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01187 Dresden, Germany

Professor Dr. Roberto Merlin
Department of Physics, 5000 East University, University of Michigan
Ann Arbor, MI 48109-1120, USA

Professor Dr. Horst Störmer
Dept. Phys. and Dept. Appl. Physics, Columbia University, New York, NY 10027 and
Bell Labs., Lucent Technologies, Murray Hill, NJ 07974, USA

Library of Congress Control Number: 2006926231

ISSN 0171-1873
ISBN-10 3-540-28838-4 3rd ed. Springer Berlin Heidelberg New York
ISBN-13 978-3-540-28838-1 3rd ed. Springer Berlin Heidelberg New York
ISBN 3-540-12266-4 2nd ed. Springer-Verlag Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether thewholeor part of the material is concerned,
specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction
on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is
permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version,
and permission for use must always be obtained from Springer. Violations are liable to prosecution under the
German Copyright Law.

Springer is a part of Springer Science+Business Media
springer.com

© Springer-Verlag Berlin Heidelberg 1979, 1983, 2006
Printed in Germany

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws and
regulations and therefore free for general use.

Typesetting by the author and LE-TEX GbR
Cover concept: eStudio Calamar Steinen
Cover production: design & production GmbH, Heidelberg
Production: LE-TEX Jelonek, Schmidt & Vöckler GbR, Leipzig

Printed on acid-free paper 57/3100/YL - 5 4 3 2 1 0



To Sophia



Preface to the Third Edition

In this third edition the book has been expanded in three directions:

1. Problems have been added at the end of each chapter (40% of which
are solved in the last section of the book) together with suggestions for
further reading. Furthermore, the number of appendices (marked with a
grey stripe) has been substantially enlarged in order to make the book
more self-sufficient. These additions, together with many clarifications in
the text, render the book more suitable as a companion in a course on
Green’s functions and their applications.

2. The impressive developments of the 1980s and 1990s in mesoscopic physics,
and in particular in transport properties, found their way – to a cer-
tain extent – in the new Chaps. 8 and 9 (which also contain some of the
material of the old Chap. 7). This is a natural expansion, since Green’s
functions have played an important role as a theoretical tool in this new
field of physics, a role that continues in nanoregime research (see, e.g.,
recent publications dealing with carbon nanotubes). Thus, the powerful
and unifying formalism of Green’s functions finds applications not only
in standard physics subjects such as perturbation and scattering theory,
bound-state formation, etc., but also at the forefront of current and, most
likely, future developments.

3. Over the last 15 years or so Green’s functions have found applications not
only in condensed matter electronic motion but in classical wave propaga-
tion in both periodic and random media; photonic and phononic crystals
are the outcomes of this line of research whose underlying basic theoretical
principles are summarized in Sect. 7.2.4.

I would like to thank Ms. Mina Papadakis and Dr. Stamatis Stamatiadis whose
help was invaluable during the writing and typesetting of this drastically re-
vised third edition of my book.

Heraklion, Crete, March 2005 E.N. Economou



Preface to the Second Edition

In this edition, the second and main part of the book has been considerably
expanded so as to cover important applications of the formalism of Green’s
functions.

In Chap. 5 a section was added outlining the extensive role of the tight-
binding (or, equivalently, the linear combination of atomiclike orbitals) ap-
proach to many branches of solid-state physics. Some additional information
(including a table of numerical values) regarding square and cubic lattice
Green’s functions were incorporated.

In Chap. 6 the difficult subjects of superconductivity and the Kondo effect
are examined employing an appealingly simple connection to the question of
the existence of a bound state in a very shallow potential well. The existence
of such a bound state depends entirely on the form of the unperturbed density
of states near the end of the spectrum: if the density of states blows up, there
is always at least one bound state. If the density of states approaches zero
continuously, a critical depth (and/or width) of the well must be reached in
order to have a bound state. The borderline case of a finite discontinuity
(which is very important to superconductivity and the Kondo effect) always
produces a bound state with an exponentially small binding energy.

Chapter 7 has been expanded to cover details of the new and fast-
developing field of wave propagation in disordered media. The coherent po-
tential approximation (a simple but powerful method) is presented with an
extensive list of references to the current literature. Then the electrical con-
ductivity is examined both because it is an interesting quantity in its own
right and because it plays a central role in demonstrating how disorder can
create a qualitatively different behavior. Since the publication of the first edi-
tion of this book, significant advances in the field of random media have taken
place. An effort has been made to present in a simple way the essential points
of these advances (for the reader with a casual interest in this subject) and
to review the current literature (for the benefit of the reader whose research
activities are or will be related to the field of disordered systems).
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In this edition, each chapter is preceded by a short outline of the material
to be covered and concluded by a summary containing the most important
equations numbered as in the main text.

I would like to thank A. Andriotis and A. Fertis for pointing out to me
several misprints in the first edition. I would also like to express my gratitude
to Exxon Research and Engineering Company for its hospitality during the
final stages of this work.

Heraklion, Crete, January 1983 E.N. Economou



Preface to the First Edition

This text grew out of a series of lectures addressed to solid-state experimen-
talists and students beginning their research career in solid-state physics.

The first part, consisting of Chaps. 1 and 2, is a rather extensive mathe-
matical introduction that covers material related to Green’s functions usually
included in a graduate course on mathematical physics. Emphasis is given
to those topics that are important in quantum physics. On the other hand,
little attention is given to the important question of determining the Green’s
functions associated with boundary conditions on surfaces at finite distances
from the source. The second and main part of the book is, in my opinion, the
first attempt at integrating, in a systematic but concise way, various topics of
quantum physics, where Green’s functions (as defined in Part I) can be suc-
cessfully applied. Chapter 3 is a direct application of the formalism developed
in Part I. In Chap. 4 the perturbation theory for Green’s functions is presented
and applied to scattering and to the question of bound-state formation. Next,
the Green’s functions for the so-called tight-binding Hamiltonian (TBH) are
calculated. The TBH is of central importance for solid-state physics because
it is the simplest example of wave propagation in periodic structures. It is also
important for quantum physics in general because it is rich in physical phe-
nomena (e.g., negative effective mass, creation of a bound state by a repulsive
perturbation) and, at the same time, simple in its mathematical treatment.
Thus one can derive simple, exact expressions for scattering cross sections
and for bound and resonance levels. The multiple scattering formalism is pre-
sented within the framework of the TBH and applied to questions related to
the behavior of disordered systems (such as amorphous semiconductors). The
material of Part II is of interest not only to solid-state physicists but to stu-
dents in a graduate-level course in quantum mechanics (or scattering theory)
as well.

In Part III, with the help of the second quantization formalism, many-body
Green’s functions are introduced and utilized in extracting physical informa-
tion about interacting many-particle systems. Many excellent books have been
devoted to the material of Part III (e.g., Fetter and Walecka: Quantum Theory



XII Preface to the First Edition

of Many-Particle Systems [20]). Thus the present treatment must be viewed
as a brief introduction to the subject; this introduction may help the solid-
state theorist approach the existing thorough treatments of the subject and
the solid-state experimentalist become acquainted with the formalism.

I would like to thank the “Demokritos” Nuclear Research Center and the
Greek Atomic Energy Commission for their hospitality during the writing of
the second half of this book.

Athens, Greece, November 1978 E.N. Economou
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Part I

Green’s Functions in Mathematical Physics



1

Time-Independent Green’s Functions

Summary. In this chapter, the time-independent Green’s functions are defined,
their main properties are presented, methods for their calculation are briefly dis-
cussed, and their use in problems of physical interest is summarized.

1.1 Formalism

Green’s functions can be defined as solutions of inhomogeneous differential
equations of the type1

[z − L(r)] G (r, r′; z) = δ (r − r′) , (1.1)

subject to certain boundary conditions (BCs) for r or r′ lying on the surface
S of the domain Ω of r and r′. Here we assume that z is a complex variable
with λ ≡ Re {z} and s ≡ Im {z} and that L(r) is a time-independent, linear,
hermitian2 differential operator that possesses a complete set of eigenfunctions
{φn(r)}, i.e.,

L(r)φn(r) = λnφn(r) , (1.2)

where {φn(r)} satisfy the same BCs as G(r, r′; z). The subscript n may stand
for more than one index specifying uniquely each eigenfunction and the corre-
sponding eigenvalue. The set {φn} can be considered as orthonormal without
loss of generality (see Problem 1.1s at the end of Chap. 1), i.e.,

∫

Ω
φ∗

n(r)φm (r) dr = δnm . (1.3)

1 Several authors write the right-hand side (rhs) of (1.1) as 4πδ(r − r′) or
−4πδ(r − r′).

2 A linear operator, L, acting on arbitrary complex functions, φ(r) and ψ(r), de-
fined on Ω and satisfying given BCs is called hermitian if

R
Ω

φ∗(r)[Lψ(r)]dr =
{

R
Ω

ψ∗(r)[Lφ(r)]dr}∗ =
R

Ω
[Lφ(r)]∗ψ(r)dr.
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The completeness of the set {φn(r)} means that (Problem 1.2s)
∑

n

φn(r)φ∗
n (r′) = δ (r − r′) . (1.4)

(For the definition and properties of Dirac’s delta function, δ, see Ap-
pendix A.)

Note that n may stand for a set of indices that can take either discrete
values (for the discrete part of the spectrum of L, if any) and/or continuous
values (for the continuous part of the spectrum of L, if any). Similarly, the
symbol

∑
n should be interpreted as

∑
n
′ +

∫
dc, where

∑
n
′ indicates a gen-

uine summation over the eigenfunctions belonging to the discrete spectrum
(if any) and

∫
dc denotes (multiple) integration over the continuous spectrum

(if any).3
Working with Green’s functions is greatly facilitated by introducing an

abstract vector space, a particular representation of which is the various func-
tions we are dealing with. The most convenient way of achieving this is by
using Dirac’s bra and ket notation, according to which one can write (Ap-
pendix B):

φn(r) = ⟨r |φn⟩ , φ∗
n(r) = ⟨φn | r⟩ , etc. , (1.5)

δ (r − r′)L(r) ≡ ⟨r |L |r′⟩ , (1.6)
G (r, r′; z) ≡ ⟨r |G(z) | r′⟩ , (1.7)

⟨r | r′⟩ = δ (r − r′) , (1.8)
∫

dr |r⟩ ⟨r| = 1 , (1.9)

where |r⟩ is the eigenvector of the position operator; in the new notation we
can write (1.1) to (1.4) as follows:

(z − L)G(z) = 1 , (1.1′)
L |φn⟩ = λn |φn⟩ , (1.2′)
⟨φn |φm⟩ = δnm , (1.3′)
∑

n

|φn⟩ ⟨φn| = 1 . (1.4′)

The ordinary r-representation is recaptured by using (1.5)–(1.9); e.g., taking
the ⟨r|, |r′⟩ matrix element of (1.1′) we have

⟨r | (z − L)G(z) | r′⟩ = ⟨r | 1 |r′⟩ = ⟨r | r′⟩ = δ (r − r′) .

3 The continuous spectrum and the integration
R

dc can be obtained by con-
sidering a finite domain Ω and taking the limit as Ω becomes infinite. For
example, for plane waves, φk = 1√

Ω
exp (ik · r), and in d-dimensional space,

P
k −→

Ω→∞

»
Ω

(2π)d

– R
dk. (For a proof see Problem 1.5s.)
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The left-hand side (lhs) of the last relation can be written as follows:

zG (r, r′; z) − ⟨r |LG(z) | r′⟩ .

By introducing the unit operator,
∫

dr′′ |r′′⟩ ⟨r′′|, between L and G in the last
expression we rewrite it in the form

zG (r, r′; z) −
∫

dr′′ ⟨r |L |r′′⟩ ⟨r′′ |G(z) | r′⟩ .

Finally, taking into account (1.6) we obtain

zG (r, r′; z) − L(r)G (r, r′; z) = δ (r − r′) ,

which is identical to (1.1). The usefulness of the bra and ket notation is that

(i) The intermediate algebraic manipulations are facilitated and
(ii) One is not restricted to the r-representation (e.g., one can express all

equations in the k-representation, which is equivalent to taking the Fourier
transform with respect to r and r′ of the original equations).

If all eigenvalues of z − L are nonzero, i.e., if z ̸= {λn}, then one can solve
(1.1′) formally as

G(z) =
1

z − L
. (1.10)

Multiplying (1.10) by (1.4′) we obtain

G(z) =
1

z − L

∑

n

|φn⟩ ⟨φn| =
∑

n

1
z − L

|φn⟩ ⟨φn| =
∑

n

|φn⟩ ⟨φn|
z − λn

. (1.11)

The last step follows from (1.2′), and the general relation F (L) |φn⟩ =
F (λn) |φn⟩ valid by definition for any well-behaved function F . Equation
(1.11) can be written more explicitly as

G(z) =
∑

n

′ |φn⟩ ⟨φn|
z − λn

+
∫

dc
|φc⟩ ⟨φc|
z − λc

, (1.12)

or, in the r-representation,

G (r, r′; z) =
∑

n

′ φn(r)φ∗
n (r′)

z − λn
+

∫
dc

φc(r)φ∗
c (r′)

z − λc
. (1.13)

Since L is a hermitian operator, all of its eigenvalues {λn} are real. Hence,
if Im {z} ̸= 0, then z ̸= {λn}, which means that G(z) is an analytic function
in the complex z-plane except at those points or portions of the real z-axis
that correspond to the eigenvalues of L. As can be seen from (1.12) or (1.13),
G(z) exhibits simple poles at the position of the discrete eigenvalues of L;
the inverse is also true: the poles of G(z) give the discrete eigenvalues of L. If
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z = λ, where λ belongs to the continuous spectrum of L, G (r, r′; λ) is not well
defined since the integrand in (1.13) has a pole. Then one can attempt to define
G (r, r′; λ) by a limiting procedure. In the usual case, where the eigenstates
associated with the continuous spectrum are propagating or extended (i.e.,
not decaying as r → ∞), the side limits of G (r, r′; λ ± is) as s → 0+ exist
but are different from each other. Thus, this type of continuous spectrum
produces a branch cut in G(z) along part(s) of the real z-axis. We mention
here in passing, and we shall return to the point in a later chapter, that in
disordered systems there is the possibility of a continuous spectrum associated
with localized eigenstates [i.e., states decaying fast enough as r → ∞ so that
the normalized {φn(r)} approach a nonzero limit as Ω → ∞]. For such an
unusual spectrum even the side limits lim

s→0+
G (r, r′; λ ± is) do not exist; the

line of singularity corresponding to such a spectrum is not a branch cut but
what is called a natural boundary. In what follows we restrict ourselves to the
normal case of a continuous spectrum consisting of extended eigenstates. For
λ belonging to such a spectrum we define two Green’s functions as follows:

G+ (r, r′; λ) ≡ lim
s→0+

G (r, r′; λ + is) , (1.14)

G− (r, r′; λ) ≡ lim
s→0+

G (r, r′; λ − is) , (1.15)

with similar definitions for the corresponding operators G+(λ), G−(λ). From
(1.13) one can easily see that

G∗ (r, r′; z) = G (r′, r; z∗) . (1.16)

If z is real, z = λ, and λ ̸= {λn}, it follows from (1.16) that G (r, r′; λ) is
hermitian; in particular, G (r, r; λ) is real. On the other hand, for λ belonging
to the continuous spectrum, we have from (1.16) and definitions (1.14) and
(1.15) that

G− (r, r′; λ) =
[
G+ (r′, r; λ)

]∗
, (1.17)

which shows that

Re
{
G− (r, r; λ)

}
= Re

{
G+ (r, r; λ)

}
(1.18)

and
Im

{
G− (r, r; λ)

}
= −Im

{
G+ (r, r; λ)

}
. (1.19)

Using the identity (see the solution of Problem 1.3s)

lim
y→0+

1
x ± iy

= P
1
x
∓ iπδ(x) (1.20)

and (1.13) we can express the discontinuity, G̃(λ), in terms of delta function

G̃(λ) ≡ G+(λ) − G−(λ) = −2πiδ(λ − L) , (1.21)
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or, in the r, r′ representation,

G̃ (r, r′; λ) = −2πi
∑

n

δ (λ − λn)φn(r)φ∗
n (r′) (1.22)

= −2πi
∑

n

′
δ (λ − λn)φn(r)φ∗

n (r′)

−2πi
∫

δ (λ − λc)φc(r)φ∗
c (r′) dc .

