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Beautiful theories have emerged from mixing different ar-
eas of mathematics, when building bridges between areas
provides the right paths to achieve the comprehension of
a certain subject. Mathematicians know that if an object
has several underlying structures, then the answer to some
question considering one aspect of the object may come
from another aspect of itself. A remarkable example of this
is Descartes’s use of coordinates; thismilestonewas the key
to translate questions from geometry to algebra. But there
are many other examples: Galois theory, algebraic geome-
try, mathematical physics, and the list goes on and on.

In these notes we will discuss how the knowledge about
group algebras and representation theory has proved fruit-
ful in understanding fundamental questions about com-
plex abelian varieties, compact Riemann surfaces, and
their moduli spaces.

Let us begin by roughly introducing these objects.
Abelian varieties and compact Riemann surfaces are com-
plex manifolds; that is, (connected, Hausdorff) topological
spaces that locally look like open subsets of ℂ𝑛 for some
𝑛—plus a technical condition better explained in Figure
1—and that also share the property of being varieties.

The word variety here is used to refer to a geometric ob-
ject that can be described as the set of common zeros of
polynomial equations in some appropriate space. Since
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Figure 1. 𝑋 has an open covering {𝑈 𝑗}𝑗∈𝐼 and
homeomorphisms {𝜑𝑗 ∶ 𝑈 𝑗 → 𝑉 𝑗 ⊂ ℂ𝑛}𝑗∈𝐼 such that for 𝑖, 𝑗 ∈ 𝐼,
one has either 𝑈 𝑖 ∩ 𝑈 𝑗 = ∅, or 𝜑𝑖 and 𝜑𝑗 are required to satisfy
the condition displayed in this picture.

we are considering compact Riemann surfaces and com-
plex abelian varieties, the natural ambient space for them
is ℙ𝑛(ℂ), the (complex) projective 𝑛-space, where (complex)
lines in ℂ𝑛+1 ⧵ {(0, … , 0)} through the origin are collapsed
to points.

Formally, the complex projective 𝑛-space is defined as
the quotient of the complex space ℂ𝑛+1 ⧵ {(0, … , 0)} by
the equivalence relation where 𝑢 = (𝑢0, … , 𝑢𝑛) and 𝑣 =
(𝑣0, … , 𝑣𝑛) ∈ ℂ𝑛+1 ⧵ {(0, … , 0)} are related if and only if
there is a scalar 𝜆 ∈ ℂ∗ ≔ ℂ ⧵ {0} such that 𝑢 = 𝜆𝑣. The
usual notation is ℙ𝑛(ℂ) ≔ (ℂ𝑛+1 ⧵ {(0, … , 0)})/ℂ∗.
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Remark 0.1. The projective 𝑛-space ℙ𝑛(𝐹) can be defined
for any field 𝐹, using a similar equivalence relation. When
𝐹 is a finite field, an interesting exercise is to compute the
number of points in ℙ𝑛(𝐹) in terms of those in 𝐹.

For 𝑛 = 1, we talk about the complex projective line
ℙ1 = ℙ1(ℂ). It is a compact topological space of genus
zero. In fact, as (one-dimensional) complexmanifolds, ℙ1
is isomorphic to the Riemann sphere ℂ̂ ≔ ℂ∪∞, the com-
plex plane compactified by adding one point.

For 𝑛 = 2, we have the projective space ℙ2. Its points
are denoted as [𝑥0 ∶ 𝑥1 ∶ 𝑥2], and they correspond to the
lines {𝜆(𝑥0, 𝑥1, 𝑥2) ∶ 𝜆 ∈ ℂ∗}. The set of zeros of a homo-
geneous polynomial 𝐹(𝑥0, 𝑥1, 𝑥2) in three variables is well
defined; a plane projective algebraic curve is the set of ze-
ros in ℙ2 of a homogeneous polynomial. There is a rich
theory of algebraic curves, so here begins a new approach
to studying compact Riemann surfaces: Every compact Rie-
mann surface corresponds to a plane projective algebraic
curve, hence a variety, with a finite number of controlled
singularities. In fact, the result is stronger: every compact
Riemann surface can be represented as a smooth algebraic
curve defined in some projective space.

On the other hand, an abelian variety of dimension
𝑔 is a complex torus: the quotient of a complex vector
space of dimension 𝑔 by a discrete subgroup of maximal
rank, hence a compact manifold (of dimension 𝑔), and an
abelian group, that can be embedded in a projective space.

In what follows, we explain these concepts more rigor-
ously, define their parameters or moduli spaces, explain how
they are related, and illustrate current research and open
questions in this field.

1. Compact Riemann Surfaces
In this section we elaborate a bit more the given defi-
nition for complex 𝑛-dimensional manifolds in the one-
dimensional case; hence we consider Figure 1 with 𝑛 = 1.

Let 𝑆 be a connected, Hausdorff, topological space lo-
cally homeomorphic toℂ. A complex atlas on 𝑆 is a collec-
tion𝔖 = {(𝑈𝑗 , 𝜑𝑗 ∶ 𝑈𝑗 → 𝑉 𝑗 ⊂ ℂ)}𝑗∈𝐼 , where 𝑆 = ⋃𝑗∈𝐼 𝑈𝑗,
each 𝑈𝑗 is an open set in 𝑆 and each 𝜑𝑗 is a homeomor-
phism, and either𝑈 𝑖∩𝑈𝑗 = ∅ or the change of coordinates
𝜑𝑗 ∘ 𝜑−1𝑖 are holomorphic.

For every atlas 𝔖 there is a unique maximal atlas ℰ con-
taining it, called a complex structure on 𝑆.

