}_{3}$$



- (a) hexan-2-amine
- (b) 2-methylpiperidine
- (c) N-ethylpiperidine




Oxidación de aminas

Oxidación de aminas - Eliminación de Cope reactivo

1° amine hydroxylamine nitroso

nitro

2° amine

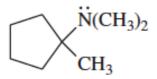
a 2° hydroxylamine

17-01-25 UChile-Lühr 38

Eliminación de Cope

Mecanismo

$$R - C - C - R' \longrightarrow \begin{bmatrix} & & & & \\ & H & N(CH_3)_2 \\ & H & H \end{bmatrix} \xrightarrow{R} C = C - R' \\ & H & H \end{bmatrix}$$
[transition state]


Eliminación sin (estereoquímica)

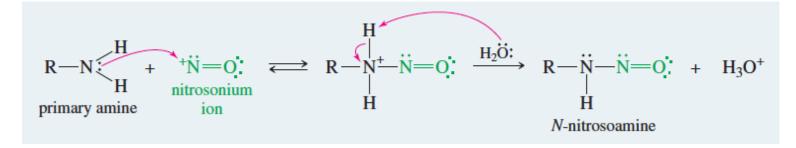
$$H_3C$$
 H_3C
 H_3C

Eliminación de Cope

Predict the products expected when the following compound is treated with H_2O_2 and heated.

Reacciones con ácido nitroso

$$Na^{+}$$
 $\stackrel{:}{:}$ $\stackrel{.}{\circ}$ $\stackrel{.}{-}$ $\stackrel{.}{N}$ $\stackrel{=}{=}$ O + $H^{+}Cl^{-}$ $\stackrel{.}{\longleftrightarrow}$ $H \stackrel{.}{-}$ $\stackrel{.}{\circ}$ $\stackrel{.$


Electrófilo fuerte

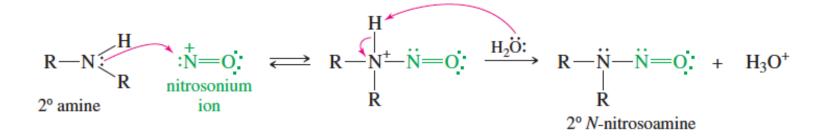
$$R - \dot{N}H_2 + NaNO_2 + 2 HCl \longrightarrow R - \dot{N} = N Cl^- + 2 H_2O + NaCl$$
 primary amine sodium nitrite diazonium salt

Formación de sales de diazonio

Mecanismo: aminas primarias

$$\begin{array}{c} H \\ R-\overset{\overset{}}{N}-\overset{\overset{}}{N}=\overset{\overset{}}{O}:+H_3O^+ \\ & \longrightarrow \\ \textit{N-nitrosoamine} \end{array} \longmapsto \begin{bmatrix} H \\ R-\overset{\overset{}}{N}-\overset{\overset{}}{O}:-H \\ & \longrightarrow \\ \textit{protonated N-nitrosoamine} \end{bmatrix} + H_2\overset{\overset{}}{O}: \\ & \longrightarrow \\ R-\overset{\overset{}}{N}=\overset{\overset{}}{N}-\overset{\overset{}}{O}H + H_3O^+ \\ & \text{second N-N bond formed} \end{array}$$

$$R - \ddot{N} = \ddot{N} - \ddot{O}H \xrightarrow{H_3O^+} R - \ddot{N} = \ddot{N} - \ddot{O}H_2 \longrightarrow R - \ddot{N} = N: + H_2\ddot{O}:$$
diazonium ion

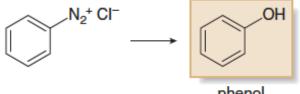

 $R - \stackrel{+}{N} \equiv N$: \longrightarrow $R^+ + :N \equiv N$: alkanediazonium cation carbocation nitrogen

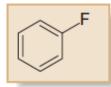
Alquilaminas inestables Arilaminas estables

Formación de N-nitrosoamina

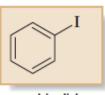
Mecanismo: aminas secundarias

Draw the product formed when each compound is treated with $NaNO_2$ and HCI.