For the diagonal matrix element we obtain from (1.13) and (1.20)

G± (r, r; λ) = P
∑

n

φn(r)φ∗
n(r)

λ − λn
∓ iπ

∑

n

δ (λ − λn)φn(r)φ∗
n(r) . (1.23)

Integrating (1.23) over r we have
∫

drG± (r, r; λ) =
∫

dr
〈
r

∣∣G±(λ)
∣∣ r

〉
≡ Tr

{
G±(λ)

}

= P
∑

n

1
λ − λn

∓ iπ
∑

n

δ (λ − λn) . (1.24)

The quantity
∑

n

δ(λ−λn) is the density of states (DOS) at λ, N (λ); N (λ)dλ

gives the number of states in the interval [λ, λ + dλ]. The quantity

ϱ(r; λ) ≡
∑

n

δ (λ − λn)φn(r)φ∗
n(r)

=
∑

n

′
δ (λ − λn)φn(r)φ∗

n(r) +
∫

δ (λ − λc)φc(r)φ∗
c(r)dc (1.25)

is the DOS per unit volume at point r. Obviously,

N (λ) =
∫

ϱ(r; λ)dr . (1.26)

Using (1.22)–(1.25) we obtain

ϱ(r; λ) = ∓ 1
π

Im
{
G±(r, r; λ)

}
= − 1

2πi
G̃(r, r; λ) , (1.27)

and
N (λ) = ∓ 1

π
Im

{
TrG±(λ)

}
. (1.28)

G(z) can be expressed in terms of the discontinuity G̃(λ) ≡ G+(λ) − G−(λ):

G(r, r′; z) =
∑

n

φn(r)φ∗
n(r′)

z − λn
=

∫ ∞

−∞
dλ

∑

n

δ (λ − λn)
φn(r)φ∗

n(r)
z − λ

=
i

2π

∫ ∞

−∞
dλ

G̃ (r, r′; λ)
z − λ

, (1.29)
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where (1.22) was taken into account. In particular, for the diagonal matrix
elements of G we have

G (r, r; z) =
∫ ∞

−∞
dλ′ ϱ (r; λ′)

z − λ′ . (1.30)

Note that ϱ (r; λ′) versus λ′ may consist of a sum of δ functions (corresponding
to the discrete spectrum of L) and a continuous function (corresponding to the
continuous spectrum of L) as shown in (1.25). Equation (1.30) shows that the
DOS per unit volume [i.e., the imaginary part of ∓G± (r, r; λ′) /π] enables us
to calculate G(r, r; z) (both Re {G} and Im {G}) for all values of z = λ + is.

Consider the expression

E(z) ≡ Ex(x, y) − iEy(x, y) =
∫

C
dz′

2ϱ (z′)
z − z′

, (1.30′)

giving the x and y component of the electric field E(x, y) in two-dimensional
(2-d) space in terms of the charge density ϱ(z′) ≡ ϱ(x′, y′) along line C.
Comparing with (1.30) we see that G(r, r; z) can be thought of as the electric
field generated by a positive charge distribution on the x-axis given by one
half the DOS per unit volume, ϱ/2. More explicitly, the correspondence is

Re {G (r, r; z)} ↔ Ex(z) ,

Im {G(r, r; z)} ↔ −Ey(z) ;
ϱ (r; λ) ↔ 2ϱ (z′) ,

z ≡ λ + is ↔ z = x + iy ,

λ′ ↔ z′ = x′ + iy′ .

This analogy is often helpful in visualizing the z dependence of G (r, r; z) for
complex values of z. For example, we see immediately that

Re
{
G+ (r, r; λ)

}
= Re

{
G− (r, r; λ)

}

while
Im

{
G+ (r, r; λ)

}
= −Im

{
G− (r, r; λ)

}
,

with Im {G+ (r, r; λ)} being always negative or zero. Of course, when λ is not
an eigenvalue of L, G+ (r, r; λ) is real; it satisfies the relation

dG(r, r; λ)
dλ

= −
〈
r

∣∣ (λ − L)−2
∣∣ r

〉
< 0 . (1.31)

To prove (1.31) we write

dG(r, r; λ)
dλ

=
d

[〈
r

∣∣ (λ − L)−1
∣∣ r

〉]

dλ
= −

〈
r

∣∣ (λ − L)−2
∣∣ r

〉
,

which is negative since, for λ real and not coinciding with any eigenvalue of
L, (λ − L)−2 is a positive definite operator.



1.2 Examples 9

To summarize our findings: G(r, r′; z) is analytic on the complex z-plane
except on portions or points of the real axis. The positions of the poles of
G(r, r′; λ) on the real axis give the discrete eigenvalues of L. The residue at
each pole gives the product φn(r)φ∗

n (r′) if the corresponding nondegenerate
eigenfunction is φn(r). Otherwise it gives the sum

∑
m φm(r)φ∗

m (r′), where
m runs over all eigenstates corresponding to the eigenvalue λn. The branch
cuts of G (r, r′; λ) along the real λ-axis correspond to the continuous spectrum
of L, and the discontinuity of the diagonal matrix element G (r, r; λ) across
the branch cut gives the DOS per unit volume times −2πi. Note that the
analytic continuation of G (r, r′; z) across the branch cut does not coincide
with G (r, r′; z), and it may develop singularities in the complex z-plane.

Knowledge of the Green’s function G (r, r′; z) permits us to obtain imme-
diately the solution of the general inhomogeneous equation

[z − L(r)] u(r) = f(r) , (1.32)

where the unknown function u(r) satisfies on S the same BCs as G (r, r′; z);
f(r) is a given function. By taking into account (1.1), it is easy to show that
the solution of (1.32) is

u(r) =

⎧
⎪⎪⎨

⎪⎪⎩

∫
G (r, r′; z) f (r′) dr′ , z ̸= {λn} , (1.33a)

∫
G± (r, r′; λ) f (r′) dr′ + φ(r) , z = λ , (1.33b)

where in (1.33b) λ belongs to the branch cut of G(z) (i.e., λ belongs to the
continuous spectrum of L) and φ(r) is the general solution of the correspond-
ing homogeneous equation. If z coincides with a discrete eigenvalue of L, say,
λn, there is no solution of (1.32) unless f(r) is orthogonal to all eigenfunctions
associated with λn (Problem 1.4). If u(r) describes physically the response
of a system to a source f(r), then G(r, r′) describes the response of the
same system to a unit point source located at r′. Note that the symmetry
relation (1.16) is a generalized reciprocity relation: the response at r from
a source at r′ is essentially the same as the response at r′ from a source at r.
Equation (1.33a) means that the response to the general source f(r) can be
expressed as the sum of the responses to point sources distributed according
to f(r).

1.2 Examples

In this section we consider the case where L(r) = −∇2 and the domain Ω
extends eventually over the whole real space. The BC is that the eigenfunctions
of L must be finite at infinity. Then the eigenfunctions are

⟨r |k⟩ =
1√
Ω

eik · r , (1.34)
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and the eigenvalues are
λn = k2 , (1.35)

where the components of the vector k are real to satisfy the BCs. Thus, the
spectrum is continuous, extending from 0 to +∞. The Green’s function can
be obtained by either solving the defining equation, which in the present case
is (

z + ∇2
r

)
G(r, r′; z) = δ(r − r′) , (1.36)

or from (1.13), which in the present case can be written as

G(r, r′; z) =
∑

k

⟨r |k⟩ ⟨k | r′⟩
z − k2

=
∫

dk

(2π)d

eik · (r−r′)

z − k2
, (1.37)

where d is the dimensionality.4 For d = 3 we will use (1.37) to evaluate G,
while for d = 2 or 1 we will compute G from (1.36).

1.2.1 Three-Dimensional Case (d = 3)

If ϱ is the difference r − r′ and θ the angle between k and ϱ, we can write
(1.37) as

G(r, r′; z) =
1

4π2

∫ ∞

0

k2dk

z − k2

∫ π

0
dθ sin θ eikϱ cos θ

=
1

4π2

∫ ∞

0

k2dk

z − k2

eikϱ − e−ikϱ

ikϱ

=
1

4iπ2ϱ

∫ ∞

−∞

keikϱ

z − k2
dk . (1.38)

The integration path can be closed by an infinite semicircle in the upper
half plane. Unless z is real and nonnegative, one of the poles (denoted by√

z) of the integrand in (1.38) has a positive imaginary part and hence lies
within the integration contour, and the other (denoted by−

√
z) has a negative

imaginary part and lies outside the integration contour. By employing the
residue theorem we obtain from (1.38)

G(r, r′; z) = −exp (i
√

z |r − r′|)
4π |r − r′| ; Im {z} > 0 . (1.39)

If z = λ, where λ ≥ 0 (i.e., if z coincides with the eigenvalues of −∇2), the
two poles lie on the integration contour and G is not well defined. The side
limits G±(r, r′; λ) are well defined and are given by

4 Use was made of the relation
P

k →
ˆ
Ω/(2π)d

˜ R
dk as Ω → ∞. For a proof and

comments see Problem 1.5s.
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G±(r, r′; λ) = −e±i
√

λ|r−r′|

4π |r − r′| ;
√

λ, λ ≥ 0 . (1.40)

For z = λ, where λ < 0, we obtain from (1.39)

G(r, r′; λ) = −e−
√

|λ||r−r′|

4π |r − r′| ; λ < 0,
√
|λ| > 0 . (1.41)

For the particular case z = 0 we have

G(r, r′; 0) = − 1
4π |r − r′| . (1.42)

As can be seen from (1.36), G(r, r′; 0) is the Green’s function corresponding
to a Laplace equation with a point source, i.e.,

∇2
rG(r, r′; 0) = δ (r − r′) . (1.43)

By employing (1.33b) we can write the general solution of Poisson’s equation

∇2V (r) = −4πϱ(r)

as

V (r) =
∫

G(r, r′; 0)(−4π)ϱ (r′) dr′ + const. (1.44)

=
∫

ϱ (r′) dr′

|r − r′| + const.

The constant has been added since the most general eigenfunction of −∇2

corresponding to eigenvalue 0 is a constant, as can be seen from (1.34) and
(1.35). Equation (1.44) is the basic result in electrostatics.

1.2.2 Two-Dimensional Case (d = 2)

Because of symmetry considerations, G(r, r′; z) is a function of the magnitude
of the 2-d vector ϱ = r − r′ and z. Furthermore, it satisfies the homogeneous
equation

(z + ∇2)G(ϱ; z) = 0 for ϱ ̸= 0 . (1.45)

The δ function source can be transformed into an equivalent BC as ϱ → 0;
indeed, by applying Gauss’ theorem,

∫
∇ · (∇G) dΩ =

∫
∇G · dS, which in

the present 2-d case takes the form
∫ ϱ

0
∇2G 2πϱ′ dϱ′ = 2πϱ

∂G

∂ϱ
,
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we obtain from (1.36)

2πϱ
∂G

∂ϱ
+ 2πz

∫ ϱ

0
Gϱ′dϱ′ = 1 ,

which, as ϱ → 0, leads to

G(ϱ) −→
ϱ→0

1
2π

ln ϱ + const. (1.46)

Furthermore, G(ϱ) must satisfy the condition

G(ϱ) −→
ϱ→∞

0 . (1.47)

The only solution of (1.45) that is symmetric and satisfies BCs (1.46) and
(1.47) is

G(r, r′; z) = − i
4
H(1)

0

(√
z |r − r′|

)
; Im

{√
z
}

> 0 , (1.48)

where H(1)
0 is the Hankel function of zero order of the first kind.5 This can

be seen from the fact that the general solution of (1.45) is a superposition of
terms like

[
AnH(1)

n (
√

zϱ) + BnH(2)
n (

√
zϱ)

]
e±inθ (Appendix C). Since we are

looking for a θ-independent solution, n = 0; furthermore, the Hankel function
H(2)

0 (
√

zϱ), for Im {
√

z} > 0, blows up as ϱ → ∞ and must be excluded.
Finally, (1.46) together with the relation H(1)

0 (
√

zϱ) → (2i/π) ln(ϱ) as ϱ → 0
fixes the coefficient A0. For z = λ, where λ ≥ 0, (i.e., for z coinciding with
the spectrum of −∇2) Im {

√
z} = 0, and only the side limits are well defined

as
G±(r, r′; λ) = − i

4
H(1)

0

(
±
√

λϱ
)

;
√

λ > 0 , (1.49)

where5

H(1)
0

(
−
√

λϱ
)

= −H(2)
0

(√
λϱ

)
. (1.50)

G+ describes an outgoing wave, while G− is an ingoing wave; this can be seen
from the asymptotic form of H(1)

0 and H(2)
0 .

Equation (1.48) for the particular case z = − |λ| can be recast as

G±(r, r′;− |λ|) = − 1
2π

K0

(√
|λ| |r − r′|

)
;

√
|λ| > 0 , (1.51)

where K0 is the modified Bessel function of zero order.5
The Green’s function corresponding to the 2-d Laplace equation can be ob-

tained from (1.48) by letting z → 0 and keeping the leading |r − r′|-dependent
term. We find that
5 For definitions and properties of Bessel and Hankel functions see the book by

Abramowitz and Stegun [1].
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G(r, r′; 0) =
1
2π

ln |r − r′| + const. (1.52)

The solution of Poisson’s equation in 2-d is then

V (r) = −2
∫

ϱ (r′) ln |r − r′| dr′ + const. (1.53)

Taking the −∇ of (1.53) we obtain the expression for the 2-d electric field
given before in (1.30′).

1.2.3 One-Dimensional Case (d = 1)

The basic equation (1.36) becomes
(

z +
d2

dx2

)
G (x, x′; z) = δ (x − x′) . (1.54)

For x < x′ we have G = A exp (−i
√

zx) with Im {
√

z} > 0, while for x > x′

we obtain G = B exp(i
√

zx); the choice of signs in the exponents ensures
that G → 0 as |x| → ∞. By integrating (1.54) we find that G(x′−, x′; 0) =
G(x′+, x′; z) and (dG/dx)x=x′+ − (dG/dx)x=x′− = 1. We thus determine the
constants A and B. We obtain finally

G(x, x′; z) =
exp (i

√
z |x − x′|)

2i
√

z
; Im

{√
z
}

> 0 . (1.55)

For z = λ ≥ 0 (i.e., within the continuous spectrum of −d2/dx2) we have for
the side limits

G±(x, x′; λ) = ∓ i
2
√

λ
exp

(
±i

√
λ |x − x′|

)
; λ > 0,

√
λ > 0 . (1.56)

For z = − |λ| we obtain from (1.55)

G(x, x′;− |λ|) = − 1
2
√
|λ|

exp
(
−

√
|λ| |x − x′|

)
;

√
|λ| > 0 . (1.57)

The Green’s function for the 1-d Laplace equation can be found either by
solving (1.54) for z = 0 directly or by taking the limit of (G+ + G−)/2 as
λ → 0. We find

G(x, x′; 0) =
1
2
|x − x′| + const. (1.58)

1.2.4 Finite Domain Ω

The problem of determination of G becomes more tedious when the surface
S bounding our domain Ω consists in part (or in whole) of pieces at a finite
distance from the point r′ of the source. One can then employ any of the
following methods to determine G:
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1. Use general equation (1.13) where the eigenvalues and eigenfunctions are
the ones associated with the BCs on S.

2. Write G as G = G∞+φ, where G∞ is the Green’s function associated with
the infinite domain (which is assumed to be known) and φ is the general
solution of the corresponding homogeneous equation. Then determine the
arbitrary coefficients in φ by requiring that G∞ +φ satisfy the given BCs
on S. It is then clear that G satisfies both the differential equation and
the BCs.

3. Divide the domain Ω into two subdomains by a surface S′ passing through
the source point r′. Then G in the interior of each subdomain satisfies
a homogeneous equation. Find in each subdomain the general solution of
the homogeneous equation subject to the given BCs on S. Next, match
the two solutions on S′ in a way obtained by integrating the differential
equation for G around r′. An elementary example of this technique was
used in Sect. 1.2.3.

4. Write, e.g., in 3-d,

δ (r − r′) =
1
r2

δ (r − r′) δ (φ − φ′) δ (cos θ − cos θ′)

=
1
r2

δ (r − r′)
∑

ℓm

Yℓm(θ, φ)Y ∗
ℓm (θ′, φ′)

so as to reduce the problem to 1-d with respect to r and r′.

The interested reader may find a brief presentation of these techniques in
the book by Mathews and Walker [2]. A more comprehensive and rigorous
presentation is given in the second volume of the book by Byron and Fuller
[3]; see also the books by Duffy [4], Barton [5], Roach [6], Stakgold [7] and
Morse and Feshbach [8]. Several books on electromagnetism, such as those by
Smythe [9] or Jackson [10], contain several interesting examples of Green’s
functions.