Formally, a Riemann surface is a pair (𝑆, 𝔖), or, equiva-
lently, a pair (𝑆, ℰ). Usually the complex structure (or the
complex atlas) is omitted from the notation (if it is clear
from the context), and one just says that a Riemann surface
is a complex manifold of dimension one.

The Uniformization Theorem [FK92], a deep result in
this area, states that the only simply connected Riemann
surfaces (up to isomorphism) are the Riemann sphere ℂ̂,
the complex plane ℂ and the upper half-plane ℍ1 in ℂ

Figure 2. Topological construction of a compact Riemann
surface of genus 3.

(which is isomorphic, as Riemann surfaces, to the open
unit disc Δ in ℂ).

The Cauchy-Riemann relations for holomorphic func-
tions imply that the change of coordinates 𝜑𝑗 ∘ 𝜑−1𝑖 are 𝒞∞
(when considered as real functions in ℝ2), and their Ja-
cobian determinant is positive. Therefore, every Riemann
surface is an orientable real surface.

Throughout this work, we will consider compact Rie-
mann surfaces. Since Riemann surfaces are orientable dif-
ferentiable real surfaces, topologically a compact Riemann
surface of genus 𝑔 ≥ 1 is a connected sum of 𝑔 one-
dimensional complex tori, see Figure 2. Genus 𝑔 = 0 cor-
responds to the Riemann sphere, and its theory is slightly
different from what we want to expose here, so we leave
it out, and we will write about Riemann surfaces of genus
𝑔 ≥ 1. Genus 𝑔 = 1 is, again, a bit different from the rest;
for instance, since genus one Riemann surfaces are also
(abelian) groups, but this is not the case for higher genera.
Genus one Riemann surfaces. We will see that each Rie-
mann surface 𝑆 of genus 1 is an elliptic curve, a one-
dimensional complex torus and an abelian variety of di-
mension one. Since we are taking a complex variables ap-
proach to our exposition, we start with the first construc-
tion of genus one Riemann surfaces.

Definition 1.1. Let 𝑤1 and 𝑤2 be two ℝ-linearly inde-
pendent complex numbers, and consider the lattice 𝐿 =
{𝑛𝑤1 + 𝑚𝑤2 ∶ 𝑛,𝑚 ∈ ℤ} generated by {𝑤1, 𝑤2}. The quo-
tient 𝑇 = ℂ/𝐿 is the complex torus of lattice 𝐿 (see Figure
3).

Observe that the sum of complex numbers descends to
an operation on 𝑇 that makes it an abelian group; also
the notion of analytic function between two tori is well de-
fined (by considering the map in coordinates, see Figure
4). Thus the following definitions make sense: a homo-
morphism 𝑓 ∶ 𝑇1 → 𝑇2 between two tori is an analytic
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Figure 3. Complex torus of dimension one.

map which is also a group homomorphism. Two tori are
isomorphic if there is a bijective homomorphism between
them.

Sinceℂ is simply connected and 𝑓(0𝑇1) = 0𝑇2 , it follows
that a homomorphism 𝑓 ∶ 𝑇1 → 𝑇2 from 𝑇1 = ℂ/𝐿1 to
𝑇2 = ℂ/𝐿2 gives rise to two maps:

𝜌𝑎(𝑓) ∶ ℂ → ℂ and 𝜌𝑟(𝑓) ∶ 𝐿1 → 𝐿2, (1.1)

called the analytic and rational representation of 𝑓, respec-
tively; they are ℂ-linear and ℤ-linear maps respectively. If
𝑓 is an isomorphism, then 𝜌𝑎(𝑓) and 𝜌𝑟(𝑓) are invertible
maps.

Hence (modulo isomorphisms) it is enough to consider
lattices of the form 𝐿𝜏 = {𝑛 + 𝑚𝜏 ∶ 𝑛,𝑚 ∈ ℤ} with 𝜏 ∈ ℍ1
a complex number with positive imaginary part, and two
such tori 𝑇1 = ℂ/𝐿𝜏1 and 𝑇2 = ℂ/𝐿𝜏2 are isomorphic if and
only if

𝜏2 =
𝑎𝜏1 + 𝑏
𝑐𝜏1 + 𝑑 with (𝑎 𝑏

𝑐 𝑑) ∈ 𝑆𝐿(2, ℤ).

Since a torus 𝑇 = ℂ/𝐿𝜏 is compact, any holomorphic
function from 𝑇 to ℂ is constant; nevertheless, it has non-
constant meromorphic functions. In fact, its field of mero-
morphic functions is generated by two functions, the so-
called Weierstrass p-function ℘(𝑧), which depends on 𝐿𝜏,
and its derivative ℘′(𝑧). Both functions are related by a
cubic equation, giving a way of describing 𝑇 as a plane
algebraic curve, namely an elliptic curve. Therefore, every
Riemann surface of genus one is an elliptic curve, hence
an abelian variety: a complex torus that can be embedded
in a projective space.
Higher genus. As mentioned above, topologically a com-
pact Riemann surface of genus 𝑔 ≥ 2 is a connected sum
of 𝑔 one-dimensional complex tori, see Figure 2. The clas-
sical theory of uniformization of (arbitrary) Riemann sur-
faces, see for instance [FK92, §IV.5], allows us to under-
stand compact Riemann surfaces of genus 𝑔 ≥ 2 as (one-
dimensional) complex manifolds.

In fact, a compact Riemann surface of genus 𝑔 ≥ 2 is
the quotient of the complex upper-half plane ℍ1 by a dis-
crete torsion-free cocompact subgroup Γ of PSL2(ℝ). Here
cocompact means that the quotient ℍ1/Γ is compact. The
subgroup Γ is called a surface Fuchsian group.

Figure 4. A morphism 𝑓 ∶ 𝑆 → 𝑆′ in local charts.

