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According to this equation, the macroscopic viscous drag coefficient of an object with
mass m depends only on the frequency of microscopic collisions with that object! This
relationship should make sense: if the collisions are very frequent (so Af is small), then
the viscous drag coefficient will be larger. Next time you pull a spoon out of a jar of
honey, think about how the extremely rapid collisions between the “honey molecules”
and the spoon give rise to the viscous drag you feel on the spoon!

We can immediately see the connection to Brownian motion if we remove the constant
external force from our above discussion. Then the velocity as a function of time would
look like this: the object moves at a constant random velocity over each time interval:
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Now, if we integrate the velocities to find the position, we see that the average position
of the object is zero, but the object still “wanders™ up and down over time:
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Compare this graph of positon with the previous one: in this case, the object moves with
a constant velocity between each collision. This is an example of what physicists and
mathematicians refer to as a random walk: the object moves randomly, taking a series of
small “steps.” Each step can be in either direction (up or down, in this example).

Because a random walk is, by definition, random, we can only inquire about the average
behavior of an object undergoing a random walk. For instance, we note that the average
displacement of the object is always zero, since each step is equally likely to be up or
down. Thus, in some sense, the object, on average, doesn’t “go anywhere.”

This observation is misleading, however, because the average distance from the origin
will not be zero. We can better characterize the average distance by considering the
mean square displacement, or <x*>. (We use this definition because we want the
“distance” to always be positive, so we square the displacement to obtain a positive
measure of distance.)

Why will the mean square displacement not be zero? Consider a random walk of four
steps, where the steps are Ax, Ax,, Axs, and Ax,. If the object starts at x = 0, then the
final displacement of the object is given by (Ax; + Ax, + Ax3 + Axs4). What happens if we
square that? We get a hideous mess that looks something like this:

(Ax; + Axy + Axs + Axg) = (Ax1)* + (Ax2)” + (Ax3)* + (Axg)” + (Axy)( Axa) + (Ax))( Axs) + . ...



where we have omitted a number of the “cross terms”™ (Ax;)(Ax;) in which i # /. Now what
can we say about the sign of all of these terms? We know that the squared terms such as
(Ax))* will always be positive, regardless of the sign of Ax;. However, the cross terms will,
on average, be equal to zero, because each cross term could have either a positive or
negative sign, depending on the signs of the individual Ax;. Thus, the mean square
displacement is given by dropping all of the cross terms in the above expression:

(%7) = (A, + Axy + Axy + Ax,)’) = ((Ax)?) + ((Axp)?) + ((Axy)?) + (A, )?)

The bottom line is that random displacements add in quadrature: the square of the overall
displacement is equal to the sum of the squares of the individual displacements. You may
recall a similar formula for adding standard deviations of random variables: the square of the
standard deviation of the sum of a number of random variables is given by the sum of the
squares of the individual standard deviations:

0% =(0)) +(0,)* +(0,)’