Finally, it should be mentioned that for more complicated operators L
(such as those describing the quantum-mechanical motion of a particle in an
external field), the determination of G is a very complicated problem. More
often than not one has to employ approximate techniques such as perturbation
expansions. We will return to this very interesting subject in Chap. 4. Exam-
ples of methods (1) to (4) mentioned above are presented in the solutions of
the problems in Chap. 1 (see also Appendix C).

1.3 Summary

1.3.1 Definition

The Green’s function, corresponding to the linear, hermitian, time-independ-
ent differential operator L(r) and the complex variable z = λ + is, is defined
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as the solution of the equation6

[z − L(r)] G(r, r′; z) = δ(r − r′) , (1.1)

subject to certain homogeneous BCs on the surface S of the domain Ω of r and
r′. Equation (1.1) can be considered as the r-representation of the operator
equation

(z − L)G = 1 . (1.1′)

1.3.2 Basic Properties

1. If {|φn⟩} is the complete orthonormal set of eigenfunctions (subject to the
same BCs on the surface S) of L, and {λn} is the set of the corresponding
eigenvalues, then one can write

G = (z − L)−1 (1.10)

=
∑

n

|φn⟩ ⟨φn|
z − λn

, z ̸= {λn} . (1.11)

2. From (1.11) one can see that G(z) is uniquely defined if and only if z ̸=
{λn}. If z coincides with any of the discrete eigenvalues of L, G does not
exist, since, as can be seen from (1.11), G(z) has simple (first-order) poles
at the positions of the discrete eigenvalues. If z belongs to the continuous
spectrum of L, then G usually exists, but it is not uniquely defined because
one can add to any particular G the general solution of the homogeneous
equation corresponding to (1.1). Two particular explicit expressions, G+

and G−, are usually employed in the case where the continuous spectrum
of L corresponds to a branch cut. For infinite disordered systems, part of
the continuous spectrum may give rise to the so-called natural boundary,
i.e., a singular line to be examined in a later chapter. The analytic behavior
of G(z) is summarized in Fig. 1.1, p. 16. Because L is hermitian, all its
eigenvalues are real; hence, the singularities of G(z) are on the real z-axis.
As was mentioned above, for the branch cuts of G(z) (which correspond to
the continuous spectrum associated with extended eigenstates) we define
the side limits

G±(λ) = lim
s→0+

G(λ ± is) . (1.15′)

1.3.3 Methods of Calculation

G(z) is calculated either by solving the defining equation (1.1) or by using
(1.11).

6 The numbering of the equations appearing in each summary is that of the main
text of the corresponding chapter.
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Fig. 1.1. Analytic behavior of G(z) ≡ (z−L)−1. The singular points or lines are on
the real z-axis (when L is Hermitian) and provide information about the eigenvalues
and eigenfunctions of L

1.3.4 Use

Once G(z) is known one can:

1. Obtain information about the homogeneous equation corresponding to
(1.1), i.e., about the eigenvalues and eigenfunctions of L. Thus the position
of the poles of G(z) give the discrete eigenvalues of L, and the residues at
these poles provide information about the corresponding eigenfunctions.
The branch cuts (or the natural boundaries, if any) give the location of
the continuous spectrum, and the discontinuity across the branch cut gives
the density of states N (λ)

N (λ) = ∓ 1
π

Im
{
Tr

{
G±(λ)

}}
. (1.28)

2. Solve the inhomogeneous equation

[z − L(r)] u(r) = f(r) , (1.32)

where the unknown function u(r) satisfies on S the same BCs as G(r, r′; z),
and f(r) is given. We have

u(r) =

⎧
⎪⎪⎨

⎪⎪⎩

∫
G (r, r′; z) f (r′) dr′; z ̸= {λn} , (1.33a)

∫
G± (r, r′; λ) f (r′) dr′ + φ(r); z = λ , (1.33b)

where λ in (1.33b) belongs to the branch cut of G(z) and φ(r) is the
general solution of the corresponding homogeneous equation for the given
value of λ. For z coinciding with any of the discrete eigenvalues of L,
say, λn, there is no solution of (1.32) unless f(r) is orthogonal to all
eigenfunctions associated with λn.
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3. Use G0(z) and L1 to obtain information about the eigenfunctions and
eigenvalues of L = L0 + L1; G0(z) ≡ (z − L0)−1. Discussion of this third
use of the Green’s function formalism will be given in Chap. 4.

Some very common applications of the formalism outlined above were
discussed in Sect. 1.2.

Further Reading

• A short and clear introduction to Green’s functions is given in the book
by Mathews and Walker [2], pp. 267–277.

• A more extensive introduction with several examples is given in the book
by Byron and Fuller [3], pp. 395–441.

• In the book by Duffy [4] there is a more systematic development of the
subject with many examples on how to construct Green’s functions for
different operators and more complicated boundaries.

• A more mathematically oriented approach is presented in the book by
Stakgold [7].

• Interesting examples referring to more complicated boundaries can be
found in the book by Smythe [9], pp. 155–158, pp. 177–180, pp. 189–191.

• For an extensive list of integrals and other mathematical data, see the
book by Gradshteyn and Ryzhik [11].

Problems7

1.1s. Prove that two eigenfunctions belonging to different eigenvalues of a her-
mitian operator are orthogonal. Then prove (1.3).

1.2s. Prove (1.4).

1.3s. Prove (1.20).

1.4. Show that inhomogeneous equation (1.32) has no solution if z coincides
with a discrete eigenvalue of L unless f(r) is orthogonal to all eigenfunctions
associated with this eigenvalue.

Hint : Expand both u(r) and f(r) in terms of the orthonormal complete
set of the eigenfunctions of L:

u =
s∑

i=1

bniφni +
∑

m ̸=ni

bmφm , (1)

f =
s∑

i=1

cniφni +
∑

m ̸=ni

cmφm , (2)

7 Problem numbering followed by a letter “s” indicates that this problem is solved
in the last part of the book.
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where φni (i = 1, . . . , s) belong to the eigenvalue λn for which z = λn

Lφni = λnφni, i = 1, . . . , s , (3)
Lφm = λmφm, λm ̸= λn . (4)

Replace (1) and (2) in (1.32), use the orthonormality of the set {φni, φm},
and then take z = λn.

1.5s. Show that drdp/hd gives the number of states associated with the
volume element drdp of the phase space for a free particle moving in a
d-dimensional real space; p is the particle’s momentum.

1.6s. Calculate the 1-d Green’s function G (x, x′; z) for the operator L =
−d2/dx2 defined in the domain (0, 1), with BCs G (x, x′; z) = 0 for either x or
x′ = 0, 1. Employ all methods of calculations mentioned on p. 14. What is the
z → 0 limit of G? Use your results to calculate the sum

∑∞
n=0

[
a2 + n2

]−1.

1.7s. Calculate the Green’s function G (ϱ, ϱ′; z) for the 2-d operator L ≡ −∇2
ϱ

and the BCs G (ϱ, ϱ′; z) = 0 for ϱ, ϱ′ = a (0 ≤ ϱ, ϱ′ ≤ a). Employ all methods
of calculation. Find the limit z = 0. What is the application in electrostatics?

1.8s. Calculate the Green’s function G (r, r′; z) for the 3-d operator L = −∇2
r

and the BCs G (r, r′; z) = 0 for |r| , |r′| = a (0 ≤ r, r′ ≤ a). Employ two
different methods of calculation. Find the limit z = 0. What is the application
in electrostatics?

1.9s. Calculate the diagonal matrix element of the Green’s function given the
density of states (DOS)

ϱ(E) =
1

π
√

4V 2 − E2
, |E| ≤ 2 |V | .

1.10. The same as Problem 1.9s but for

ϱ(E) =
2
√

(6V )2 − E2

π (6V )2
.

1.11s. Consider the operator

L ≡ ∇r (f(r)∇r) + g(r) ,

where f(r) and g(r) are known well-behaved functions of r. Consider also the
differential equation for the unknown function ψ(r)

Lψ(r) = u(r) ,
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where u(r) is a known well-behaved function; the unknown function ψ(r)
satisfies the BC ψ (rs) = u1 (rs) or ∇ψ(r)r=rs = u2 (rs) for rs on the closed
surface S bounding the domain Ω; u1 (rs) and u2 (rs) are known functions.
If the Green’s function G (r, ϱ; z) is defined by the equation

LG (r, ϱ; z) = δ(r − ϱ)

and appropriate BC for r = rs, show that ψ(ϱ) can be obtained by the
relation

ψ (ϱ) =
∫

Ω
drG (r, ϱ)u(r)

+
∫

S
drs [ψ (rs)∇rG (rs, ϱ) − G (rs, ϱ)∇rψ (rs)] f (rs) .

If the BC for ψ(r) is ψ (rs) = u1 (rs), then the appropriate BC for G is G = 0
for r = rs; if the BC for ψ(r) is ∇rψ (rs) = u2 (rs), then we must choose
∇G = 0 for r = rs.

Examine the special case f(r) = 1 and g(r) = z.

1.12. If the operator L is not hermitian, we define its adjoint operator, L†,
by the relation

[⟨u| , L |υ⟩]∗ = ⟨υ| , L† |u⟩

for arbitrary bra and ket.
Show that:

(a) If |φn⟩ and λn are the eigenvectors and eigenvalues of L, then the eigen-
values of L† are λ∗

n:
L† |ψn⟩ = λ∗

n |ψn⟩ ,

where |ψn⟩ are the eigenvectors of L†.
(b) For nondegenerate eigenvalues of L and proper normalization

⟨ψn |φn⟩ = ⟨φn |ψn⟩ = δnm .

(c)
∑

n |φn⟩ ⟨ψn| = 1 and
∑

n |ψn⟩ ⟨φn| = 1.
(d) The Green’s function G satisfying the relation (z − L)G = 1 is given by

G(z) =
∑

n

|φn⟩ ⟨ψn|
z − λn

,

and the Green’s function G† satisfying the relation
(
z∗ − L†) G† = 1 is

given by

G†(z∗) =
∑

n

|ψn⟩ ⟨φn|
z∗ − λ∗

n

.
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Time-Dependent Green’s Functions

Summary. The Green’s functions corresponding to linear partial differential equa-
tions of first and second order in time are defined; their main properties and uses
are presented.

2.1 First-Order Case

The Green’s function g(r, r′, t − t′) associated with the first-order (in time)
homogeneous and inhomogeneous partial differential equations

[
i
c

∂

∂t
− L(r)

]
φ (r, t) = 0 , (2.1)

[
i
c

∂

∂t
− L (r)

]
ψ(r, t) = f(r, t) (2.2)

is defined as the solution of
[

i
c

∂

∂t
− L(r)

]
g(r, r′, t, t′) = δ(r − r′)δ(t − t′) , (2.3)

subject to the same BCs on the bounding surface S as φ(r, t) and ψ(r, t). For
the time being we shall assume that c is a positive constant. The operator
L (r) is as in Chap. 1. Expressing g (r, r′, τ), where τ = t− t′, in terms of its
Fourier transform

g(τ) =
∫ ∞

−∞

dω′

2π
e−iω′τg (ω′) , (2.4)

and substituting in (2.3) we obtain
(ω

c
− L

)
g(ω) = δ (r − r′) . (2.5)
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The r, r′ dependence of g(τ) and g(ω) is not displayed explicitly. Comparing
with (1.1) we see that

g(ω) = G
(ω

c

)
, (2.6)

where G(z) is the Green’s function associated with L and examined in detail
in Chap. 1.

Using the results of Chap. 1, one concludes that g(ω) is an analytic function
of the complex variable ω with singularities (poles and/or branch cuts ) on
the real ω-axis. Because of this property, (2.4) is not well defined as it stands.
One has to use a limiting procedure in order to unambiguously define g(τ):

gC(τ) = lim
C→C0

∫

C

dω

2π
G

(ω

c

)
e−iωτ . (2.7)

One can obtain infinitely many Green’s functions depending on how path C
approaches the real ω-axis C0. However, there are only two choices of physical
interest shown in Fig. 2.1 as g+ and g−; they give

g±(τ) =
∫ ∞

−∞

dω′

2π
G±

(
ω′

c

)
e−iω′τ . (2.8)

It is useful to consider quantities denoted by the symbol g̃CC′
and defined

as the difference of two Green’s functions gC and gC′
. Obviously the quanti-

ties g̃CC′
can be expressed as integrals of g(ω)e−iωτ/2π over closed contours

enclosing the real ω-axis, either in part or in its entirety. Because each g̃CC′

is the difference of two Green’s functions, it satisfies homogeneous equation
(2.1) and not (2.3). Thus, strictly speaking, the various g̃CCs are not Green’s
functions.

✲ ✲ Re{ω}

ω-plane

g+ ✿(a)

✲ ✲ Re{ω}

ω-plane

g− ③(b)

✲
✛ ✲ Re{ω}

ω-plane

g̃ ③✿(c)

Fig. 2.1. Integration paths (solid lines) in the ω-plane for obtaining (a) g+(τ ),
(b) g−(τ ), and (c) eg(τ ) = g+(τ ) − g−(τ ), where g+(τ ) and g−(τ ) satisfy a first-
order (in time) differential equation. The singularities of the integrand lie on the
real ω-axis
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In the present case, because we introduce only two Green’s functions of
interest, there is only one g̃CC′

of interest defined by

g̃(τ) = g+(τ) − g−(τ) . (2.9)

By inspection of Fig. 2.1 and taking into account (2.9) we see that g̃(τ) is
given by integrating g(ω)e−iωtdω/2π along the contour shown in Fig. 2.1c.

For τ > 0 (< 0) the paths for g± can be closed by an infinite semicircle
in the lower (upper) ω half-plane. Taking into account that all singularities of
g(ω) or G(ω/c) are on the real axis, we have from Fig. 2.1 that

g±(τ) = ±θ (±τ) g̃(τ) , (2.10)

where the step function, θ(τ), is defined as

θ(τ) =
{ 1 , τ > 0 ,

0 , τ < 0 . (2.11)

Taking into account (1.16) and (2.8) we obtain

g− (r, r′, τ) =
[
g+ (r′, r,−τ)

]∗
. (2.12)

From Fig. 2.1 we can see that the function g̃(τ) can be written as

g̃(τ) =
∫ ∞

−∞

dω′

2π
e−iω′τ G̃

(
ω′

c

)

= −2πi
∫ ∞

−∞

dω′

2π
e−iω′τ

∑

n

δ
(

ω′

c
− λn

)
φn (r)φ∗

n (r′)

= −ic
∑

n

e−icλnτφn (r)φ∗
n (r′) . (2.13)

We have used (1.21) and (1.22) to express the difference G+ − G− ≡ G̃ in
terms of λn, φn (r)φ∗

n (r′), and the presence of the delta function to do the
integral over ω′.

The corresponding operator g̃(τ) is then

g̃(τ) = −ic
∑

n

e−icλnτ |φn⟩ ⟨φn| = −ice−icLτ ; (2.14)

the operator
U(t − t′) ≡ e−icL(t−t′) (2.15)

is a time-evolution operator or a propagator because

|φ(t)⟩ = U (t − t′) |φ(t′)⟩ (2.16)

satisfies (2.1). Thus the operator U(t − t′) propagates |φ⟩ from time t′ to t.
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We see that
U(t − t′) =

i
c
g̃(t − t′) . (2.17)

Notice that in the r-representation, (2.13), when τ = 0, i.e., when t = t′,
becomes

g̃ (r, r′, 0) = −icδ (r − r′) . (2.18)

Notice also
U(t1 − t2) = U(t1 − t3)U(t3 − t2) . (2.19)

g(t1 − t2) obeys a similar relation. Combining (2.16) and (2.17) and trans-
forming to the r-representation we obtain (Problem 2.1)

φ (r, t) =
i
c

∫
g̃ (r, r′, t − t′)φ (r′, t′) dr′ , (2.20)

which, with the help of (2.10), can be expressed in terms of g+(τ) and g−(τ)
for τ > 0 and τ < 0, respectively. The solution of inhomogeneous equation
(2.2), ψ (r, t), can be expressed in terms of the general solution of homogeneous
equation (2.1), φ (r, t), and the Green’s function g+ (t − t′) as follows:

ψ (r, t) = φ (r, t) +
∫

dr′dt′ g+ (r, r′, t − t′) f (r′, t′) . (2.21)

To prove this, substitute (2.21) in (2.2) and take into account (2.1) and (2.3).
Note that if we had used g−(τ) instead of g+(τ), the resulting ψ (r, t) would
again have satisfied (2.2). We have excluded the solution corresponding to
g−(τ) on the basis of the physical argument that the response of a system at
a time t depends only on what the source, f(r′, t′), was in the past (t′ < t).
Using (2.10) we can rewrite (2.21) as

ψ (r, t) = φ(r, t) +
∫

dr′
∫ t

−∞
dt′ g̃ (r, r′, t − t′) f (r′, t′) . (2.22)

2.1.1 Examples

Here we calculate the various Green’s functions for the case L = −∇2. It is
enough to calculate g̃(t); g±(τ) can be obtained from (2.10). For the present
case the most convenient way of calculating g̃(t) is (2.13); φn (r) = eik · r/

√
Ω,

and λn = k2. We have

g̃ (r, r′, τ) = −ic
∑

k

eik · (r−r′)

Ω
e−ick2τ (2.23)

= −ic
∫

ddk

(2π)d
eik ·ϱ−ick2τ ,
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where ϱ ≡ r−r′ and d is the dimensionality. Taking into account that k ·ϱ =∑d
i=1 kiϱi and k2 =

∑d
i=1 k2

i , where ki and ϱi are the cartesian coordinates
of k and ϱ, respectively, we can rewrite (2.23) as (Problem 2.2s)

g̃ (r, r′, τ) = −ic
d∏

i=1

∫ ∞

−∞

dki

2π
exp

(
ikiϱi − ick2

i τ
)

= −ic
d∏

i=1

∫ ∞

−∞

dk

2π
exp

(
iϱ2

i /4cτ
)
exp

(
−icτk2

)

= −ic
d∏

i=1

exp
(
iϱ2

i /4cτ
) 1

2π

√
π

icτ

= −ic
(

1
4πicτ

)d/2

exp
(
iϱ2/4cτ

)
, (2.24)

where
√

π/icτ is the square root with a positive real part. Equation (2.24),
together with (2.20), allows us to study how a free quantum-mechanical wave
packet evolves in time. An example of particular interest is the evolution of the
minimum uncertainty wave packet (see, e.g., Problem 3.2s in the next chapter
or the book by Landau and Lifshitz [12], p. 48, or the book by Merzbacher
[13]), pp. 18–24.