Since we will study group actions on (compact) Rie-
mann surfaces and their quotients, we need to enlarge the
type of Fuchsian groups under consideration to groups in-
cluding torsion elements.

In general, the action of a cocompact Fuchsian group Δ
on ℍ1 (not necessarily torsion-free) is (partially) captured
by its signature 𝑠(Δ) = (ℎ;𝑚1, … ,𝑚𝑟), where ℎ denotes the
genus of ℍ1/Δ, 𝑚1, . . . , 𝑚𝑟 are the ramification indices in
the associated projection ℍ1 → ℍ1/Δ, and 𝑟 is the number
of branch points in ℍ1/Δ. Observe that the 𝑚𝑗 are the or-
ders of the (nontrivial) stabilizers of elements in Δ fixing
points in ℍ1. It is known that a Fuchsian group Δ of sig-
nature 𝑠(Δ) = (ℎ;𝑚1, … ,𝑚𝑟) has a canonical presentation of
the form

Δ = ⟨𝛼1, 𝛽1, … , 𝛼ℎ, 𝛽ℎ, 𝑥1, … , 𝑥𝑟 ∶ (1.2)

𝑥𝑚1
1 = ⋯ = 𝑥𝑚𝑟𝑟 =

ℎ
∏
𝑗=1

[𝛼𝑗 , 𝛽𝑗]
𝑟
∏
𝑖=1

𝑥𝑖 = 1⟩,

where [𝛼𝑗 , 𝛽𝑗] stands for their commutator. A 2ℎ + 𝑟 tuple
of generators ofΔ satisfying the presentation (1.2) is called
a tuple of canonical generators (with respect to 𝑠(Δ)).

We refer to the beautiful work [Oh22] for a clear dis-
cussion, with illuminating figures, about these kind of sur-
faces.
Isomorphisms between Riemann surfaces. A continu-
ous function 𝑓 ∶ 𝑆 → 𝑆′ between two Riemann sur-
faces is said to be holomorphic if for every chart (𝑈, 𝜑)
in 𝑆 and (𝑉, 𝜓) in 𝑆′ with 𝑈 ∩ 𝑓−1(𝑉) ≠ ∅ the map
𝜓 ∘ 𝑓 ∘ 𝜑−1∣𝜑(𝑈∩𝑓−1(𝑉)) is holomorphic (Fig. 4).
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A bijective holomorphic map is an isomorphism, and
if in addition 𝑆 = 𝑆′, we say that 𝑓 is an automorphism of
𝑆; the group of automorphisms of 𝑆 is denoted by Aut(𝑆).
We say that a (finite abstract) group 𝐻 acts on a Riemann
surface 𝑆 if there is a monomorphism 𝜇 ∶ 𝐻 → Aut(𝑆);
in this case we write 𝐻 ≤ Aut(𝑆). The action of a group
𝐻 as automorphisms of a compact Riemann surface 𝑆 is
(partially) grasped by the signature of the cover 𝑆 → 𝑆/𝐻,
as follows.

Definition 1.2. Let 𝑆 be a compact Riemann surface and
let 𝐻 ≤ Aut(𝑆).
𝐻 acts on 𝑆 with signature 𝑠(𝐻) = (ℎ;𝑚1, … ,𝑚𝑟) if the

quotient Riemann surface 𝑆/𝐻 has genus ℎ and the quo-
tient map 𝑆 → 𝑆/𝐻 ramifies over 𝑟 points with ramifica-
tion indices 𝑚1, . . . , 𝑚𝑟; that is, the stabilizer in 𝐻 of each
ramification point in the fiber of a branch point 𝑞𝑗 ∈ 𝑆/𝐻 is
of order 𝑚𝑗.

If Γ is a surface Fuchsian group such that 𝑆 ≅ ℍ1/Γ,
the condition on 𝐻 acting on 𝑆 with signature 𝑠(𝐻) =
(ℎ;𝑚1, … ,𝑚𝑟) is equivalent to the existence of a Fuchsian
group Δ together with a group epimorphism 𝜃 ∶ Δ → 𝐻
such that ker(𝜃) = Γ and 𝑠(𝐻) = 𝑠(Δ). In addition, 𝜃 is
called a surface-kernel epimorphism and the image under
𝜃 of a tuple of canonical generators (with respect to 𝑠(Δ))
of Δ is called a generating vector for 𝐻.

Note that the sequence 1 → Γ → Δ 𝜃→ 𝐻 → 1 is exact
and that 𝑆/𝐻 ≅ ℍ1/Δ.

A curve of genus 𝑔 is called hyperelliptic if the cyclic group
𝐂2 of order 2 acts on it with signature (0; 2, … , 2) (with 2𝑔+2
branch points).

Part of the geometry of the action of a group 𝐻 on 𝑆
is captured in the signature 𝑠(𝐻), a bit more in the corre-
sponding generating vector. There is a big community of
geometers studying group actions on compact Riemann
surfaces, classifying them up to equivalence, generating
computer algorithms to work with them, etc. See [LR22]
and the references given there, for more on group actions,
covers, examples, and applications.
From compact Riemann surfaces to algebraic curves. To
see that every compact Riemann surface 𝑆 of genus 𝑔 ≥ 2
is also a variety, take a divisor 𝐷 on 𝑆 (a formal sum of
points in 𝑆), and define 𝐿(𝐷) as the space of meromor-
phic functions 𝑓 on 𝑆 whose order at poles are not worse
than the corresponding coefficient in 𝐷. This vector space
is finitely generated, say 𝐿(𝐷) = ⟨𝑓1, 𝑓2, … , 𝑓𝑛⟩, so (when
nontrivial) it provides a map 𝜓𝐷 ∶ 𝑆 → ℙ𝑛−1 given by
𝑥 ∈ 𝑆 ↦ [𝑓1(𝑥) ∶ ⋯ ∶ 𝑓𝑛(𝑥)].