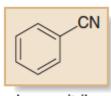

b.
$$CH_3CH_2-N-CH_3$$


$$N_2^+ Cl^ Z$$
 $+ N_2 + Cl^-$

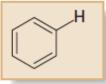
With H₂O: With CuX: With HBF₄:


phenol

aryl chloride or aryl bromide X = CI or Br


aryl fluoride

With NaI or KI:


aryl iodide

With CuCN:

benzonitrile

With H₃PO₂:

benzene

Síntesis de fenoles

$$Ar \longrightarrow \stackrel{\uparrow}{N} = N$$
 $Cl^- \xrightarrow{H_2SO_4, \text{ heat} \atop H_2O}$ $Ar \longrightarrow OH + N_2 \uparrow + H^+$
 $N_2^+ Cl^- \xrightarrow{H_2O}$ OH

phenol

No requiere:

- Sustituyentes atractores (como en las Rxs de SNAr)
- Bases o Nu fuertes

$$\begin{array}{c|c} : NH_2 & OH \\ \hline \\ C-CH_3 & \hline \\ (2) \ H_2SO_4, \ H_2O, \ heat \\ O & O \\ \end{array}$$

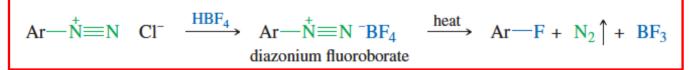
Síntesis de halogenuros de arilo

Reacción de Sandmeyer

$$Ar - \stackrel{+}{N} \equiv N \quad Cl^- \quad \xrightarrow{CuX} \quad Ar - X + N_2 \uparrow$$

$$: NH_2 \longrightarrow CH_3 \longrightarrow CH_3$$

$$(1) \text{ NaNO}_2, \text{ HCl} \longrightarrow (2) \text{ CuCl} \longrightarrow (75\%)$$


$$: NH_2 \longrightarrow CH_3 \longrightarrow (1) \text{ NaNO}_2, \text{ HCl} \longrightarrow (90\%)$$

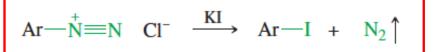
$$(90\%)$$

Halogenación directa

Síntesis de fluoruro de arilo

Ácido fluoroborato (HBF4)

$$N_2^+Cl^-$$


HBF₄

aryl fluoride

$$\begin{array}{c|cccc}
Example & N \\
 & N^{+} & BF_{4} & F \\
\hline
 & & & & & \\
\hline
 &$$

Síntesis de yoduro de arilo

Mejor alternativa que utilizar I₂ y ácidos de Lewis (Yodinación)

Example

$$\begin{array}{c}
:NH_2 \\
\hline
(1) NaNO_2, HCl \\
\hline
(2) KI
\end{array}$$
(75%)

Sustitución del grupo diazonio por hidrógenos: desaminación de anilinas

$$Ar - \stackrel{+}{N} \equiv N \quad Cl^- \quad \xrightarrow{H_3PO_2} \quad Ar - H \quad + \quad N_2 \uparrow$$

Ácido hipofosforoso (H3PO2)

Patrones de sustitución / reduce funcionalización del anillo de benceno

Example

:NH₂
:NH₂
COOH
$$CH_3CH_2$$

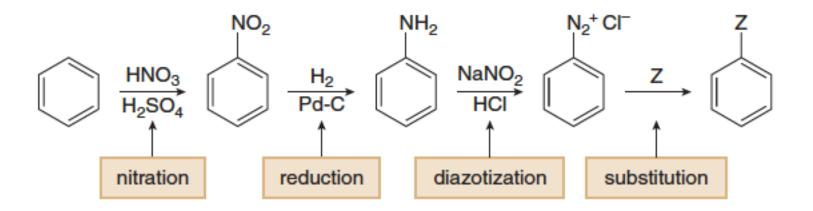
$$COOH$$

$$CH_3CH_2$$

$$COOH$$

$$CH_3CH_2$$

$$COOH$$


$$CH_3CH_2$$

$$(70\%)$$

Sales de diazonio en síntesis orgánica

$$\bigcirc$$
CI \Longrightarrow \bigcirc

solución

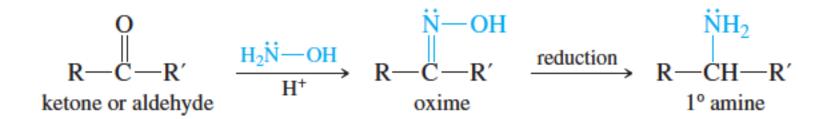
5

OH y Cl son directores o y p, pero se encuentran en m. El OH debe ser formado por medio de una sal de diazonio

Show how you would convert toluene to 3,5-dibromotoluene in good yield.