Note that if we choose c = −iD and L = −∇2, where D is a positive
constant called the diffusion coefficient, we obtain the diffusion equation
−∂n/D∂t + ∇2n = 01. For such an equation we must consider the evolution
toward the future, and as a result we should keep g+(τ) only. Instead of the
Fourier transform, it is more convenient to consider the Laplace transform.
The final result for g+(τ) is obtained by substituting c = −iD in (2.24) and
taking into account (2.10). Dividing this result by −D we find

g+ (r, r′, t − t′)
−D

= θ(t − t′)
(

1
4πD (t − t′)

)d/2

× exp

[
− (r − r′)2

4D(t − t′)

]
. (2.25)

Note that g+/(−D) → δ (r − r′) as t − t′ → 0+. As t increases, g+/(−D)
describes the diffusion of this local initial pulse. It must be stressed that the
average diffusion range increases as the square root of t−t′: ∆ϱ =

√
2Dτ where

ϱ = r − r′, τ = t − t′, and ∆ϱ =
√
⟨ϱ2⟩. For further details see Problem 2.3

and/or [8], p. 862.

1 An equivalent equation governs the time and space dependence of the tempera-
ture, T (r, t), in a medium; in this case, D is replaced by K/c, where K is the
thermal conductivity and c is the specific heat per unit volume.
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2.2 Second-Order Case

The Green’s functions associated with the second-order (in time) differential
equations

[
− 1

c2

∂2

∂t2
− L(r)

]
φ (r, t) = 0 , (2.26)

[
− 1

c2

∂2

∂t2
− L(r)

]
ψ (r, t) = f(r, t) , (2.27)

are defined as the solutions of
[
− 1

c2

∂2

∂t2
− L (r)

]
g (r, r′, t − t′) = δ (r − r′) δ (t − t′) , (2.28)

subject to the same BCs on S as φ(r) and ψ(r); c is a positive constant.
Expressing the general solution g(τ) of (2.28) as

g(τ) =
∫ ∞

−∞

dω′

2π
e−iω′τg(ω′) , (2.29)

and substituting in (2.28), we obtain for g(ω)

g(ω) = G

(
ω2

c2

)
. (2.30)

Since G(z) is analytic in the complex plane except on the real z-axis, it
follows that g(ω) is analytic in the complex ω-plane except in the real or
imaginary ω-axis. The singularities of g(ω) on the real (imaginary) ω-axis
come from the singularities of G(z) in the positive (negative) real semiaxis.
Here we will restrict ourselves on physical grounds to the case where there
are no singularities off the real ω-axis (i.e., all eigenfrequencies ωn are real),
which means that the singularities of G(z) are located on the positive real
z-semiaxis.

Since G(z) has singularities for z real and positive, g(ω) may not be well
defined when ω is real. We again need to employ a limiting procedure:

gC(τ) = lim
C→C0

∫

C

dω

2π
g(ω)e−iωτ = lim

C→C0

∫

C

dω

2π
G

(
ω2

c2

)
e−iωτ . (2.31)

Of all the infinite choices for C, only three are of physical interest. These three
choices are shown in Fig. 2.2a–c. Note that the fourth case shown in Fig. 2.2d
can be expressed in terms of the other three because

gR + gA = g + g− , (2.32)

as can be seen from Fig. 2.2.
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✲
✲ ✲

0
Re{ω}

ω-plane

g ③(a)

✲ ✲

0
Re{ω}

ω-plane

gR ✿(b)

✲ ✲

0
Re{ω}

ω-plane

gA
③(c)

✲
✲ ✲

0
Re{ω}

ω-plane

g− ✿(d)

✲
✛ ✲

0
Re{ω}

ω-plane

g̃> ✿
(e)

✛
✲ ✲

0
Re{ω}

ω-plane

g̃<
③(f)

✲
✛ ✲

0
Re{ω}

ω-plane

g̃ ③✿(g)

Fig. 2.2. Integration paths (solid lines) in the ω-plane for obtaining various Green’s
functions satisfying a second-order (in time) differential equation. The singularities
of the integrand are located on the real ω-axis. The functions eg≶ and eg are differences
of pairs of Green’s function (see text)

Usually we take g, gR, and gA as the three basic Green’s functions; g(τ) is
called the causal Green’s function, or simply the Green’s function, in many-
body and field theory; as we will see in Part III, it is widely used. gR(τ) and
gA(τ) are the retarded and advanced Green’s functions, respectively; they
are used in solutions of inhomogeneous equations; the names retarded and
advanced are connected with the properties that gR(τ) = 0 for τ < 0 and
gA(τ) = 0 for τ > 0, as we shall see below. The Fourier transforms of g(τ),
gR(τ), gA(τ), and g−(τ) are given by
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g(ω′) = lim
s→0+

g(ω′ + isω′) = lim
s→0+

G

(
ω′2

c2
+

2iω′2

c2
s

)

= G+

(
ω′2

c2

)
, (2.33)

gR(ω′) = lim
s→0+

g(ω′ + is) = lim
s→0+

G

(
ω′2

c2
+

2iω′

c2
s

)
, (2.34)

gA(ω′) = lim
s→0+

g(ω′ − is) = lim
s→0+

G

(
ω′2

c2
− 2iω′

c2
s

)
, (2.35)

g−(ω′) = lim
s→0+

g(ω′ − isω′) = lim
s→0+

G

(
ω′2

c2
− 2iω′2

c2
s

)

= G−
(

ω′2

c2

)
, (2.36)

where

ω′s =
{

0+ for ω′ > 0 , (2.37a)
0− for ω′ < 0 , (2.37b)

and ω′ is real.
Since there are three independent gs of interest, we can define three g̃s,

each as a difference of a pair of gs. More explicitly we have

g̃> = g − gA , (2.38)

g̃< = g − gR , (2.39)

g̃ = gR − gA = g̃> − g̃< . (2.40)

Obviously g̃≶(τ) and g̃(τ) can be obtained by integrating g(ω)e−iωτ/2π along
the contours shown in Fig. 2.2e–g, respectively. We remind the reader that
the g̃s satisfy homogeneous equation (2.26) and not (2.28).

Taking into account that the paths for the various gs can be closed in the
lower (upper) ω-plane when τ is larger (smaller) than zero and that there
are no singularities of g(ω) for ω off the real axis, we obtain by inspection of
Fig. 2.2

g(τ) = θ(τ)g̃>(τ) + θ(−τ)g̃<(τ) , (2.41)

gR(τ) = θ(τ)g̃(τ) , (2.42)

gA(τ) = −θ(−τ)g̃(τ) , (2.43)

g−(τ) = −θ(τ)g̃<(τ) − θ(−τ)g̃>(τ) . (2.44)

As we can see from (2.40)–(2.44), knowledge of g̃> and g̃< allows us to deter-
mine all gs and g̃.
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From Fig. 2.2 we can see that

g̃>(r, r′, τ) = lim
s→0+

∫ ∞

0

dω

2π
e−iωτ [g(ω + is) − g(ω − is)]

=
∫ ∞

0

dω

2π
e−iωτ G̃

(
ω2

c2

)

= −
∫ ∞

0

dω

2π
e−iωτ2πi

∑

n

φn(r)φ∗
n (r′) δ

(
ω2

c2
− λn

)

= − ic
2

∑

n

φn(r)φ∗
n (r′)√

λn
exp

(
−ic

√
λnτ

)
, (2.45)

where
√

λn ≥ 0. To obtain (2.45) we have used (1.21), (1.22), (2.34) and
(2.35), as well as (A.3) of Appendix A. Similarly, we have

g̃< (r, r′, τ) = − ic
2

∑

n

φn(r)φ∗
n (r′)√

λn
eic

√
λnτ . (2.46)

From (2.45) and (2.46) it follows that

g̃< (r, r′, τ) = −
[
g̃> (r′, r, τ)

]∗
, (2.47)

g̃ (r, r′, τ) = −c
∑

n

φn(r)φ∗
n (r′)√

λn
sin

(
c
√

λnτ
)

. (2.48)

It follows from (2.48) that g̃ (r, r′, 0) = 0 and dg̃/dτ = −c2δ(r−r′) for τ = 0.
Equation (2.48) in operator form is

g̃(τ) = −c
sin

(
c
√

Lτ
)

√
L

, τ = t − t′ . (2.49)

Consider now the expression

|φ(t)⟩ = − 1
c2

[
g̃(t − t′)

∣∣∣φ̇(t′)
〉

+ ˙̃g(t − t′) |φ(t′)⟩
]

, (2.50)

where the dot denotes differentiation with respect to t and φ̇(t′) is dφ/dt
for t = t′. Since g̃(t − t′) satisfies homogeneous equation (2.26), so does the
function |φ(t)⟩ given by (2.50). Furthermore, φ(t) → φ(t′) and φ̇(t) → φ̇(t′) as
t → t′, in view of the initial conditions satisfied by g̃(r, r′, τ) for τ → 0. Thus
(2.50) determines the solution of (2.26) for an arbitrary time t in terms of φ(t′)
and φ̇(t′) at a particular time t′. Rewriting (2.50) in the r-representation we
have

φ(r, t) = − 1
c2

∫
dr′g̃ (r, r′, t − t′) φ̇(r′, t′)

− 1
c2

∫
dr′ ˙̃g (r, r′, t − t′)φ (r′, t′) . (2.51)
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It is easy to verify that

ψ(r, t) = φ(r, t) +
∫

dr′dt′ gR (r, r′, t − t′) f (r′, t′)

= φ(r, t) +
∫

dr′
∫ t

−∞
dt′ g̃ (r, r′, t − t′) f (r′, t′) (2.52)

satisfies inhomogeneous equation (2.27), where φ(r, t) is the general solution
of (2.26). We have used gR in (2.52) because of the physical argument that
the response ψ(r, t) at time t depends on the values of the source, f(r′, t′), at
times t′ prior to t.

2.2.1 Examples

Consider first the case L = −∇2 in 3-d space for which G±(λ) are given by
(1.40). Substituting in (2.45) we obtain

g̃>(ϱ, τ) = − 1
4πϱ

∫ ∞

0

dω

2π
e−iωτ

(
eiωϱ/c − e−iωϱ/c

)
, (2.53)

where ϱ = r − r′. Using (2.47) we have

g̃<(ϱ, τ) = − 1
4πϱ

∫ ∞

0

dω

2π
eiωτ

(
eiωϱ/c − e−iωϱ/c

)
. (2.54)

Subtracting (2.54) from (2.53) and changing the integration variable from ω
to −ω in the integral involving exp [−iω (ϱ/c + τ)]−exp [−iω (ϱ/c − τ)] we get

g̃ (ϱ, τ) =
1

4πϱ

∫ ∞

0

dω

2π

(
eiωϱ/c − e−iωϱ/c

) (
e+iωτ − e−iωτ

)

=
1

4πϱ

∫ ∞

−∞

dω

2π

(
eiω(ϱ/c+τ) − eiω(ϱ/c−τ)

)

=
1

4πϱ
[δ (ϱ/c + τ) − δ (ϱ/c− τ)]

=
c

4πϱ
[δ(ϱ + cτ) − δ(ϱ − cτ)] . (2.55)

Using (2.55), (2.42), and 2.43) we obtain

gR (r, r′, t − t′) = − c

4π |r − r′|δ (|r − r′|− c(t − t′)) , (2.56)

gA (r, r′, t − t′) = − c

4π |r − r′|δ (|r − r′| + c(t − t′)) . (2.57)

The solution of the inhomogeneous wave equation,
(
∇2 − ∂2

c2∂t2

)
ψ(r, t) = f(r, t) ,
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is then, according to (2.52),

ψ(r, t) = φ(r, t) − 1
4π

∫
dr′dt′ δ

(ϱ

c
− (t − t′)

)
f(r′, t′)/ϱ

= φ(r, t) − 1
4π

∫
dr′ f(r′, t − |r − r′| /c)

|r − r′| . (2.58)

Equation (2.58) is the basic result in electromagnetic theory.
In order to obtain the Green’s functions associated with the 2-d wave

equation, we will use the following argument, as presented in [8]. A point
source at the point (x′

1, x′
2) of a 2-d space is equivalent to a uniformly dis-

tributed source along a line parallel to the x3-axis and passing through the
point (x′

1, x′
2, 0). Hence, the 2-d g can be obtained by integrating the 3-d g

over the third component of r′, x′
3. Writing r = R+x3i3, r′ = R′ +x′

3i3 and
ϱ2 = (R − R′)2 + (x3 − x′

3)
2, we obtain for the 2-d g̃

g̃ (R, R′, τ) =
∫ ∞

−∞
dx′

3 g̃(ϱ, τ) =
∫ ∞

−∞
dy g̃

(√
P 2 + y2, τ

)
, (2.59)

where P = |R − R′| and y = x3 − x′
3. Substituting (2.55) into (2.59), taking

into account (A.3), and performing the integration, we get the final result for
the 2-d g̃,

g̃(R, R′, τ) = − ε̄(τ)θ(c |τ | − P )c
2π

√
c2τ2 − P 2

, (2.60)

where ε̄(τ) = 1 for τ > 0 and ε̄(τ) = −1 for τ < 0.
The 2-d gR is then

gR(R, R′, τ) = − θ(cτ − P )c
2π

√
c2τ2 − P 2

. (2.61)

The 1-d gR can be obtained by integrating the 2-d gR once more over x′
2.

We find
gR(x, x′, τ) = − c

2
θ (cτ − |x − x′|) . (2.62)

A very interesting discussion of the physical significance of the results for
gR associated with the wave equation in 3-d, 2-d, and 1-d is given in [8],
pp. 838–853.