The Riemann-Roch theorem, a deep result that relates
the degree of 𝐷 (roughly its number of points), the dimen-
sion of 𝐿(𝐷), the canonical divisor and the genus of 𝑆, im-
plies that when the degree of 𝐷 is 2𝑔 + 1 then dim𝐿(𝐷) =
𝑔 + 2, and therefore 𝜓𝐷 is an immersion of 𝑆 into ℙ𝑔+1.

Then one still has to show that the image is a variety; this
may be done is various ways. One is to appeal to another
deep result, Chow’s theorem.

Therefore every compact Riemann surface 𝑆 of genus
𝑔 ≥ 2 is also a variety, an algebraic curve, but it is no longer
a group. Nevertheless, Abel and Jacobi instead constructed
a 𝑔-dimensional complex torus associated to 𝑆, its Jacobian
variety (see page 7). Next, we introduce the basics of com-
plex tori and abelian varieties in higher dimension.

2. Higher Dimension
Instead of staying in (complex) dimension one and going
from one-dimensional complex tori (that is, Riemann sur-
faces of genus one) to Riemann surfaces of higher genera,
another way to move forward conceptually is to increase
the dimension and stay in the world of complex tori, see
[Rod14] and the references given there.

Definition 2.1. A complex torus 𝑇 = 𝑉/𝐿 of dimension 𝑔
is the quotient of a 𝑔-dimensional complex vector space 𝑉
by a discrete subgroup of maximal rank 𝐿; that is, a lattice
𝐿 in 𝑉 . A complex torus which is also a projective variety
is called an abelian variety.

Analogously to what was done for one-dimensional
complex tori, where we defined elliptic curves as the quo-
tient of ℂ by a lattice, one can build larger-dimensional
tori 𝑇 = 𝑉/𝐿 in a very concrete way. Choose bases
{𝑒1, … , 𝑒𝑔} and {𝜆1, … , 𝜆2𝑔} of 𝑉 and 𝐿 respectively, and write

each 𝜆𝑗 in terms of the 𝑒𝑖; that is, 𝜆𝑗 = ∑𝑔
𝑖=1 𝜆𝑖𝑗𝑒𝑖. Then the

matrix Π = (𝜆𝑖𝑗) ∈ 𝑀(𝑔 × 2𝑔, ℂ) encodes the relation be-
tween the real and the complex coordinate functions of
its lattice and of its vector space respectively. It is called a
period matrix for 𝑇, and it captures geometric information
about 𝑇.

Since 𝐿 is a lattice, the rank of Π is 𝑔, hence we can nor-
malize to see that there are bases for 𝑉 and 𝐿 for which a
period matrix for 𝑇 is of the form Π = (𝐼𝑔 𝜏), with 𝐼𝑔 the
𝑔 × 𝑔 identity matrix and 𝜏 a complex 𝑔 × 𝑔 matrix with
nonsingular imaginary part. This generalizes the simplifi-
cation made for elliptic curves on page 3, where Π = (1 𝜏)
with 𝜏 ∈ ℍ1.

In order for a complex torus to be an abelian variety,
it needs to have enough meromorphic functions to be em-
bedded into a projective space. There are several characteri-
zations of when this happens; the following is the classical
one, in terms of polarizations.

Definition 2.2. A polarization on a torus 𝑇 = 𝑉/𝐿 is a
nondegenerate real skew-symmetric form 𝐸 on 𝑉 such that
𝐸(𝑖𝑢, 𝑖𝑣) = 𝐸(𝑢, 𝑣) for all 𝑢, 𝑣 ∈ 𝑉 , and 𝐸(𝐿×𝐿) ⊂ ℤ, where
𝑖 denotes a complex number with 𝑖2 = −1.

An abelian variety is a complex torus 𝑇 that admits a
polarization, and a polarized abelian variety 𝐴 = (𝑇, 𝐸) of

718 NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY VOLUME 71, NUMBER 6



dimension 𝑔 is a pair consisting of a complex torus 𝑇 =
𝑉/𝐿 and a polarization 𝐸 on 𝑇.

In terms of a period matrix for the torus 𝑇, the Riemann
relations give necessary and sufficient conditions for 𝑇 to
be an abelian variety [BL04, IV. §2].

Theorem 2.3 (Riemann Relations). Let 𝑇 be a complex torus
and Π a period matrix for it. Then 𝑇 is an abelian variety if
and only if there exists a nondegenerate skew-symmetric 2𝑔×2𝑔
integral matrix 𝐸 such that Π𝐸−1Π𝑡 = 0 and −𝑖Π𝐸−1Π

𝑡
is

positive definite, where 𝑡 represents the transposed matrix.

It is important to highlight that not every torus is an
abelian variety.

For a polarized abelian variety 𝐴 = (𝑇, 𝐸) of dimension
𝑔, with 𝑇 = 𝑉/𝐿, Frobenius algorithm [Lan82, VI. §3] gives
a way of finding a basis for 𝐿 with respect to which 𝐸 is
given by

𝐸 = ( 0 𝐷
−𝐷 0) ∈ 𝑀2𝑔(ℤ),

where 𝐷 = diag(𝑑1, … , 𝑑𝑔) with 𝑑𝑖 natural numbers such
that 𝑑𝑖|𝑑𝑖+1. Such a basis for 𝐿 is called symplectic, and the
tuple (𝑑1, … , 𝑑𝑔) is the type of the polarization 𝐸. If 𝑑𝑔 = 1, 𝐴
is called a principally polarized abelian variety, ppav for short.

