PROGRAMA DE LA ASIGNATURA			
1. Nombre de la actividad curricular			
Matemáticas II			
2. Nombre de la actividad curricular en inglés			
Mathematics II			
3. Unidad Académica: Escuela de Ciencias Ambientales y Biotecnología			
Profesor Coordinador: Sergio Muñoz			
Profesores Colaboradores:			
4. Ámbito Competencias Generales			
Nivel: 2º semestre			
Carácter: Obligatorio			
Modalidad: Presencial			
Requisitos: Matemáticas I			
4. Horas de trabajo	presencial (directas)	no presencial (indirectas)	
Coordinador:			
Colaboradores:			
5. Tipo de créditos			
SCT	7.5 horas	4.5 horas	
5. Número de créditos SCT – Chile			
8 SCT			
6. Requisitos	Matemáticas I		
7. Propósito general del curso			

8. Competencias a las que contribuye el curso	G1 Capacidad de abstracción, análisis y síntesis.
	G7 Capacidad para identificar, plantear y resolver problemas.
9. Subcompetencias	

10. Resultados de Aprendizaje

- Estudia funciones de una y varias variables mediante continuidad, asíntotas, crecimiento, concavidad, y extremos locales para modelar problemas simples en ciencias.
- 2. Aplica integración en una y varias variables e integrales impropias para obtener medidas de acumulación en modelos simples en ciencias.
- 3. Diagonaliza matrices para estudiar el comportamiento asintótico de sistemas de recurrencia lineales.

11. Saberes / contenidos

- 1. Unidad I: Extremos de funciones y asíntotas
 - a. Teorema del Valor Intermedio y extremos de funciones continuas en intervalos cerrados.
 - b. Teorema del Valor Medio de funciones derivables. Crecimiento y signo de la derivada en un intervalo abierto.
 - c. Concavidad y segunda derivada
 - d. Extremos locales interiores: criterios de primera y segunda derivada.
 - e. Extremos locales en bordes de intervalos cerrados para funciones escalares de una variable.
 - f. Puntos estacionarios y gradiente nulo en funciones escalares de variable vectorial.
 - g. Criterio de Hessiano para clasificar puntos estacionarios de funciones escalares de variable vectorial.
 - h. Límites hacia infinito y asíntotas horizontales. Interpretación como estado estable.
 - i. Límites infinitos hacia números y asíntotas verticales.
- 2. Unidad II: Integrales y ecuaciones diferenciales:
 - a. Integración indefinida y métodos de integración por sustitución, por partes, por sustitución trigonométrica inversa y por fracciones parciales casos lineales.
 - b. Ecuaciones diferenciales separables y aplicación al crecimiento exponencial, al decaimiento radioactivo y a la Ley de Enfriamiento de Newton.

- c. Sumas de Riemann, Integral de Riemann y su aplicación a la expresión de áreas, volúmenes y longitud de curvas.
- d. Integrales impropias de 1º especie (intervalo no acotado a derecha o a izquierda) por definición y por comparación.
- e. Integrales impropias de 2° especie (asíntota vertical en uno de los bordes de un intervalo cerrado) por definición y por comparación.
- f. Integrales impropias de 3º especie (múltiples causas combinadas)
- g. Integración numérica básica como aproximación del valor de una integral definida, apoyado en el uso de software.
- 3. Unidad III: Matrices y diagonalización básica
 - a. Matrices y sus operaciones de suma, ponderación, producto, inversas y determinantes.
 - b. Uso de software para el cálculo de operaciones con matrices.
 - c. Valores y vectores propios de una matriz. Uso de software para el cálculo de valores y vectores propios.
 - d. Matrices diagonalizables con valores propios reales.
 - e. Sistemas de recurrencias lineales y estado estable: diagonalización como herramienta de predicción de estado estable y su aproximación asintótica.

12. Metodología

Clases expositivas.

Estas serán realizadas por académicos del Departamento de Matemáticas de la Facultad de Ciencias, introduciendo los objetos matemáticos básicos, sus características y propiedades, y su uso para modelar fenómenos biológicos, químicos y físicos.

Ayudantías expositivas.

Estas sesiones complementan las clases mediante resolución guiada de ejemplos, acompañados de un estudiante avanzado bajo la tutela del profesor.

13. Evaluación

La nota se obtiene a través de:

- 1. Tres pruebas de cátedra de desarrollo individuales, con respuestas explícitamente justificadas, que aportan al menos un 25% de la nota cada una.
- 2. Evaluaciones menores (controles, talleres) de desarrollo individuales o grupales, con respuestas explícitamente justificadas, que agrupadas aportan a lo más el 25% de la nota.
- 3. En algunos casos, que se detallan en las reglas propias de cada semestre, se pueden considerar exposiciones, tareas, test online, entre otros.

14. Requisitos de aprobación

Según reglamentos vigentes, el rendimiento académico de los estudiantes será calificado en una escala numérica de 1,0 a 7,0 con un decimal, siendo la nota mínima de aprobación el 4,0, lo cual deberá considerar no menos de tres evaluaciones, ninguna de las cuales debe superar el 30% de la nota del curso.

En algunos casos, que se detallan en las reglas propias de cada semestre, se considera un Examen de carácter global, obligatorio para cada estudiante o sujeto a la nota obtenida con las evaluaciones del semestre, cuya ponderación no podrá superar el 30% de la nota del curso.

15. Palabras Clave

Función, gráfica, continuidad, derivada, integral, asíntota, ecuación diferencial, sumatoria, combinatoria, integral impropia.

16. Bibliografía Obligatoria (no más de 5 textos)

Purcell, Varberg, Rigdon, Varberg, Dale E., and Rigdon, Steven E. Cálculo. 9a. ed. México: Pearson Educación, 2007.

Edwards, C. H., and David E. Penney. Cálculo Y Geometría Analítica. 2a ed. México: Prentice-Hall Hispanoamericana, 1987.

Larson, Hostetler, R. P., & Edwards, B. H. (2006). Cálculo con geometría analítica (8a. ed., con respecto a la 2a. ed. en español.). McGraw Hill, Interamericana.

Zill, Dennis G. Cálculo Con Geometría Analítica. México, D.F.: Grupo Editorial Iberoamérica, 1987.

Zill, Dennis G., and Jaqueline M. Dewar. Álgebra, Trigonometría Y Geometría Analítica. 3a. ed. México: Santiago: McGraw-Hill, 2012.

15. Bibliografía Complementaria

Ayub N., Boris. Algebra Clásica. Santiago: Pontificia Universidad Católica De Chile, Facultad De Matemáticas, 1984.

Apostol, Tom M. Calculus. 1st ed. New York; London: Blaisdell, 1962. Print. Blaisdell Mathematics Ser.

Leithold, Louis. Matemáticas Previas Al Cálculo : Funciones, Gráficas Y Geometría Analítica. 3a Edición. ed. México: Oxford UP, 1998.

16. Recursos web

https://www.u-cursos.cl/ Portal web de cursos. Facultad de Ciencias, Universidad de Chile.

https://www.geogebra.org/ Sistema web para gráficos matemáticos.

https://www.wolframalpha.com/ Sistema web de matemática numérica y simbólica.