We will conclude this chapter by obtaining the various Green’s functions
associated with the 3-d Klein–Gordon equation, which corresponds to L(r)
being equal to −∇2 + µ2, where µ is a positive constant. The eigenvalues are
λn = k2 + µ2 and the eigenfunctions ⟨r |φn⟩ = eik · r/

√
Ω. Substituting in

(2.46) we obtain

g̃<(r, r′, τ) = − ic
2

∫
d3k

(2π)3
exp [i (k ·ϱ + ck0τ)]

k0
, (2.63)
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where k0 =
√

λn =
√

k2 + µ2 and ϱ = r−r′. After performing the integration
over the angle variables, we obtain

g̃< (r, r′, τ) = − c

4πϱ

∫ ∞

−∞

dk

2π

k

k0
exp [i (kϱ + ck0τ)] =

c

4πϱ

∂f

∂ϱ
, (2.64)

where
f = i

∫ ∞

−∞

dk

2π

exp [i (kϱ + ck0τ)]
k0

; (2.65)

changing the integration variable in (2.65) to φ, where

k = µ sinh(φ) ; k0 = µ cosh(φ) ,

we obtain

f =
i

2π

∫ ∞

−∞
dφ exp {iµ [ϱ sinh(φ) + cτ cosh(φ)]} . (2.66)

In evaluating the integral (2.66) one has to distinguish four cases according
to the signs of c2τ2 − ϱ2 and τ . For example, for τ > 0 and c2τ2 − ϱ2 > 0 the
quantity ϱ sinh(φ) + cτ cosh(φ) can be written as

√
c2τ2 − ϱ2 cosh (φ + φ0),

where tanh (φ0) = ϱ/cτ . Substituting in (2.66) we obtain

f =
i

2π

∫ ∞

−∞
dφ exp

[
iµ

√
c2τ2 − ϱ2 cosh (φ + φ0)

]

= −1
2
H(1)

0

(
µ
√

c2τ2 − ϱ2
)

. (2.67)

Similar expressions are obtained for the other three cases. Performing the
differentiation with respect to ϱ implied by (2.64) (and keeping in mind the
discontinuities of f at c2τ2 = ϱ2, which produce δ functions), we obtain,
finally, for g̃< the following expression:

g̃<(r, r′, t − t′) = ε̄(τ)δ(ν)
c

4π
− θ(ν)ε̄(τ)

µc

4π
√

ν
J1

(
µ
√

ν
)

−θ (ν)
iµc

8π
√

ν
Y1

(
µ
√

ν
)

+θ(−ν)
iµc

4π2
√
−ν

K1

(
µ
√
−ν

)
, (2.68)

where
ν = c2τ2 − ϱ2 , τ = t − t′ ; ϱ = r − r′ . (2.69)

From (2.47) we obtain for g̃>(r, r′, t − t′)

g̃>(r, r′, t − t′) = −Re
{
g̃<(r, r′, t − t′)

}
+ i Im

{
g̃<(r, r′, t − t′)

}
. (2.70)
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The remaining gs and g̃s are then

g̃(r, r′, t − t′) = −ε̄(τ)δ(ν)
c

2π
+ θ (ν) ε̄(τ)

µc

4π
√

ν
J1

(
µ
√

ν
)

, (2.71)

g(r, r′, t − t′) = −δ(ν)
c

4π
+ θ(ν)

µc

8π
√

ν
J1

(
µ
√

ν
)

+i Im
{
g̃<(r, r′, t − t′)

}
, (2.72)

gR(r, r′, t − t′) = −θ(τ)
c

2π

[
δ(ν) − µ

2
√

ν
θ(ν)J1

(
µ
√

ν
)]

, (2.73)

gA(r, r′, t − t′) = −θ(−τ)
c

2π

[
δ(ν) − µ

2
√

ν
θ(ν)J1(µ

√
ν)

]
. (2.74)

As µ → 0+, the above expressions reduce to those obtained for the wave equa-
tion. To obtain this reduction, take into account that δ(ν) = δ

(
c2τ2 − ϱ2

)
=

[δ(cτ − ϱ) + δ(cτ + ϱ)] /2ϱ. More information about the gs and g̃s associated
with various relativistic equations can be found in the book by Bogoliubov
and Shirkov [14]. Note the following correspondence of our notation with that
of [14]: gR → −Dret, gA → −Dadv, g → −Dc, g̃ → −D, g̃> → −D−,
g̃< → D+.

2.3 Summary

2.3.1 Definition

The Green’s function g associated with a first-order (in time) partial differ-
ential equation of the form i∂φ/c ∂t − L(r)φ = 0 is defined as the solution of
the equation

[
i
c

∂

∂t
− L(r)

]
g(r, r′, t, t′) = δ(r − r′)δ(t − t′) , (2.3)

subject to certain homogeneous BCs on the surface S of the domain Ω of
r, r′. Here L(r) is a linear, hermitian, time-independent operator possessing
a complete set of eigenfunctions as in Chap. 1. The constant c is either real (in
which case it will be taken as positive without loss of generality) or imaginary.
The former case corresponds to a Schrödinger-type equation, while the latter
corresponds to a diffusion-type equation.

2.3.2 Basic Properties

The Green’s function g is a function of the difference τ ≡ t − t′. The Fourier
transform of g(r, r′, τ) with respect to τ, g(r, r′; ω) is directly related to the
time-independent Green’s function examined in Chap. 1. More explicitly,
g(r, r′; ω) = G(r, r′; ω/c) ≡

〈
r

∣∣ (ω/c − L)−1
∣∣ r′〉. For real ω, G(ω/c) may
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not be well defined; thus we must obtain g(τ) by a limiting procedure of the
type

gC(τ) = lim
C→C0

∫

C

dω

2π
G

(ω

c

)
e−iωτ , (2.7)

as the integration path C approaches the real ω-axis C0. One can obtain
infinitely many g(τ)s depending on how C approaches the real axis. However,
there are only two “natural” (i.e., corresponding to situations of physical
interest) choices of C shown in Fig. 2.1; the Green’s functions corresponding
to these two paths, g±(τ), are then given by

g±(τ) =
∫ ∞

−∞

dω′

2π
G±

(
ω′

c

)
e−iω′τ . (2.8)

For τ > 0 (τ < 0) we can close the integration paths with an infinite semicircle
in the lower (upper) ω half-plane. Consequently, g+(τ) = 0 for τ < 0 and
g−(τ) = 0 for τ > 0.

Some particular examples of g(τ) associated with L = −∇2 were presented
in §2.1.1.

2.3.3 Definition

The Green’s function g(τ) associated with a second-order (in time) differential
equation is defined as the solution of

[
− 1

c2

∂2

∂t2
− L(r)

]
g (r, r′, t − t′) = δ (r − r′) δ(t − t′) , (2.28)

where τ ≡ t − t′.

2.3.4 Basic Properties

The Fourier transform of g(τ), g(ω), is related to G(z) defined in Chap. 1 by

g(ω) = G(ω2/c2) . (2.30)

Because of the singularities of G(z) on the real axis, one needs to employ
a limiting procedure:

gC(τ) = lim
C→C0

∫

C

dω

2π
g(ω)e−iωτ = lim

C→C0

∫

C

dω

2π
G

(
ω2

c2

)
e−iωτ . (2.31)

Again there are infinitely many gC(τ)s one can obtain depending on the way
path C approaches the real axis C0. In the present case there are only three
independent “natural” (i.e., of physical interest) choices, shown in Fig. 2.2
as g, gR, and gA. In particular, g(τ) or its Fourier transform g(ω′) is the
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so-called causal Green’s function or simply Green’s function in many-body or
field theory. It is given by the Fourier transform of (2.33)

g(τ) =
∫ ∞

−∞

dω′

2π
G+

(
ω′2/c2

)
e−iω′τ . (2.33′)

gR(τ) is the retarded Green’s function, which has the property gR(τ) = 0 for
τ < 0; gA(τ) is the advanced Green’s function , which satisfies the relation
gA(τ) = 0 for τ > 0; g−(τ) = gR(τ)+gA(τ)−g(τ). All these Green’s functions
are interrelated.

Some particular examples associated with L = −∇2 or L = −∇2 + µ2

were presented in Sect. 2.2.1.

2.3.5 Use

Having g±(τ), which satisfies (2.3), we can:

1. Solve the homogeneous equation i∂φ(r, t)/c ∂t = L(r)φ(r, t) as

φ(r, t) =
i
c

∫
g̃ (r, r′, t − t′)φ (r′, t′) dr′ , (2.20)

where
g̃(τ) = g+(τ) − g−(τ) , (2.9)

in terms of the initial value of φ, φ (r′, t′).
2. Solve the inhomogeneous equation

i
∂ψ(r, t)

c ∂t
− L(r)ψ(r, t) = f(r, t) . (2.2)

The function ψ(r, t) is given by

ψ(r, t) = φ(r, t) +
∫

dr′dt′ g+ (r, r′, t − t′) f(r′, t′) , (2.21)

where φ(r, t) is the solution of the homogeneous equation.
3. Use g0(τ) and L1(t) to obtain information about the solution of

i
∂ψ(r, t)

c ∂t
− L0ψ − L1ψ = 0 ,

where g0 corresponds to L0. This aspect will be discussed in Chap. 4.
4. Relate g±(τ) to the commutators or anticommutators of field operators

in quantum field theory. These relations will be given in Part III.

Similarly, the various Green’s functions satisfying (2.28) can also be used for
solving the corresponding homogeneous and inhomogeneous equations
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φ(r, t) = − 1
c2

∫
dr′g̃ (r, r′, t − t′) φ̇ (r′, t′)

− 1
c2

∫
dr′ ˙̃g (r, r′, t − t′)φ (r′, t′) , (2.51)

ψ(r, t) = φ(r, t) +
∫

dr′dt′ gR (r, r′, t − t′) f (r′, t′)

= φ(r, t) +
∫

dr′
∫ t

−∞
dt′ g̃ (r, r′, t − t′) f (r′, t′) , (2.52)

as well as for carrying out a perturbative approach; they are also related to
the commutators and anticommutators of field operators. It is worthwhile
pointing out that the general solution of the inhomogeneous wave equation(
∇2 − ∂2/c2∂t2

)
ψ(r, t) = f(r, t) is given by

ψ(r, t) = φ(r, t) − 1
4π

∫
dr′dt′ δ

(ϱ

c
− (t − t′)

) f(r′, t′)
ϱ

= φ(r, t) − 1
4π

∫
dr′ f(r′, t − |r − r′| /c)

|r − r′| , (2.58)

where φ(r, t) is the general solution of the homogeneous wave equation.

Further Reading

• Several interesting applications of time-dependent Green’s functions are
given in the first volume of the classic two-volume text by Morse and
Feshbach [8], pp. 837–867.

• In the book by Bogoliubov and Shirkov [14], time-dependent Green’s func-
tions are connected to unequal time commutators of field operators for
noninteracting quantum fields. See pp. 136–153.

• The book by Byron and Fuller [3], pp. 442–459, gives an introduction to
time-dependent Green’s functions.

• A more systematic approach with many examples is presented in the book
by Duffy [4].

Problems

2.1. Prove (2.20).
Hint : Replace (2.17) in (2.16), take the product ⟨r |φ(t)⟩, and on the rhs

of (2.16) introduce the unit operator
∫

dr′ |r′⟩ ⟨r′| directly in front of |φ(t′)⟩.

2.2s. Prove (2.24).
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2.3. Consider the 1-d diffusion equation

∂n

∂t
− D

∂2n

∂x2
= 0 ,

where D is the diffusion constant and n(x, t) is the concentration of particles.
Show that:

(a) The g̃(x, x′; t) for the diffusion equation is given by

g+(x, x′; t) = g̃(x, x′; t) =
1
2

√
1

πDt
exp

[
− (x − x′)2

4Dt

]
, t ≥ 0 .

(b) If n(x, 0) is given by

n(x, 0) =
1

δx
√

2π
exp

[
− x2

2δx2

]
,

then

n(x, t) =
1√

2π (δx2 + 2Dt)
exp

[
− x2

2 (δx2 + 2Dt)

]
, t ≥ 0 .

Thus [δx(t)]2 = δx2 + 2Dt, t ≥ 0.

2.4. Consider the time-dependent scalar wave equation in d-dimensions (d =
1, 2, 3) with BC ψ(r) = 0 for r = a (r2 =

∑d
i=1 x2

i ). The initial condition is
ψ(r, 0) = Aδ(r), ψ̇(r, 0) = 0.

(a) Will the initial pulse be refocused at the point r = 0?
(b) For the case d = 2 give a graph of ψ(r, t) for various values of t in the

interval (0 < t < 10a/c).

Hint : See [8], pp. 851–853.

2.5. Calculate the Green’s functions satisfying the equation

∇2G − a2 ∂G

∂t
− 1

c2

∂2G

∂t2
= δ (r − r′) δ (t − t′)

for d = 1, 2, 3 spatial dimensions and proper BCs at infinity. Take the limits
c → ∞ or a → 0 and verify that you obtain the diffusion (with D = a−2) and
the wave Green’s function, respectively.

What is the physical interpretation of this G?
Hint : See [8], p. 865.



Part II

Green’s Functions
in One-Body Quantum Problems



3

Physical Significance of G.
Application to the Free-Particle Case

Summary. The general theory developed in Chap. 1 can be applied directly to the
time-independent one-particle Schrödinger equation by making the substitutions
L(r) → H(r), λ → E, where H(r) is the Hamiltonian. The formalism presented in
Chap. 2, Sects. 2.1,2.2 is applicable to the time-dependent one-particle Schrödinger
equation.

3.1 General Relations

The nonrelativistic, one-particle, time-independent Schrödinger equation has
the form

[E −H(r)]ψ(r) = 0 , (3.1)

and the corresponding Green’s function satisfies the equation

[E −H(r)]G(r, r′; E) = δ(r − r′) . (3.2)

Here H(r) is the Hamiltonian operator in the r-representation, and G(r, r′; E)
as a function of r or r′ satisfies the same boundary conditions as the wave-
function ψ(r), i.e., continuity of ψ(r) and ∇ψ (unless the potential has an
infinite discontinuity) and finite (or zero) value at infinity. It is clear that the
general formalism developed in Chap. 1 is directly applicable to the present
case with the substitutions

L(r) → H(r) , (3.3a)
λ → E , (3.3b)

λ + is = z → z = E + is , (3.3c)
λn → En , (3.3d)

φn(r) → φn(r) . (3.3e)

Thus, the basic relation expressing G in terms of the eigenvalues En and the
complete set of orthonormal eigenfunctions φn of H is
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G(r, r′; z) =
∑

n

φn(r)φ∗
n (r′)

z − En
, (3.4)

or, in the bra and ket notation,

G(z) =
∑

n

|φn⟩ ⟨φn|
z − En

=
1

z −H . (3.5)

The operator G+(E) ≡ lim(E + is − H)−1 as s → 0+ is also known as the
resolvent operator [13], p. 525.

The singularities of G(z) vs. z are on the real z-axis. They can be used as
follows:

1. The position of the poles of G(z) coincide with the discrete eigenenergies
corresponding to H, and vice versa.

2. The residue at each pole En of G(r, r′; z) equals
∑

i φi(r)φ∗
i (r′), where

the summation runs over the fn degenerate eigenstates corresponding to
the discrete eigenenergy En.

3. The degeneracy fn can be found by integrating the residue (Res) of the
diagonal matrix element G(r, r; En) over r, i.e.,

fn =
∫

drRes{G(r, r; En)} = Tr {Res{G(En)}} . (3.6)

For a nondegenerate eigenstate, fn = 1, and consequently

φn(r)φ∗
n (r′) = Res{G(r, r′; En)} . (3.7)

From (3.7) we see that

|φn(r)| =
√
|Res{G(r, r; En)}| , (3.8)

pn(r) = −i ln

{
Res {G(r, 0; En)}√

|Res {G(r, r; En)} × Res {G(0, 0; En)}|

}
, (3.9)

where pn(r) is the phase of φn(r) [assuming that the phase of φn(r) for
r = 0 is zero].

4. The branch cuts of G(z) along the real z-axis coincide with the continuous
spectrum of H, and vice versa. [We assume that the continuous spectrum
of H consists of extended (or propagating) eigenstates. For the case of
localized eigenstates and continuous spectrum see Problem 3.1s].

5. The density of states per unit volume ϱ(r, E) is given by

ϱ(r; E) = ∓ 1
π

Im
{
G±(r, r; E)

}
. (3.10)

6. The density of states N (E) is given by integrating ϱ(r, E) over r, i.e.,

N (E) =
∫

drϱ(r; E) = ∓ 1
π

Tr
{
Im

{
G±(E)

}}
. (3.11)
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7. Using the results of Chap. 2 we can write the solution of the time-
dependent Schrödinger equation,1

(
i! ∂

∂t
−H

)
|ψ(t)⟩ = 0 , (3.12)

as follows:
|ψ(t)⟩ = U(t − t0) |ψ(t0)⟩ , (3.13)

where the time-evolution operator,

U(t − t0) = exp [−i(t − t0)H/!] , (3.14)

can be expressed simply in terms of the Green’s function

U(t − t0) = i!g̃(t − t0) = i!
∫ ∞

−∞

dω

2π
exp[−iω(t − t0)]G̃(!ω) . (3.15)

Equation (3.13) can be written in the r-representation as

ψ(r, t) = i!
∫

g̃ (r, r′, t − t0)ψ (r′, t0) dr′ . (3.13′)

3.2 The Free-Particle (H0 = p2/2m) Case

We denote by H0 the free-particle Hamiltonian

H0 =
p2

2m
= − !2

2m
∇2 (3.16)

and by G0(z) the corresponding Green’s function
(

z +
!2

2m
∇2

r

)
G0(r, r′; z) = δ(r − r′) . (3.17)

Equation (3.17) can be written as
(

2mz

!2
+ ∇2

r

) [
!2

2m
G0(r, r′; z)

]
= δ(r − r′) . (3.18)

Comparing (3.18) with (1.36) we see that

G0(r, r′; z) =
2m

!2
G

(
r, r′;

2mz

!2

)
, (3.19)

where G(r, r′; z) is the Green’s function corresponding to the operator L =
−∇2

r; this Green’s function was calculated in Sect. 1.2.
1 ! ≡ h/2π, where h is Planck’s constant.
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The free time-dependent nonrelativistic Schrödinger equation has the form
of (2.1) with c = 1/! and L = −

(
!2/2m

)
∇2. Thus, the only difference from

(2.23) is that the eigenvalue k2 must be replaced by !2k2/2m. By changing
variables from k2 to q2 = !2k2/2m, the integral is reduced to the one in (2.24)
times

(
2m/!2

)d/2 with ϱ2 replaced by ϱ2
(
2m/!2

)
. Putting c = 1/! at the end

we find g̃ for the free-particle time-dependent Schrödinger equation:

g̃ (r, r′; t − t′) = − i
!