If 𝐴 = 𝑉/𝐿 is an abelian variety, then it follows from
Theorem 2.3 that there is a basis for 𝑉 and a symplectic
basis for 𝐿 with respect to which a period matrix for 𝐴 has
the form Π = (𝐷 𝑍), where 𝐷 is the diagonal matrix re-
flecting the type of the polarization 𝐸, and 𝑍 is a matrix
in the Siegel upper space ℍ𝑔 = {𝑀 ∈ 𝑀𝑔(ℂ) ∶ 𝑀𝑡 =
𝑀 and Im(𝑀) positive definite}. The matrix 𝑍 is called a
Riemann matrix for 𝑇.

Example 1. Every compact Riemann surface of genus one
satisfies the Riemann relations. Let us take 𝑇 = ℂ/𝐿 with
𝐿 = ⟨1, 𝜏⟩ℤ, 𝜏 ∈ ℍ1. The real skew-symmetric form 𝐸(𝑎1 +
𝑏1𝜏, 𝑎2 + 𝑏2𝜏) = 𝑎1𝑏2 − 𝑎2𝑏1 satisfies the requirements in
Def. 2.2. Notice that we recover, in a different way as in
the previous section, the fact that every Riemann surface
of genus one is a variety.

To define homomorphisms between abelian varieties, first
consider their underlying complex tori structure. Hence
homomorphisms between them correspond to the natu-
ral generalization to what was defined for dimension one.
A homomorphism 𝑓 ∶ 𝑇1 → 𝑇2 between two complex tori
𝑇𝑗 = 𝑉 𝑗/𝐿𝑗 of dimensions 𝑔1 and 𝑔2 respectively, is an ana-
lytic map that is also a group homomorphism. If 𝑇 is any
torus, a homomorphism 𝑓 ∶ 𝑇 → 𝑇 is called an endomor-
phism of 𝑇, with End(𝑇) denoting the ring of endomor-
phisms of 𝑇.

As in the one-dimensional case, see (1.1), a homomor-
phism 𝑓 ∶ 𝑇1 → 𝑇2 gives rise to two representations
𝜌𝑎(𝑓) ∶ 𝑉1 → 𝑉2 and 𝜌𝑟(𝑓) ∶ 𝐿1 → 𝐿2. In terms of the pe-
riod matrices Π1 andΠ2 for 𝑇1 and 𝑇2 respectively, 𝜌𝑎(𝑓) is

given by a matrix𝑀 ∈ 𝑀(𝑔2 × 𝑔1, ℂ) and 𝜌𝑟(𝑓) by a matrix
𝑅 ∈ 𝑀(2𝑔2 × 2𝑔1, ℤ) satisfying the Hurwitz equation

𝑀Π1 = Π2 𝑅. (2.1)

Interesting homomorphisms, which play a role in the
problems we want to describe, are the isogenies. A homo-
morphism 𝑓 ∶ 𝑇1 → 𝑇2 is an isogeny if it is surjective
with finite kernel, or, equivalently, if it is surjective and
𝑔1 = 𝑔2. The exponent and the degree of the isogeny 𝑓
are the exponent and the order of its kernel, respectively.
The degree corresponds to | det 𝜌𝑟(𝑓)|. For every isogeny
𝑓 ∶ 𝑇1 → 𝑇2 of exponent 𝑒, there is a unique (up to
isomorphism) isogeny 𝑔 ∶ 𝑇2 → 𝑇1 such that 𝑓 ∘ 𝑔 and
𝑔 ∘ 𝑓 are multiplication by 𝑒 on 𝑇2 and 𝑇1 respectively.
Hence isogenies are the units of the endomorphism alge-
bra Endℚ(𝑇) = End(𝑇) ⊗ℤ ℚ. Therefore, they establish an
equivalence relation among complex tori. So, most classi-
fication theorems about complex tori and abelian varieties
are given up to isogeny.

In the following section, we go back to the last lines of
Section 1; how to associate to every Riemann surface of
genus 𝑔 ≥ 2 an abelian variety.
Jacobian varieties. Let 𝑆 be a compact Riemann surface
of genus 𝑔; consider the 𝑔-dimensional vector space 𝑉 =
𝐻1,0(𝑆, ℂ)∗: the dual of the space of holomorphic differen-
tial 1-forms, and the lattice 𝐿 = 𝐻1(𝑆, ℤ), where the injec-
tion of 𝐿 in 𝑉 is given by

𝐻1(𝑆, ℤ) → 𝐻1,0(𝑆, ℂ)∗

𝛼 ↦ (𝜔 ↦ ∫
𝛼
𝜔).

Then the complex torus 𝐽𝑆 = 𝐻1(𝑆, ℂ)∗/𝐻1(𝑆, ℤ) is an
abelian variety, since it admits a canonical principal po-
larization given by extending the geometric intersection
number in the lattice 𝐿. This ppav 𝐽𝑆 is called the Jaco-
bian variety associated to 𝑆. According to Torelli’s theorem,
two Jacobian varieties are isomorphic if and only if the
corresponding Riemann surfaces are. Therefore, there is
a bijective correspondence between Jacobian varieties and
Riemann surfaces.

Remark 2.4. By checking the Riemann relations (Thm.
2.3), one can verify whether a period matrix Π = (𝐷 𝑍) of
a complex torus T corresponds to an abelian variety. Un-
fortunately, there is no practical method to identify when
a matrix 𝑍 in ℍ𝑔 corresponds to a Riemann matrix of a
Jacobian variety. This is known as the Schottky problem.