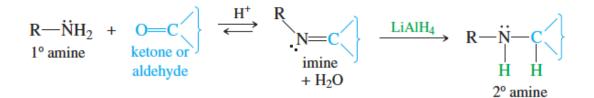
Sales de arildiazonio – Rx de acoplamiento

Mecanismo Acoplamiento diazoico


Electrófilo débil Anillo activado

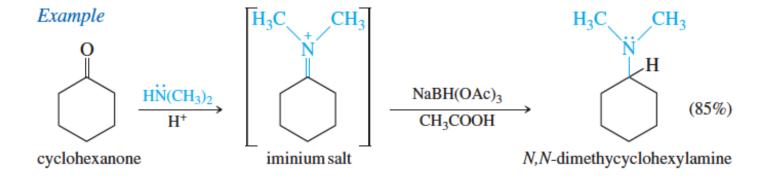
(+ three additional resonance structures) resonance-stabilized carbocation

methyl orange (an indicator)


Síntesis de aminas vía aminación reductiva

Examples

Síntesis de aminas vía aminación reductiva



Example

Síntesis de aminas vía aminación reductiva

Show how to synthesize the following amines from the indicated starting materials.

(a) N-cyclopentylaniline from aniline (b) N-ethylpyrrolidine from pyrrolidine

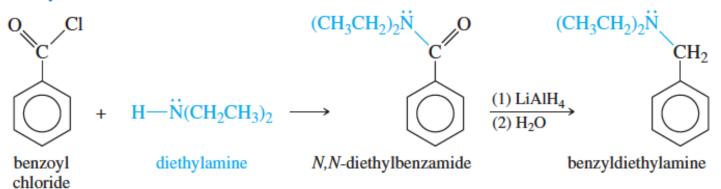
Síntesis de aminas vía acilación - reducción

Primary amines

Example

Síntesis de aminas vía acilación - reducción

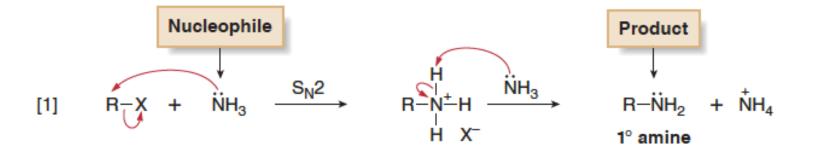
Secondary amines


$$\begin{array}{c} O \\ \parallel \\ R-C-Cl \\ \text{acid chloride} \end{array} + \begin{array}{c} R'-\ddot{N}H_2 \\ \text{primary amine} \end{array} \longrightarrow \begin{array}{c} R-C-\ddot{N}H-R' \\ N\text{-substituted} \end{array} \xrightarrow{(1) \text{LiAlH}_4} \begin{array}{c} R-CH_2-\ddot{N}H-R' \\ 2^0 \text{ amine} \end{array}$$

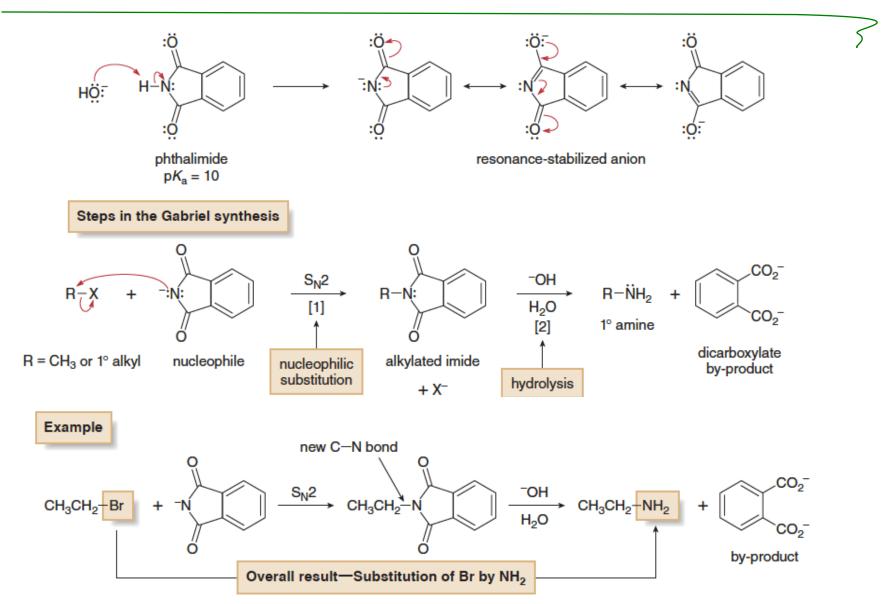
Síntesis de aminas vía acilación - reducción