( m

2πi!t

)d/2
exp

[
i
m (r − r′)2

2!(t − t′)

]
. (3.20)

(For an application of (3.13′) and (3.20) see Problem 3.2s).
For the Green’s function of the free-particle time-independent Schrödinger

equation we have the following explicit results.

3.2.1 3-d Case

G0 (r, r′; E) = − m

2π!2

exp (−k0 |r − r′|)
|r − r′| , E ≤ 0 , (3.21)

G±
0 (r, r′; E) = − m

2π!2

exp (±ik0 |r − r′|)
|r − r′| , E ≥ 0 , (3.22)

where

k0 =

√
2m |E|

!2
≥ 0 . (3.23)

Here G0(z) has a branch cut along the positive E-axis; this branch cut corre-
sponds to the continuous spectrum of H0. The discontinuity of G across the
branch cut, G̃, where

G̃ (r, r′; E) = G+ (r, r′; E) − G− (r, r′; E) , (3.24)

is given in the present case by

G̃0 (r, r′; E) = −2πi
m

2π2!2

sin (k0 |r − r′|)
|r − r′| θ(E) . (3.25)

In particular, the DOS per unit volume is

ϱ0(r; E) =
G̃0 (r, r; E)

−2πi
=

mk0

2π2!2
θ(E) = θ(E)

m3/2

√
2π2!3

√
E . (3.26)

Note that ϱ0 (r; E) does not depend on r due to the translational invariance
of the Hamiltonian H0.
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3.2.2 2-d Case

G0 (r, r′; E) = − m

π!2
K0 (k0 |r − r′|) , E < 0 , (3.27)

G±
0 (r, r′; E) = − im

2!2
H(1)

0 (±k0 |r − r′|) , E > 0 , (3.28)

where k0 is given by (3.23), K0 is the zeroth-order modified Bessel function,
and H(1)

0 is the Hankel function of the first kind of zero order. The quantity
G̃0 (r, r′; E) is then

G̃0 (r, r′; E) = −2πiθ(E)
m

2π!2
J0 (k0 |r − r′|) , (3.29)

where J0(x) is the Bessel function of the first kind of zero order and k0 is
given by (3.23). To obtain (3.29) from (3.28) we have used the relations [1]

H(1)
0 (−x) = −H(2)

0 (x)

and
H(1)

0 = J0 + iY0 ; H(2)
0 = J0 − iY0 ,

where Y0 is the Bessel function of the second kind of zero order, see [1]. The
DOS per unit area is

ϱ0(r; E) =
G̃0 (r, r; E)

−2πi
= θ(E)

m

2π!2
. (3.30)

3.2.3 1-d Case

G0(x, x′; E) = − m

!2k0
exp (−k0 |x − x′|) , E < 0 , (3.31)

G±
0 (x, x′; E) = ∓ im

!2k0
exp (±ik0 |x − x′|) , E > 0 , (3.32)

where k0 is given by (3.23). The quantity G̃0 is then

G̃0(x, x′; E) = −2πiθ(E)
m

π!2k0
cos (k0 |x − x′|) . (3.33)

The DOS per unit length is

ϱ(x; E) =
G̃0(x, x; E)

−2πi
= θ(E)

m

π!2k0
= θ(E)

√
m√

2π!
1√
E

. (3.34)

It must be stressed that the DOS is a quantity of great importance for most
branches of physics. The reason is that most quantities of physical interest
depend on the DOS. For example, the thermodynamic properties of a system
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of noninteracting particles can be expressed in terms of the DOS of each
particle; transition probabilities, scattering amplitudes, etc., depend on the
DOS of the final and initial states.

In Fig. 3.1 we plot the DOS vs. E for a free particle whose motion in 3-d,
2-d, and 1-d space is governed by the nonrelativistic Schrödinger equation. In
all cases the spectrum has a lower bound (at E = 0) below which the DOS is
zero. Energies at which the continuous spectrum terminates are called band
edges in solid-state physics. We will adopt this name here.

As we shall see later, the behavior of ϱ(E), G̃(E), and G(z) for E or z
near a band edge EB is of great physical interest. It should be noted that
the analytic structures of ϱ0(E) and G̃0(E) near the band edge, EB = 0, are

Fig. 3.1. Density of states N (E) (N (E)dE gives the number of eigenstates in the
energy interval [E, E+dE]) vs. E for a free particle obeying the Schrödinger equation
(energy–momentum relation E = !2k2/2m) in a d-dimensional (d = 1, 2, 3) space
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identical [compare (3.25), (3.29), and (3.33) with (3.26), (3.30), and (3.34),
respectively]. Furthermore, the analytic behavior of G̃(E) or ϱ(E) around an
arbitrary energy E0 determines the analytical properties of G(z) for z around
E0. (See Appendix D and the book by Muskhelishvili [15].) Thus, if G̃(E) or
ϱ(E) is continuous around E0, then G±(E) are continuous functions of E for
E in the vicinity of E0; if G̃(E) (or ϱ(E)) has a discontinuity at E0, then
G±(E) exhibit a logarithmic singularity; finally, if G̃(E) (or ϱ(E)) blows up
at E0 as (E − E0)−γ where 0 < γ < 1, then G±(E) also approach infinity as
(E − E0)

−γ .
The present results (see, e.g., Fig. 3.1) show that the behavior of ϱ0(E)

(and hence G̃0(E) and G±
0 (E)) near the band edge EB = 0 depends critically

on the dimensionality of the system.
In the 3-d case the DOS and G̃(E) are continuous functions of E ap-

proaching zero like
√

E − EB in the limit E → E+
B , [see (3.25) and (3.26)]. As

a result of the general theorem stated in Appendix D, G±(E) are continuous
functions of E as E crosses the band edge [compare (3.21) with (3.22)].

In the 2-d case the DOS and G̃(E) are discontinuous at E = 0, see
(3.29) and (3.30). As a result the Green’s function G(z) develops a loga-
rithmic singularity as z → 0 [see (3.27) and (3.28) and take into account that
K0(x) → − ln(x) and H(1)

0 (±x) → (2i/π) ln(x) as x → 0+].
Finally, in the 1-d case the DOS and G̃(E) approach infinity as 1/

√
E in

the limit E → 0+. As a result of the general theorems stated in Appendix D,
G(z) blows up like 1/

√
z as z → 0, see (3.31) and (3.32).

The above statements connecting the dimensionality with the behavior of
G(z), G̃(E), and the DOS near a band edge were based upon the results for
the free-particle case. We shall see in Chap. 5 that the same connection exists
for almost all cases where the Hamiltonian H is periodic.

3.3 The Free-Particle Klein–Gordon Case

In this section we calculate the density of states (i.e., the number of eigenstates
in the energy interval [E, E + dE] divided by dE) for a free particle of rest
mass m obeying the time-independent Klein–Gordon equation, which has the
form (

E2

!2c2
− µ2 + ∇2

r

)
ψ(r) = 0 , (3.35)

with µ = cm/!. The formalism developed in Chap. 1 is directly applicable to
the present case if one makes the substitutions

L(r) → −∇2
r , (3.36)

λ → E2

!2c2
− µ2 . (3.37)
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The DOS N (E) and ϱ(E) with respect to the energy variable E can be ob-
tained from the DOS Nλ(λ) and ϱλ(λ) with respect to the variable λ by
a simple change of variables according to (3.37), i.e.,

N (E) = Nλ(λ(E))
dλ

dE
= Nλ

(
E2

!2c2
− µ2

)
2E

!2c2
, (3.38)

ϱ(E) = ϱλ(λ)
dλ

dE
= ϱλ

(
E2

!2c2
− µ2

)
2E

!2c2
, (3.39)

where Nλ(λ), ϱλ(λ) can be obtained immediately by use of (1.27), (1.28),
(1.40), (1.49), and (1.56). After some simple algebra we obtain for the DOS
of a free particle of rest mass m obeying the Klein–Gordon equation

ϱ(E) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

θ
(
E − mc2

) E
√

E2 − m2c4

2π2!3c3
, 3-d, (3.40)

θ
(
E − mc2

) E

2π!2c2
, 2-d, (3.41)

θ
(
E − mc2

) E

π!c
√

E2 − m2c4
, 1-d. (3.42)

In (3.40)–(3.42) we have kept only the positive energy solutions. If we want
to keep the negative energy solutions as well, we must replace E by |E| in the
above equations.

Note first that (3.40)–(3.42) reduce to (3.26), (3.30), and (3.34), respec-
tively, by introducing E′ = E − mc2 and assuming that E′ ≪ mc2. Secondly,
when m = 0, we obtain the case of a free particle obeying the wave equation.
Examples of such particles are those resulting from quantizing classical wave
equations such as the electromagnetic equations (the corresponding particles
are, of course, the photons and c is the velocity of light) or the equation de-
scribing the propagation of sound waves in a fluid continuous medium (the
corresponding particles are called phonons and c is the velocity of sound).
Thus, for particles whose energy E is related to their momentum ! |k| by the
relation

E = !c |k| , (3.43)

the DOS is obtained from (3.40)–(3.42) by setting m = 0. We have explicitly

ϱ(E) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

θ(E)
E2

2π2!3c3
, 3-d, (3.44)

θ(E)
E

2π!2c2
, 2-d, (3.45)

θ(E)
1

π!c
, 1-d. (3.46)

It should be noted that the DOS given in (3.40)–(3.42) and (3.44)–(3.46) are
not related to the corresponding Green’s functions in the way described in
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Sect. 3.2. The reason is that the relation between λ and E is not the same as
in the Schrödinger case but is given by (3.37).

In Fig. 3.2 we plot the DOS vs. E for the case where the energy vs. k is
given by (3.43).

In most cases it is easier to obtain first the number of states per unit
volume R(E) ≡

∫ E
−∞ dE′ϱ (E′) and then to calculate ϱ(E) by dR(E)/dE. As is

pointed out in Problem 1.5s, the states of a particle moving in a homogeneous
or periodic medium are characterized by their wavevector k; the corresponding
eigenenergy is a function of k: ε = f(k). For isotropic media ε = f (|k|) and
the surfaces of constant energy are spheres.

Fig. 3.2. Density of states N (E) (N (E)dE gives the number of eigenstates in the
energy interval [E, E + dE]) vs. E for a free particle obeying the wave equation
(energy–momentum relation E = !c |k|) in a d-dimensional (d = 1, 2, 3) space



50 3 Physical Significance of G. Application to the Free-Particle Case

The number of states per unit volume, R(E), for a homogeneous (or peri-
odic) medium is given by

R(E) =
Ωk(E)
(2π)d

, (3.47)

where Ωk(E) is the volume of the region(s) in k-space containing all
points k for which f (k) < E. For the Klein–Gordon case, where f(k) =√

m2c4 + c2!2k2, the inequality f(k) < E defines a d-dimensional sphere of
radius k =

√
(E2 − m2c4)/!c. Hence the number of states per unit volume,

R(E), is given by (when E ≥ mc2)

R(E) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
(2π)3

4π

3

(
E2 − m2c4

)3/2

!3c3
, 3-d, (3.48a)

1
(2π)2

π
(
E2 − m2c4

)

!2c2
, 2-d, (3.48b)

1
2π

2
√

E2 − m2c4

!c
, 1-d. (3.48c)

By differentiating (3.48a)–(3.48c) we obtain (3.40–3.42).

3.4 Summary

Knowledge of G(z) ≡ (z−H)−1 permits us to obtain the discrete eigenenergies,
the corresponding eigenfunctions, and the density of states in the continuous
parts of the spectrum of H. Knowledge of g̃(τ) allows us to calculate the time
development of the wavefunction.

For the simple case where H = H0 ≡ p2/2m, we obtain the density of
states per unit volume (area or length) as follows:

ϱ0(E) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

θ(E)
m3/2

√
2π2!3

√
E , 3-d, (3.26)

θ(E)
m

2π!2
, 2-d, (3.30)

θ(E)
m1/2

√
2π!

1√
E

, 1-d. (3.34)

The behavior of ϱ0(E) near the boundary of the spectrum (E = 0) depends
strongly on the dimensionality. The behavior of ϱ(E) around an energy E0

determines the analytical structure of G±(E) around E0. Thus, continuity of
ϱ(E) (as in the 3-d case) implies continuity of G±(E); discontinuity of ϱ(E)
(as in the 2-d case) implies a logarithmic singularity in G±(E); and divergence
of ϱ(E) (as in the 1-d case) implies divergence of G±(E) with the same critical
exponent. The quantity ϱ0(E) is plotted in Fig. 3.1.
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We calculated also the density of states for a free particle of mass m
obeying the Klein–Gordon equation. In the particular case where m = 0, we
have the wave equation, which implies an energy–momentum relation of the
form E = !c |k| and for which the density of states per unit volume (area or
length) is

ϱ(E) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

θ(E)
E2

2π2!3c3
, 3-d, (3.44)

θ(E)
E

2π!2c2
, 2-d, (3.45)

θ(E)
1

π!c
, 1-d. (3.46)

ϱ(E) is plotted in Fig. 3.2.
The number of states per unit volume, R(E) =

∫ E
−∞ dE′ϱ (E′), for a par-

ticle moving in a d-dimensional homogeneous or periodic space is given by

R(E) =
Ωk

(2π)d
, (3.47)

where Ωk is the volume of the region(s) in k-space whose points satisfy the
inequality f (k) < E.

Further Reading

There are many excellent textbooks on quantum mechanics. In addition to
the book by Merzbacher [13] and the book by Landau and Lifshitz [12], we
mention here Sakurai’s book [16], which uses a more modern approach and
notation (see in particular pp. 51–60), the book by Bethe [17], which includes
a very brief introduction to the Klein–Gordon equation (pp. 181–183), and the
Flügge book [18], which in a problem-solution format provides an extensive
list of applications (see in particular Problem 17). Finally, we mention the
classical book by Schiff [19].

Problems

3.1s. Consider a quantum nonrelativistic particle moving within a d-dimensi-
onal cube of “volume” Ld. Assume that the spectrum becomes continuous in
the limit L → ∞ and that all eigenstates are of the form ψ (r − ri), where
|ψ (r − ri)| < exp (− |r − ri| /Lc) as |r − ri| → ∞, where the decay length,
Lc, is finite for all eigenstates. Strongly disordered potentials could produce
such a situation, as we shall see in Chap. 9.

Show that the limit L → ∞ of the integral of the local DOS R(r, E) =∫ E
−∞ dE′ϱ (r, E′), develops finite discontinuities (most of them exponentially
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small) for almost all energies E. Hence R(E) cannot be defined in the limit
L → ∞ since it develops singularities almost everywhere of the form known as
the devil’s staircase. On the other hand, if the states are ordinary propagating
states (extended over the whole “volume” Ld), the number of states R(E)
approaches a regular function as L → ∞.

3.2s. Consider the time evolution of a free quantum-mechanical particle obey-
ing the 1-d Schrödinger equation

[
i!∂t +

(
!2/2m

)
∂xx

]
ψ(x, t) = 0 ,

with initial (t = 0) wavefunction of the form

ψ(x, 0) =
1√

δx(2π)1/4
exp

[
i
!p0x − x2

4(δx)2

]
.

Find:

(a) ψ(x, t)
(b) ψ̃(p, t) =

∫ ∞
−∞ dx e−ipx/!ψ(x, t)

(c) δx(t) =
√
⟨x(t)2⟩ − ⟨x(t)⟩2

(d) δpx(t) =
√
⟨px(t)2⟩ − ⟨px(t)⟩2

(e) δx(t)δpx(t)

3.3. Show that for a particle moving in a d-dimensional space and whose
energy–wavevector relation is ε ∼ |k|s the DOS per unit volume is of the form

ϱ(E)
{
∼ E(d/s)−1 , E > 0 ,
= 0 , E < 0 .