Some interesting properties for abelian varieties.
Among the several properties of interest about abelian va-
rieties, we focus on one about its geometry (completely de-
composable) and another about its endomorphism algebra
(with complex multiplication).
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Let 𝑇 = 𝑉/𝐿 be a torus and 𝑊 ≤ 𝑉 be a subspace such
that𝑊 ∩𝐿 is a lattice in𝑊 ; then 𝑇𝑊 = 𝑊/(𝑊 ∩ 𝐿) defines
a subtorus of 𝑇. Images and (the connected component
containing 0) of kernels of homomorphisms between tori
are examples of subtori. A complex torus 𝑇 ≠ {0} is simple
if its only subtori are itself and {0}. Since any subtorus
𝐵 ⊂ 𝐴 of an abelian variety (𝐴, 𝐸) is an abelian variety by
restricting the polarization on 𝐴 to 𝐵, (𝐵, 𝐸|𝐵) is an abelian
subvariety of 𝐴; thus an abelian variety is called simple if
and only if its only abelian subvarieties are itself and the
trivial one.

Clearly, one-dimensional abelian varieties are simple.
Determining whether a given abelian variety is simple or
not is not easy. There are several approaches to studying
this property. For instance, see [ALR17] where a criterion
in terms of a period matrix is given, as well as examples of
simple abelian varieties and references to go deeper in this
subject.

The algebra Endℚ(𝑇) = End(𝑇) ⊗ℤ ℚ of a simple torus
𝑇 is a skew-field of finite dimension over ℚ, and any fi-
nite dimensional algebra is isomorphic to Endℚ(𝑇) for
some torus 𝑇. The case is different for abelian varieties,
as their endomorphism algebras are semisimple. This re-
sult is a consequence of Poincaré’s Reducibility Theorem,
which says that every subvariety (𝐵, 𝐸|𝐵) of an abelian vari-
ety (𝐴, 𝐸) has a complementary abelian subvariety (𝐶, 𝐸|𝐶):
𝐵 ∩ 𝐶 is finite and the addition map 𝑠 ∶ 𝐵 × 𝐶 → 𝐴 is
an isogeny. This leads to the fundamental decomposition
theorem of this subject.

Theorem 2.5 (Poincaré’s complete reducibility). Let (𝐴, 𝐸)
be an abelian variety, then there are simple abelian subvarieties
𝑋1, . . . , 𝑋𝑡 of𝐴 not isogenous to each other, and positive integers
𝑘1, . . . , 𝑘𝑡, such that 𝐴 is isogenous to 𝑋𝑘1

1 × ⋯ × 𝑋𝑘𝑡
𝑡 . This

decomposition is unique up to permutation and isogenies of the
factors.

An abelian variety is completely decomposable if it is isoge-
nous to a product of elliptic curves. A simple abelian vari-
ety𝐴 has complex multiplication ifEndℚ(𝐴) is a number field
𝐾 of degree 2 dim𝐴 overℚ. In this case𝐾 is a CM-field; that
is, a totally imaginary degree two extension of a totally real
field. If 𝐴 is not simple, then it is said to be of CM-type if
all of its simple factors (Theorem 2.5) have complex mul-
tiplication. We mention some open questions regarding
abelian varieties with these properties in Section 5.

In what follows, we denote a polarized abelian variety
(pav) by a single letter 𝐴, omitting the notation of the po-
larization.

3. Moduli Spaces
The natural next step after defining certain objects of
study—for us, compact Riemann surfaces and principally
polarized abelian varieties—and their notion of equiva-

lence, here isomorphisms, is the classification problem: the
objects are classified up to equivalence, and the set of equiv-
alence classes is their moduli space.

It turns out that these moduli spaces, though defined as
sets, can be endowed of a geometric (or algebraic) struc-
ture. The loci containing objects with nontrivial automor-
phisms complicate every approach.

In this work, we are interested inℳ𝑔, the moduli space
of compact Riemann surfaces of genus 𝑔, and𝒜𝑔, the mod-
uli space of principally polarized abelian varieties of di-
mension 𝑔; both can be given an orbifold structure. Also
of interest are some loci in them, such as

- their singular locus, which corresponds to the (isomor-
phism classes of) objects with nontrivial automorphisms
(for 𝑔 ≥ 4 in case of ℳ𝑔).

- the Jacobian (or Torelli) locus 𝒯𝑔 ⊂ 𝒜𝑔, which corre-
sponds to the image by the injective Torellimap 𝒥 ∶ ℳ𝑔 →
𝒜𝑔 defined by assigning to each Riemann surface 𝑆 its Ja-
cobian variety 𝐽𝑆.

- families in𝒯𝑔 with complex multiplication (or of CM-
type), or completely decomposable.

The moduli space 𝒜𝑔. Let 𝐴1 and 𝐴2 be two pav. A bijec-
tive homomorphism 𝑓 ∶ 𝐴1 → 𝐴2 between the underlying
tori is an isomorphism between pav if it preserves the po-
larization. In such a case, when bases are chosen so that
Π1 = (𝐷 𝑍1) and Π2 = (𝐷 𝑍2) are the period matrices of 𝐴1
and 𝐴2 respectively, then an isomorphism 𝑓 preserves the
polarization if and only if 𝜌𝑟(𝑓) ∈ Sp𝐷(2𝑔, ℤ), where

Sp𝐷(2𝑔, ℤ) = {𝑁 ∈ 𝑀(2𝑔 × 2𝑔, ℤ) ∶ 𝑁𝑡 ⋅ 𝐽𝐷 ⋅ 𝑁 = 𝐽𝐷},

with 𝐽𝐷 ≔ ( 0 𝐷
−𝐷 0) and 𝑁𝑡 denoting the transpose of 𝑁.

For the principally polarized case, where 𝐷 = 𝐼, the usual
notation is Sp(2𝑔, ℤ), the symplectic group.