Tertiary amines

Example



Síntesis de aminas primarias – alquilación directa


$$R-CH_2-X + excess NH_3 \longrightarrow R-CH_2-NH_2 + NH_4^+ X^-$$

Example

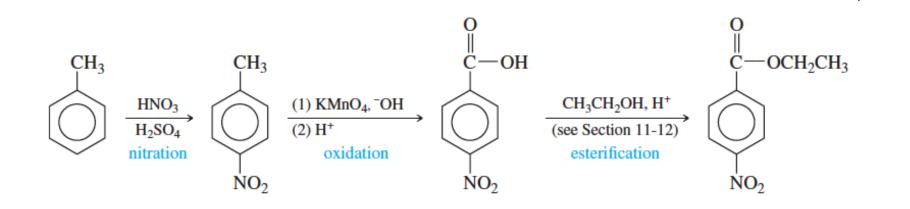
Síntesis de aminas primarias – Síntesis de Gabriel (1887)

Ejercicios

What alkyl halide is needed to prepare each 1° amine by a Gabriel synthesis?

Which amines cannot be prepared by a Gabriel synthesis? Explain your choices.

Síntesis de aminas primarias – reducción de otros grupos funcionales

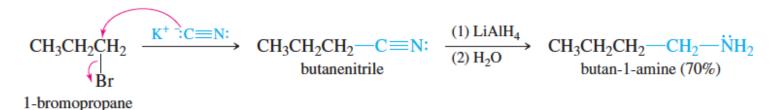

Nitro groups are reduced to 1° amines using a variety of reducing agents.

Examples

$$Ar-H \xrightarrow{HNO_3, H_2SO_4} Ar-NO_2 \xrightarrow{reduction} Ar-NH_2$$

Síntesis de aminas primarias – reducción de otros grupos funcionales

Síntesis de aminas primarias – reducción de otros grupos funcionales

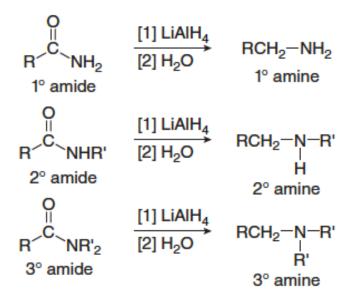


Nitriles are reduced to 1° amines with LiAlH₄.

$$R-C\equiv N \qquad \frac{[1] \text{ LiAlH}_4}{[2] \text{ H}_2\text{O}} \qquad R-C\text{H}_2\text{NH}_2$$
1° amine

Example
$$CH_3$$
-Br $NaCN$ S_N2 CH_3 - $C\equiv N$ $(1) LiAlH_4$ CH_3 - CH_2 NH₂ $(2) H_2$ O (1) amine (1) (2) (2) (2) (3) (2) (3) (4)

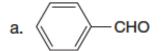
Example



Síntesis de aminas – reducción de otros grupos funcionales

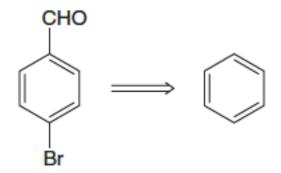
70

Primary (1°), 2°, and 3° amides are reduced to 1°, 2°, and 3° amines, respectively, by using LiAlH₄.


Síntesis de aminas – reducción de otros grupos funcionales

Examples

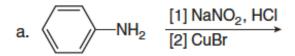
Draw the product of each reaction.



b.

.
$$O = O \xrightarrow{(CH_3CH_2)_2NH} NaBH_3CN$$

d.
$$+$$
 \rightarrow NH₂ $\frac{\text{NaBH}_3\text{CN}}{}$



Cuáles son los materiales de partida para sintetizar el siguiente indicador?

Dibuje los productos cuando cada uno reacciona con C₆H₅N₂+Cl⁻

74

C.
$$CH_3O$$
 NH_2
 $[1] NaNO_2, HCI$
 $[2] HBF_4$

b.
$$NH_2 \xrightarrow{[1] \text{NaNO}_2, \text{HCI}}$$
 O_2N

b.

d.
$$N_2^+ Cl^-$$
 [1] CuCN [2] LiAlH₄ [3] H₂O

A partir de benceno