Hint : See the solution of Problem 1.5s.

3.4s. The energy of a quantum in liquid He-4 depends on the wavevector k
as in Fig. 3.3. Give a schematic plot of the number of states per unit volume,
R(E), and then the DOS in the three regions 0 < E < ∆, ∆ < E < ∆′, and
∆′ < E.
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|k|

E

k1 k0 k2

∆′

∆

∆′ − !2(k−k1)2

2m′
0 ∆ + !2(k−k0)2

2m0

!2k2

2m

!ck

Fig. 3.3. Energy–wavevector relation of elementary excitations in liquid He-4
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Green’s Functions and Perturbation Theory

Summary. The problem of finding the eigenvalues and eigenfunctions of a Hamil-
tonian H = H0 +H1 can be solved in three steps: 1) Calculate the Green’s function
G0(z) corresponding to H0. 2) Express G(z) as a perturbation series in terms of
G0(z) and H1, where G(z) is the Green’s function associated with H. 3) Extract
from G(z) information about the eigenvalues and eigenfunctions of H.

4.1 Formalism

4.1.1 Time-Independent Case

In this chapter we consider the very important and common case where the
one-particle Hamiltonian H can be separated into an unperturbed part H0

and a perturbation H1

H = H0 + H1 . (4.1)

It is implicitly assumed that H0 is such that its eigenvalues and eigenfunctions
can be easily obtained. The question is to determine the eigenvalues and
eigenfunctions of H. Very often this goal is achieved by taking the following
indirect path:

1. Determine first the Green’s function G0 associated with the unperturbed
part H0.

2. Express the Green’s function G associated with the total Hamiltonian H
in terms of G0 and H1.

3. Obtain information about the eigenvalues and eigenfunctions of H from G.

Step 3 above has been examined in detail in Chap. 1 and Sect. 3.1. The
implementation of step 1 depends on H0. For the very common and important
case where H0 = p2/2m, G0 has been obtained in Sect. 3.2. In the next chapter
a whole class of H0s will be introduced, and the corresponding G0s will be
calculated. In the present section we examine in some detail step 2, i.e., how
G can be expressed in terms of G0 and H1.
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The Green’s functions G0(z) and G(z) corresponding to H0 and H, re-
spectively, are

G0(z) = (z −H0)
−1 and (4.2)

G(z) = (z −H)−1 . (4.3)

Using (4.1) and (4.2) we can rewrite (4.3) as follows:

G(z) = (z −H0 −H1)
−1 =

{
(z −H0)

[
1 − (z −H0)

−1 H1

]}−1

=
[
1 − (z −H0)

−1 H1

]−1
(z −H0)

−1

= [1 − G0(z)H1]
−1 G0(z) . (4.4)

Expanding the operator (1 − G0H1)−1 in power series we obtain

G = G0 + G0H1G0 + G0H1G0H1G0 + · · · . (4.5)

Equation (4.5) can be written in a compact form

G = G0 + G0H1 (G0 + G0H1G0 + · · · ) = G0 + G0H1G (4.6)

or
G = G0 + (G0 + G0H1G0 + · · · )H1G0 = G0 + GH1G0 . (4.7)

In the r-representation, (4.6) becomes

G (r, r′; z) = G0 (r, r′; z)

+
∫

dr1dr2G0 (r, r1; z)H1 (r1, r2)G (r2, r
′; z) . (4.6′)

Usually H1 (r1, r2) has the form δ (r1 − r2)V (r1); then (4.6′) becomes

G (r, r′; z) = G0 (r, r′; z)

+
∫

dr1G0 (r, r1; z)V (r1)G (r1, r
′; z) , (4.8)

i.e., G(r, r′; z) satisfies a linear inhomogeneous integral equation with a kernel
G0 (r, r1; z)V (r1). Equation (4.7) can be written also in a similar form. If we
use the k-representation, we can rewrite (4.6) as follows:

G (k, k′; z) = G0 (k, k′; z) +
∑

k1k2

G0 (k, k1; z)H1 (k1, k2)G (k2, k
′; z) . (4.9)

Taking into account that ⟨r |k⟩ = eik · r/
√

Ω and that

∑

k

= Ω

∫
dk

(2π)d
, (4.10)
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where d is the dimensionality, one can easily show that (4.9) is the Fourier
transform of (4.6′), as it should be.

At this point we introduce the so-called t-matrix, which is of central impor-
tance in scattering theory and is directly related to G and G0. The t-matrix,
T (z), corresponding to the unperturbed Hamiltonian H0, the perturbation
part H1, and the parameter z, is defined by the operator equation

T (z) ≡ H1G(z) (z −H0) . (4.11)

The above definition of T (z) is valid for z ̸= {En}, where {En} are the
eigenvalues of H. If z = E, where E belongs to the continuous spectrum of
H, we define

T±(E) = H1G
±(E) (E −H0) . (4.12)

Finally, if z coincides with one of the discrete eigenvalues of H, say, En, then
T (En) is not defined because G(z) [and hence T (z)] has a simple pole at En.
This statement is correct except in the pathological case where the eigen-
value En and the corresponding eigenfunction |ψn⟩ of H satisfy the relation
H0 |ψn⟩ = En |ψn⟩. In this case, the pole of G(z) at En is cancelled by the
zero of z −H0 at z = En, and T (z) is analytic around En.

The analytic structure of T (z) is quite similar to G(z): T (z) is analytic in
the complex z-plane; it has singularities on the real z-axis. The positions of
the poles of T (z) on the real axis give the discrete eigenvalues of H and vice
versa. The continuous spectrum of H produces a branch cut in T (z). Note
that the analytic continuation of T (z) across the branch cut does not coincide
with T (z), and it may develop singularities for complex values of z.

Using (4.5) and (4.11), we obtain the following expansion for T (z):

T (z) = H1 + H1G0(z)H1 + H1G0(z)H1G0(z)H1 + · · · . (4.13)

The summation in (4.13) can be performed to give

T (z) = H1 + H1 (G0 + G0H1G0 + · · · )H1 = H1 + H1GH1 (4.14)
= H1 + H1G0 (H1 + H1G0H1 + · · · ) = H1 + H1G0T (4.15)
= H1 + (H1 + H1G0H1 + · · · ) G0H1 = H1 + TG0H1 . (4.16)

With the help of T , the basic equation (4.5) can be rewritten as

G(z) = G0(z) + G0(z)T (z)G0(z) , (4.17)

which means that knowledge of T allows immediate determination of G.
Equations (4.15) and (4.16) in the r- or k-representation will become lin-

ear inhomogeneous integral equations for the unknown quantity T (r, r′; z) or
T (k, k′; z); e.g., (4.15) in the k-representation is

T (k, k′; z) = H1 (k, k′) +
∑

k1k2

H1 (k, k1)G0 (k1, k2; z)T (k2, k
′; z) , (4.18)
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where

H1 (k, k′) ≡ ⟨k | H1 |k′⟩

=
1
Ω

∫
drdr′ exp (−ik · r + ik′ · r′)H1 (r, r′) , (4.19)

G0 (k1, k2; z) ≡ ⟨k1 |G0(z) |k2⟩

=
1
Ω

∫
dr1dr2 exp (−ik1 · r1 + ik2 · r2)G0 (r1, r2; z) , (4.20)

T (k, k′; z) ≡ ⟨k |T (z) |k′⟩

=
1
Ω

∫
drdr′ exp (−ik · r + ik′ · r′)T (r, r′; z) . (4.21)

If H1 (r, r′) = δ (r − r′) V (r), then H1 (k, k′) reduces to

H1 (k, k′) =
V (k − k′)

Ω
, (4.22)

where V (q) is the Fourier transform of V (r), i.e.,

V (q) =
∫

drV (r) e−iq · r . (4.23)

In the usual case, where G0 (r1, r2) is a function of the difference (r1 − r2)
only, we have from (4.20) that

G0 (k1, k2; z) = δk1,k2G0 (k1; z) , (4.24)

where G0(k; z) is the Fourier transform of G (r1, r2; z) with respect to the
variable ϱ = r1 − r2. Under these conditions, (4.18) can be written as

T ′ (k, k′; z) = V (k − k′)

+
∫

dk1

(2π)d
V (k − k1)G0 (k1; z)T ′ (k1, k

′; z) , (4.25)

where T ′ (k, k′; z) = ΩT (k, k′; z).
As was mentioned before, knowledge of G(z) [or, equivalently, T (z)] allows

us to determine the discrete eigenvalues and the corresponding eigenfunctions
of H; it permits us also to obtain the DOS of the continuous part of the
spectrum of H. Now we would like to examine how the eigenstates associated
with the continuous spectrum of H can be obtained. The time-independent
Schrödinger equation, (E −H) |ψ⟩ = 0, can be written as

(E −H0) |ψ⟩ = H1 |ψ⟩ ; (4.26)
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E belongs to the continuous spectrum of H. Equation (4.26) can be considered
as an inhomogeneous equation whose general solution is [according to (1.33b)]

∣∣ψ±〉
= |φ⟩ + G±

0 (E)H1

∣∣ψ±〉
, (4.27)

where |φ⟩ is the general solution of (E −H0) |φ⟩ = 0 assuming that E belongs
to the continuous spectrum of both H and H0; superscripts ± have been
introduced in order to distinguish the solutions associated with G+

0 from those
associated with G−

0 . Equation (4.27) is an integral equation for the unknown
functions |ψ±⟩; in the r-representation we can rewrite (4.27) as

ψ± (r) = φ (r) +
∫

dr1dr2G
±
0 (r, r1; E)H1 (r1, r2)ψ± (r2) , (4.27′)

or, in the usual case where H (r1, r2) = δ (r1 − r2)V (r1),

ψ± (r) = φ (r) +
∫

dr1G
±
0 (r, r1; E)V (r1)ψ± (r1) . (4.28)

Equation (4.27′) or (4.28) is the Lippman–Schwinger equation. If E does not
belong to the spectrum of H0, (4.28) becomes homogeneous because then
φ(r) = 0,

ψ (r) =
∫

dr1G0 (r, r1; E)V (r1)ψ (r1) . (4.29)

Usually, H0 and H1 are chosen in such a way that the continuous spectra of
H0 and H coincide. Then (4.27) and (4.28) are appropriate for finding the
eigenfunctions of H associated with the continuous spectrum (of either H0

or H) while (4.29) gives the discrete eigenfunctions and eigenvalues of H,
assuming that the discrete eigenvalues of H0 and H do not coincide. It should
be recalled that once G(z) [or T (z)] is known, one need not solve (4.29) to
obtain the discrete spectrum since the latter can be determined directly from
G or T .

By iterating (4.27) we obtain
∣∣ψ±〉

= |φ⟩ + G±
0 H1 |φ⟩ + G±

0 H1G
±
0 H1 |φ⟩ + · · · . (4.30)

Using (4.13), we can express (4.30) in terms of T±:
∣∣ψ±〉

= |φ⟩ + G±
0 T± |φ⟩ . (4.31)

By multiplying (4.5) from the left or from the right by H1 and using (4.13),
we have

H1G = TG0 or GH1 = G0T . (4.32)
Substituting (4.32) into (4.31) we have

∣∣ψ±〉
= |φ⟩ + G±H1 |φ⟩ . (4.33)

Equations (4.31) and (4.33) are important because they express the eigen-
functions |ψ±⟩ in terms of T± or G± in a closed form. Comparing (4.31) with
(4.27) and assuming that G±

0 is not zero, we obtain

T± |φ⟩ = H1

∣∣ψ±〉
. (4.34)
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4.1.2 Time-Dependent Case

Similar expressions can be obtained for the solution of the time-dependent
Schrödinger equation, which is written as

(
i! ∂

∂t
−H0

)
|ψ(t)⟩ = H1(t) |ψ(t)⟩ , (4.35)

where H1 can be time dependent. From the general relation (2.21) we have

∣∣ψ(t)±
〉

= |φ(t)⟩ +
∫ ∞

−∞
dt′g±0 (t − t′)H1 (t′)

∣∣ψ± (t′)
〉

. (4.36)

On physical grounds one keeps the |ψ+(t)⟩ solution because it is causal, i.e.,
the effects of H1 on the eigenfunction appear after H1 has been applied.
Equation (4.36) can be iterated to give

∣∣ψ+(t)
〉

= |φ(t)⟩

+
∫

dt1g
+
0 (t − t1)H1 (t1) |φ (t1)⟩

+
∫

dt1dt2g
+
0 (t − t1)H1 (t1) g+

0 (t1 − t2)H1 (t2) |φ (t2)⟩

+ · · · . (4.37)

Let us assume that H1(t) = 0 for t < t0 and that |φ (t0)⟩ is an eigenfunction
of H0, say, |φn⟩. From (2.16) and (2.17) we have that

|φ(t)⟩ = exp [−iEn (t − t0) /!] |φn⟩ = exp [−iH0 (t − t0) /!] |φn⟩
= i!g̃0 (t − t0) |φn⟩ . (4.38)

Under these initial conditions, (4.37) can be written as
∣∣ψ+(t)

〉
= A (t, t0) |φn⟩ , (4.39)

where

A (t, t0) = i!g̃ (t − t0) + i!
∫ t

t0

dt1g̃0 (t − t1)H1 (t1) g̃0 (t1 − t0)

+i!
∫ t

t0

dt1

∫ t1

t0

dt2g̃0 (t − t1)H1 (t1) g+
0 (t1 − t2)H1 (t2) g̃0 (t2 − t0)

+ · · · . (4.40)

In obtaining (4.39) and (4.40) we have taken into account (4.38) and the
relation g+(τ) = θ(τ)g̃(τ).

The probability amplitude for a transition from state |φn⟩ to state |φm⟩ as
a result of H1(t) acting during the time interval [t0, t] can be calculated from
(4.38)–(4.40) as
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⟨φm |A (t, t0) |φn⟩ = exp
(
−iEmt + iEnt0

!

)

×
[
⟨φm |φn⟩ +

−i
!

∫ t

t0

dt1

〈
φm

∣∣∣∣ exp
(

iH0t1
!

)
H1 (t1) exp

(
−iH0t1

!

) ∣∣∣∣ φn

〉

+
−i
!

∫ t

t0

dt1dt2

×
〈

φm

∣∣∣∣ exp
(

iH0t1
!

)
H1 (t1) g+

0 (t1 − t2)H1 (t2) exp
(
−iH0t2

!

) ∣∣∣∣ φn

〉

+ · · · ] . (4.41)

In order to get rid of the unimportant phase factor in (4.41) we define an
operator S(t, t0) as follows:

S (t, t0) ≡ exp
(

iH0t

!

)
A (t, t0) exp

(
−iH0t0

!

)
. (4.42)

The matrix element ⟨φm |S (t, t0) |φn⟩ is the quantity in parentheses in (4.41),
which can be rewritten as

⟨φm |S (t, t0) |φn⟩ = δmn +
−i
!

∫ t

t0

dt1 exp (iωmnt1) ⟨φm | H1 (t1) |φn⟩

+
−i
!

∫ t

t0

dt1dt2

∫
dω

2π
exp [it1 (ωm − ω)] exp [it2 (ω − ωn)]

×
〈
φm

∣∣H1 (t1)G+
0 (!ω)H1 (t2)

∣∣ φn

〉

+ · · · , (4.43)

where ωn = En/!, ωm = Em/!, and ωmn = ωm − ωn.
Equation (4.43) implies that the probability amplitude (apart from unim-

portant phase factors) for a transition between two different states |φn⟩ and
|φm⟩ as a result of H1(t) acting during the infinite period from −∞ to +∞ is

⟨φm |S |φn⟩ =
−i
!

∫ ∞

−∞
dt1 exp (iωmnt1) ⟨φm | H1 (t1) |φn⟩ + · · · , (4.44)

where
S ≡ lim

t→+∞
t0→−∞

S (t, t0) (4.45)

is the so-called S-matrix. Equation (4.44) is the basic result in time-dependent
perturbation theory.

To obtain S for the particular case where H1 is a time-independent op-
erator, we have to take the limits t → ∞ and t0 → −∞ symmetrically, i.e.,
t = −t0 → ∞. We have then
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⟨φm |S |φn⟩ = δmn

+ ⟨φm | H1 |φn⟩
−i
!

∫ ∞

−∞
dt1 exp (iωmnt1)

+
−i
!