It follows from the Hurwitz’s equation (2.1) that
Sp𝐷(2𝑔, ℤ) acts onℍ𝑔 and the quotient is the moduli space
of pav of type 𝐷. Therefore, for ppavs one has

𝒜𝑔 = ℍ𝑔/ Sp(2𝑔, ℤ); (3.1)

this is a complex analytic space of dimension
𝑔(𝑔+1)

2
.

In particular, an automorphism of a ppav given by a
matrix 𝑍 ∈ ℍ𝑔 is given by an element of the symplectic
group fixing 𝑍.
The moduli space ℳ𝑔. The construction of ℳ𝑔 as a com-
plex analytic space requires more definitions. Roughly
speaking, it arises as the quotient of the Teichmüller space𝑇𝑔,
capturing all complex structures on a compact topological
space of genus 𝑔, by themapping class group, which captures
when these structures define isomorphic Riemann surfaces.
It is a classical result that ℳ𝑔 has dimension 3𝑔 − 3, and
that for 𝑔 ≥ 4 its singular locus agrees with the branch lo-
cus of the canonical projection 𝑇𝑔 →ℳ𝑔; that is, the locus
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[Igu60,BL04] [Bro91] 𝑠(𝐺) 𝐺
I 2.f (0; 25) 𝐂2

2
II 2.n (0; 23, 4) 𝐃4
VI 2.o (0; 2, 5, 10) 𝐂10
III 2.s (0; 23, 3) 𝐃6
IV 2.w (0; 2, 4, 6) 𝐂3 ⋊𝐃4
V 2.aa (0; 2, 3, 8) 𝐆𝐋(2, 3)

Table 1. Nontrivial group actions on genus 2 (other than 𝐶2).

of Riemann surfaces of genus 𝑔 with nontrivial automor-
phisms.

In consequence, to study compact Riemann surfaces
with automorphisms turns out to be of interest. In [Bro90]
the equisymmetric locusℳ𝑔(𝐻, 𝑠, 𝑣) is introduced: it consists
of the points in ℳ𝑔 representing isomorphism classes of
Riemann surfaces endowed with an action of the abstract
group 𝐻 with fixed signature 𝑠 and fixed generating vec-
tor 𝑣, see Section 1 for these definitions. These loci are
closed irreducible (not necessarily smooth) subvarieties of
ℳ𝑔, and sometimes they fail to be normal.

Some results about the geometry of these loci are
known for low genera. For instance, in [Igu60, §8],
[BL04, §11.7] or [Bro91] a complete list of the full auto-
morphism groups for genus 2 is given (larger than just the
hyperelliptic involution). We collect these data in Table 1,
where 𝐂𝑛 and 𝐃𝑛 are the cyclic group of order 𝑛 and the
Dihedral group of order 2𝑛 respectively.

Notice that, as pointed out in [Igu60, §8], all cases ex-
cept VI are specializations of case I, and VI corresponds to
the only isolated singularity of ℳ2. A picture is drawn in
Fig. 5.

4. The Group Algebra Decomposition (GAD)
We have sketched the Torelli map 𝒥 ∶ ℳ𝑔 → 𝒜𝑔 defined
by associating the corresponding Jacobian variety, which
is injective by Torelli’s theorem. We have also described
the singular locus for both moduli spaces. We will now
look at them more closely.

It is a classic result, see for instance [Wol02, Lemma 6]
and the references given there, that the automorphisms of
a surface 𝑆 and its Jacobian 𝐽𝑆 are the same in the hyperel-
liptic case, and [Aut(𝐽𝑆) ∶ Aut(𝑆)] = 2 if 𝑆 is not hyperel-
liptic. Besides, once one has a group action, all the tools
from algebra, including Representation Theory of associa-
tive algebras and finite groups, come into play.

Let 𝐴 be a ppav with the action of a finite group 𝐺;
that is, there is a monomorphism 𝜌 ∶ 𝐺 → Aut(𝐴). It
induces a morphism 𝜌 ∶ ℚ[𝐺] → Endℚ(𝐴) of the ratio-
nal group algebra ℚ[𝐺] into the endomorphism algebra
Endℚ(𝐴). Any element 𝛼 ∈ ℚ[𝐺] defines an abelian sub-
variety 𝛼(𝐴) ≔ Im(𝑚𝜌(𝛼)) ⊂ 𝐴, where 𝑚 is some positive
integer chosen so that 𝑚𝜌(𝛼) ∈ End(𝐴). This definition
does not depend on the chosen integer 𝑚.

Figure 5. Families with nontrivial automorphisms in ℳ2.

Consider the decomposition ofℚ[𝐺] = 𝑄1×⋯×𝑄𝑟 into
a product of simple ℚ-algebras 𝑄𝑖; here 𝑟 is the number of
ℚ-irreducible representations of the group (up to equiva-
lence). Each factor 𝑄𝑖 is determined by one of the rational
irreducible representations {𝑊1, … ,𝑊𝑟}, in the sense that𝑄𝑖
is generated by the central idempotent 𝑒𝑖 corresponding to
𝑊 𝑖.

The corresponding decomposition of 1 ∈ ℚ[𝐺] as 1 =
𝑒1 +⋯+ 𝑒𝑟, induces an isogeny

𝑒1(𝐴) ×⋯ × 𝑒𝑟(𝐴) → 𝐴 (4.1)

given by addition. The components 𝐴𝑖 ≔ 𝑒𝑖(𝐴) are
𝐺-stable abelian subvarieties of 𝐴 with Hom𝐺(𝐴𝑖, 𝐴𝑗) =
0 for 𝑖 ≠ 𝑗. Note that it is not necessarily true that
Hom(𝐴𝑖, 𝐴𝑗) = 0 for 𝑖 ≠ 𝑗. This decomposition is called
the isotypical decomposition of the complex abelian variety
𝐴 with 𝐺-action.

