

Universidad de Chile

DEPARTAMENTO DE MATEMÁTICAS

Docentes: Benjamín Moraga y Anita Rojas

Ayudante: Camila Guajardo Vásquez

Álgebra y Geometría II

Ayudantía 12 (21 de enero de 2025)

Ecuación del plano

1. Considere los siguientes puntos en \mathbb{R}^3

$$P = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}, \quad Q = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \quad R = \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix}.$$

- a) Verifique que P, Q y R no son colineales.
- b) Determine las ecuaciones paramétricas del plano Π que contenga a los tres puntos.
- c) De la ecuación implícita del plano Π que encontró en el ítem anterior.
- **2.** Considere el plano Π_2 : x 2y + z = 2 y el punto $P = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$.
 - a) Verifique que Π_2 no contiene al punto P.
 - b) Encuentre la ecuación de a recta L_1 que es perpendicular a Π_2 y pasa por P.
 - c) Determine la intersección del plano Π_2 con la recta L_1 . Este punto se denotará por P_2 .
 - d) De la ecuación vectorial de la recta L_2 que pasa por P_2 y $P_3 = \left(\frac{4}{3}, \frac{7}{3}, \frac{7}{3}\right)^t$.
 - e) Determine la intersección entre las rectas L_1 y L_2 .
- 3. Considere el plano $\Pi: Ax + By + Cz = 0$ en \mathbb{R}^3 . Determine los vectores directores de Π en términos de A, B y C. ¿En qué casos Π de hecho es una recta?