The isotypical components 𝐴𝑖 can be decomposed fur-
ther, using the decomposition of 𝑄𝑖 into a product of (iso-
morphic) minimal left ideals.

Let 𝑊 𝑖 be the irreducible rational representation of
𝐺 corresponding to 𝑒𝑖, 𝑈 𝑖 one of the irreducible ℂ-
representations associated to 𝑊 𝑖 (that is, a component of

𝑊 𝑖 ⊗ ℂ), and 𝑚𝑖 the Schur index of 𝑈 𝑖. Set 𝑛𝑖 =
dim𝑈𝑖
𝑚𝑖

;

then there is a set of primitive idempotents {𝑓𝑖1,⋯ , 𝑓𝑖𝑛𝑖 }
in 𝑄𝑖 ⊂ ℚ[𝐺] such that 𝑒𝑖 = 𝑓𝑖1 +⋯+ 𝑓𝑖𝑛𝑖 . Moreover, for
each fixed 𝑖 the abelian subvarieties 𝑓𝑖𝑗(𝐴) are mutually
isogenous for 𝑗 = 1, . . . , 𝑛𝑖. Call any one of these isoge-
nous factors 𝐵𝑖. Then 𝐵𝑛𝑖𝑖 → 𝑒𝑖(𝐴) is an isogeny for every
𝑖 = 1, . . . , 𝑟. Replacing the factors in (4.1) we get a group
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algebra decomposition (GAD) of the 𝐺-abelian variety 𝐴

𝐵𝑛11 ×⋯ × 𝐵𝑛𝑟𝑟 → 𝐴. (4.2)

Note that, whereas (4.1) is uniquely determined, (4.2)
is not. It depends on the choice of the 𝑓𝑖𝑗 as well as on the
choice of the 𝐵𝑖. See [LR04,CR06] for details.

While the dimensions of the factors will remain fixed
regardless of these choices, their induced polarization and
the kernel of the isogeny in (4.2) may change. The factors
in (4.2) are called primitive factors, since they are images of
primitive idempotents; they can be simple or not, depend-
ing on 𝐴 and on the action of 𝐺. Moreover, they are not,
in general, principally polarized.

In the case of 𝐴 = 𝐽𝑆 being a Jacobian variety, the
geometric information about the group acting on the cor-
responding Riemann surface 𝑆 allows us to describe the
isotypical and the primitive factors on these decomposi-
tions of 𝐽𝑆 in terms of abelian varieties constructed from
Riemann surfaces obtained by factoring 𝑆 by appropriate
subgroups of 𝐺. The dimensions of the primitive factors
(hence also the isotypical ones) in terms of the geometric
signature (data providing information somehow between
the signature and the generating vector) is described in
[Roj07], and the induced polarization on the isotypical
factors (under some conditions) in [LR12, LRR14]. For
a complete exposition about decomposition of Jacobian
(and Prym) varieties, key results as well as several group
actions and applications, see [LR22].

Although some facts about the isotypical and the GAD
are known, other crucial aspects still remain unclear; such
as whether the primitive factors are simple, or the existence
of isogenies between them, or whether (or when) these
decomposition coincide with the Poincaré decomposition
of the variety.

So these decompositions open the door to use algebra,
and computer programs, to tackle questions about abelian
varieties, Riemann surfaces and their moduli spaces. We
want to end this article by listing some of the currently
open questions regarding these subjects.

5. Some Open Questions and Problems
We expect that by understanding GAD better, it could be-
come a powerful tool towards answering questions such
as

• [ES93]: Is it true that for every 𝑔 > 0, there exists a
a genus−𝑔 curve whose Jacobian variety is completely
decomposable? If not, are there only finitely many
such 𝑔, and what is the largest? Does there exist a
curve of genus 𝑔 > 3 whose Jacobian variety is strictly
completely decomposable; that is, isomorphic (rather
than just isogenous) to a product of elliptic curves)?

• [MO13, Question 6.7]: For which 𝑔 ≥ 2 does there ex-
ist a positive-dimensional subvariety 𝑍 of the Torelli

locus such that the abelian variety corresponding to
the generic geometric point of Z is isogenous to a
product of elliptic curves? The expectation is that for
𝑔 >> 0 no such subvariety exists. This is closely re-
lated to Coleman’s conjecture.

• [Col87]: (Coleman’s conjecture) Given 𝑔 ≥ 4, there
are only finitely many nonsingular projective genus 𝑔
curves 𝐶 over ℂ, up to isomorphism, such that the Ja-
cobian 𝐽𝐶 is a CM abelian variety. This is known to
be false up to genus 7, but remains open for higher
values. All the known examples [MO13, FPP16] arise
from group actions.

• [Bea14]: Construction of curves whose Jacobian vari-
ety has maximal Picard number 𝜌 = ℎ1,1. We recall
[Bea14, Prop. 3] that an abelian variety 𝐴 of dimen-
sion 𝑔 is 𝜌-maximal if it is isogeous to 𝐸𝑔, with 𝐸 an
elliptic curve with complex multiplication. Moreover,
this is the case if and only if 𝐴 is isomorphic to a prod-
uct ofmutually isogenous elliptic curves with complex
multiplication, and if and only if the rank over the in-
tegers of End(𝐴) is 2𝑔2. In [Bea14] it is pointed out
that few examples of curves with such Jacobian vari-
eties are known.

• [Bro90] To describe the equisymmetric stratification
by the subvarietiesℳ𝑔(𝐻, 𝑠, 𝑣) of the singular locus of
ℳ𝑔, and, using the Torelli map, to give structure theo-
rems for the Jacobian varieties associated to each stra-
tum.

• To describe or characterize the non-normal subvari-
eties ℳ𝑔(𝐻, 𝑠, 𝑣) for 𝑔 ≥ 4.
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