∫
dω

2π

〈
φm

∣∣H1G
+
0 (!ω)H1

∣∣ φn

〉

×
∫ ∞

−∞
dt1

∫ ∞

−∞
dt2 exp [it1 (ωm − ω)] exp [it2 (ω − ωn)] + · · ·

= δmn − 2πiδ (En − Em) [⟨φm | H1 |φn⟩
+

〈
φm

∣∣H1G
+
0 (En)H1

∣∣ φn

〉
+ · · ·

]

= δmn − 2πiδ (En − Em)
〈
φm

∣∣T + (En)
∣∣ φn

〉
; (4.46)

to arrive at the last result we employ the relation
∫ ∞

−∞
dteiEt/! = 2π!δ(E) . (4.47)

Notice that the result (4.46) is equivalent to the following expression for
⟨φm |S (t, t0) |φn⟩ in the limits t = −t0 → ∞:

⟨φm |S (t, t0) |φn⟩

= δmn − i
!

〈
φm

∣∣T + (En)
∣∣ φn

〉 ∫ t

t0

exp (iωmnt′) dt′ . (4.46′)

Equation (4.46′) allow us to obtain the rate of the transition probability (for
H1 being independent of t); indeed, for m ̸= n we have

|⟨φm |S (t, t0) |φn⟩|2

=
1
!2

∣∣〈φm

∣∣T + (En)
∣∣ φn

〉∣∣2
∫ t

t0

dt1

∫ t

t0

dt2 exp [iωmn (t1 − t2)] .

Changing variables from t1, t2 to T = (t1 + t2) /2, τ = t1 − t2 and taking the
limit t0 → −∞, we have

|⟨φm |S (t, t0) |φn⟩|2

=
1
!2

∣∣〈φm

∣∣ T + (En)
∣∣ φn

〉∣∣2
∫ t

−∞
dT

∫ ∞

−∞
dτ exp (iωmnτ) .

Hence, taking into account (4.47), we obtain

Wmn ≡ lim
t0→−∞

d
dt

|⟨φm |S (t, t0) |φn⟩|2

=
2π

!
∣∣〈φm

∣∣T + (En)
∣∣ φn

〉∣∣2 δ (Em − En) . (4.48)

The exact equation (4.48) to the first order of perturbation theory, where
⟨φm |T + (En) |φn⟩ is replaced by ⟨φm | H1 |φn⟩, reduces to the well-known
and extensively used Fermi’s “golden rule.”



4.1 Formalism 63

Since |φn⟩ is assumed normalized, we have that |ψ+(t)⟩ is normalized, i.e.,

1 =
〈
ψ+(t)

∣∣ ψ+(t)
〉

=
〈
φn

∣∣ A+ (t, t0) A (t, t0)
∣∣ φn

〉
,

which implies that A(t, t0) is unitary. Using definition (4.42) it is easy to show
then that S(t, t0) is unitary, too. Thus for the S-matrix we have

S†S = SS† = 1 . (4.49)

Equation (4.49) can be expressed in terms of the t-matrix using (4.46):
〈
φn

∣∣ T + (En)
∣∣φℓ

〉
−

〈
φn

∣∣T− (En)
∣∣ φℓ

〉
=

−2πi
∑

m

〈
φn

∣∣ T− (En)
∣∣φm

〉 〈
φm

∣∣ T + (En)
∣∣φℓ

〉
δ (Em − En) . (4.50)

Equation (4.50) can also be derived from T = H1 + H1GH1, which implies
that T +−T− = H1(G+−G−)H1 = −2πiH1δ(E−H)H1. The rest of the proof
is left to the reader. As we shall see in the next section, (4.50) is equivalent to
the so-called optical theorem in scattering theory; in other words, the optical
theorem stems from the unitarity of S.

Before we conclude the present discussion we will recast the expression for
the S-matrix in a form that is convenient for future manipulations:

S = 1 +
−i
!

∫ ∞

−∞
dt1HI

1 (t1)

+
(
−i
!

)2 ∫ ∞

−∞
dt1HI

1 (t1)
∫ t1

−∞
dt2HI

1 (t2) + · · · , (4.51)

where
HI

1(t) ≡ exp (iH0t/!)H1(t) exp (−iH0t/!) . (4.52)

To obtain (4.51) we have used the relation

g+
0 (t1 − t2) = θ (t1 − t2) g̃0 (t1 − t2)

= θ (t1 − t2)
−i
! exp [−iH0 (t1 − t2) /!] . (4.53)

The restrictions in the intermediate integrations in (4.51) can be relaxed if at
the same time we divide the nth term (n = 1, 2, 3, . . .) by n! [20]. However,
in writing products of HI

1s, one must make certain that the original ordering
of the operators is preserved, i.e., the product is ordered in such a way that
earlier times appear to the right. To make this chronological ordering explicit,
we define the time-ordered product of operators HI

1 as

T
[
HI

1 (ti) · · · HI
1 (tj) · · ·

]
= HI

1 (t1)HI
1 (t2) · · · HI

1 (tn) , (4.54)

where t1, t2, . . . , tn satisfy the relations t1 > t2 > · · · > tn and ti · · · tj · · · is
any permutation of t1, t2, . . . , tn. With this definition (4.51) becomes
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S =
∞∑

n=0

(
−i
!

)n 1
n!

∫
dt1dt2 · · ·dtnT

[
HI

1 (t1) · · · HI
1 (tn)

]

= T exp
[
− i

!

∫
dtHI

1(t)
]

. (4.55)

The last expression in (4.55) is simply a compact way of writing the sum.

4.2 Applications

4.2.1 Scattering Theory (E > 0)

In this and the next section we take H0 = p2/2m = −!2∇2/2m; the pertur-
bation H1 (r, r′) is of the form δ(r − r′)V (r), where V (r) is of finite extent
[i.e., V (r) decays fast enough as r → ∞]. Here H0 has a continuous spectrum
that extends from zero to +∞. The continuous spectrum of H coincides with
that of H0; H, however, may develop discrete levels of negative eigenenergies
if V (r) is negative in some region(s). In this section we will examine questions
related to the continuous spectrum (E > 0), while in the next section we
examine the question of a discrete level for very shallow V (r).

The problem of physical interest for E > 0 is scattering: an incident par-
ticle of energy E = !2k2/2m, described by the unperturbed wave function
eik · r/

√
Ω, comes under the influence of the perturbation V (r), and as a re-

sult its wave function is modified. The question is to find the asymptotic
behavior (as r → ∞) of this modification.

The solution of the scattering problem can be obtained immediately from
(4.31), which in the r-representation becomes

ψ± (r) =
1√
Ω

eik · r +
1√
Ω

∫
dr1dr2G

±
0 (r, r1)T± (r1, r2) eik · r2 . (4.56)

Using the expression for the 3-d G±
0 (r, r1), which we obtained in Sect. 3.2,

we can rewrite (4.56) as
√

Ωψ± (r) = eik · r

− 2m

4π!2

∫
d3r1d3r2

exp (±ik |r − r1|)
|r − r1|

T± (r1, r2) exp (ik · r2) , (4.57)

where k =
√

2mE/!2. As was mentioned before, we are interested in the
asymptotic behavior of ψ± (r) as r → ∞. In this limit we can omit r1 in the
denominator of the rhs of (4.57); in the exponent we can write |r − r1| ≈
r− r1 cos θ + O

(
r2
1/r

)
.1 Thus k |r − r1| ≈ kr− kr1 cos θ = kr−kf · r1, where

kf is a vector of magnitude k in the direction of r. For large r we can then
write (4.57) as
1 The symbol O means “of the order of.”
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√
Ωψ± (r) −→

r→∞
eik · r

− m

2π!2

e±ikr

r

∫
d3r1d3r2 exp (∓ikf · r1)

〈
r1

∣∣T±(E)
∣∣ r2

〉
exp (ik · r2)

= eik · r − m

2π!2

e±ikr

r

〈
±kf

∣∣ T ′±(E)
∣∣k

〉
. (4.58)

To obtain (4.58) we have used the relations ⟨r |k⟩ = eik · r/
√

Ω, T ′ = ΩT ,
and

∫
d3r |r⟩ ⟨r| = 1. Equation (4.58) shows that the solution ψ− must be

excluded because it produces a physically unacceptable ingoing spherical wave
asymptotically.

The quantity of physical importance is the scattering amplitude f (kf , k),
which is defined by the relation

ψ (r) −→
r→∞

const. ×
[
eik · r + f (kf , k)

eikr

r

]
. (4.59)

Comparing (4.58) with (4.59) we obtain for the scattering amplitude

f (kf , k) = − m

2π!2

〈
kf

∣∣T ′+(E)
∣∣k

〉
, (4.60)

where E = !2k2
f/2m = !2k2/2m, i.e., the energy argument of T ′+(E) coin-

cides with the eigenenergy of |k⟩ and |kf ⟩; this is described in the literature as
T ′+ being calculated “on the shell.” Thus, the t-matrix in the k-representation
is essentially the scattering amplitude, which is directly related to the differ-
ential cross section, dσ/dO2

dσ

dO = |f |2 =
m2

4π2!4

∣∣〈kf

∣∣T ′+(E)
∣∣ k

〉∣∣2 . (4.61)

Substituting (4.60) into (4.25) we obtain the following integral equation for
the scattering amplitude f :

f (kf , k) = − m

2π!2
V (kf − k)+

∫
d3k1

(2π)3
V (kf − k1)

E − !2k2
1/2m + is

f (k1, k) ; (4.62)

we have taken into account that

G+
0 (k1; E) = lim

s→0+

(
E − !2k2

1

2m
+ is

)−1

.

Thus, to the first order in the scattering potential

f (kf , k) ≈ − m

2π!2
V (kf − k) , (4.63)

where V (q) is the Fourier transform of V (r) [see (4.23)]. Equation (4.63) is
the Born approximation for the scattering amplitude.
2 O is the symbol for the solid angle.
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Equation (4.61) can be derived in an alternative way. The differential cross
section is defined as the probability per unit time for the transition k → kf ,
Wkf k, times the number of final states divided by the solid angle, 4π, and by
the flux, j = v/Ω, of the incoming particle:

dσ

dO =
Ω

4πv

∫
dEfN (Ef )Wkf k . (4.64)

Substituting Wkf k from (4.48) and N (Ef ) from (3.26) we obtain (4.61). The
total cross section

σ =
∫

dO dσ

dO (4.65)

can be written in view of (4.64), (4.48), and (4.50) as

σ =
Ω

v

∑

kf

Wkf k =
Ω

v

2π

!
∑

kf

∣∣〈kf

∣∣ T +(E)
∣∣ k

〉∣∣2 δ (Ef − E)

=
2πΩ

!v

∑

kf

〈
k

∣∣ T−(E)
∣∣ kf

〉 〈
kf

∣∣ T +(E)
∣∣k

〉
δ (Ef − E)

=
2π

!v

Ωi
2π

[〈
k

∣∣T +(E)
∣∣k

〉
−

〈
k

∣∣ T−(E)
∣∣ k

〉]

= −2Ω

!v
Im

{〈
k

∣∣ T +(E)
∣∣k

〉}
. (4.66)

Taking (4.60) into account we can rewrite (4.66) as

σ =
4π

k
Im {f (k, k)} . (4.67)

Equation (4.67) is the so-called optical theorem, which connects the total cross
section with the forward scattering amplitude.

As was already mentioned, the scattering amplitude f for positive ener-
gies is directly related to an observable quantity of great physical importance,
namely, the differential cross section. The behavior of f , extended for nega-
tive energies, is also of physical significance because the poles of f(E) [which
coincide with the poles of T (E), as can be seen from (4.60)] give the discrete
eigenenergies of the system. In other words, if the scattering problem has been
solved and f vs. E has been obtained, one only need find the position of the
poles of f in order to find the discrete levels of the system. Of course, these
poles are on the negative E-semiaxis. We should mention also that, frequently,
f vs. E (or T + vs. E) exhibits sharp peaks at certain positive energies. The
states associated with such peaks in f are called resonances ; their physical
significance will be discussed in Chap. 6.

An elementary example of the above comments is provided by the case
where V (r) is an attractive Coulomb potential V (r) = −e2/r. Then the scat-
tering amplitude is [12, 19]
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f =
−tΓ (1 − it)

Γ (1 + it)
× exp {2it ln [sin (θ/2)]}

2k sin2 (θ/2)
, (4.68)

where

k =
√

2mE/!2 , Im {k} ≥ 0 , (4.69)

t =
me2

!2k
, (4.70)

and θ is the angle between k and kf . The poles of f occur when the argument
of Γ (1−it) is a nonpositive integer, i.e., when 1−it = −p, where p = 0, 1, 2, . . .,
i.e., when

it = 1 + p = n ; n = 1, 2, 3, . . . . (4.71)

Substituting (4.69) and (4.70) into (4.71) we obtain for the discrete eigenen-
ergies of the attractive Coulomb potential

E = −e4m

2!2

1
n2

; n = 1, 2, . . . (4.72)

which is the standard result. If the potential were repulsive, the scattering
amplitude would be given by (4.68) with i replaced by −i. In this case the
argument in the gamma function in the numerator in (4.68) cannot become
a nonpositive integer given (4.69) and (4.70); thus, f has no poles, which
means that there are no discrete levels. This result was expected since the
scattering potential is repulsive.

4.2.2 Bound State in Shallow Potential Wells (E < 0)

Here we assume that

V (r) =
{ −V0 for r inside Ω0 ,

0 for r outside Ω0 , (4.73)

where Ω0 is a finite region in real space and V0 is positive and very small:
V0 → 0+. We are interested in finding whether or not a discrete level E0

appears and how it varies with V0. To answer this question, it is enough to
find the position of the pole of G(E), if any, for E in the range [−V0, 0].

The basic equation (4.5) has the following form in the present case:

G (r, r′; z) = G0 (r, r′; z)

−V0

∫

Ω0

dr1G0 (r, r1; z)G0 (r1, r
′; z)

+V 2
0

∫

Ω0

dr1

∫

Ω0

dr2G0 (r, r1; z)G0 (r1, r2; z)G0 (r2, r
′; z)

+ · · · . (4.74)
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3-d Case

G0 (r, r1; E) = − m

2π!2

exp (−k0 |r − r1|)
|r − r1|

, k0 =

√
2m |E|

!2
,

[see (3.21)]. In this case G(E) remains finite for E around 0. As a result the
various integrals in (4.74) are finite. Thus for sufficiently small V0 the power
series expansion in (4.74) converges, which means that the difference G− G0

approaches zero as V0 → 0+. This in turn means that G remains finite for
small V0 and E in the range [−V0, 0] and consequently has no poles in this
range. The conclusion is that in 3-d sufficiently shallow potential wells do not
produce discrete levels; the product mV0Ω

2/3
0 /!2 has to exceed a critical value

before the first discrete level is formed (Problem 4.7s).

2-d Case

G0 (r, r1; E) = − m

π!2
K0 (k0 |r − r1|) , k0 =

√
2m |E|

!2
,

[see (3.27)]. Since V0 → 0+, it follows that |E| → 0+ and k0 → 0+. Using the
small argument expansion for K0 we obtain

G0 (r, r1; E) =
m

π!2
ln (k0 |r − r1|) + c1 + O (k0 |r − r1|) , (4.75)

where c1 is a known constant. Substituting (4.75) into (4.74) and keeping the
leading terms only, we obtain

G (r, r′; E) ≈ G0 (r, r′; E)
∞∑

n=0

[
−V0Ω0m

π!2
ln

(
k0

√
Sn

)]n

=
G (r, r′; E)

1 + V0Ω0m ln
(
k0

√
S

)
/π!2

, (4.76)

where {Sn} and S are constants of the order of the extension of the potential
well Ω0; the exact value of S requires explicit evaluation of integrals of the
type

∫

Ω0

d2r1 · · ·
∫

Ω0

d2rn ln |r − r1|× ln |r1 − r2| · · ·× ln |rn − r′| .

From (4.76) one finds for the pole of G(r, r′; E), E0 the following result:

E0 −→
V0→0+

− !2

2mS
exp

(
− 2π!2

mV0Ω0

)
= − !2

2mS
exp

(
− 1

ϱ0V0Ω0

)
, (4.77)

where ϱ0 = m/2π!2 is the unperturbed DOS per unit area [see (3.30)]. The
conclusion is that in the 2-d case a discrete level is always formed no matter



4.2 Applications 69

how shallow the potential well is. This property stems from the fact that
G0(E) blows up as E approaches the band edges E = 0. As was discussed in
Chap. 3, the logarithmic divergence of G0(E) is linked to the discontinuity of
the unperturbed DOS at the band edge. The logarithmic singularity of G0(E)
at E = 0 produces a discrete level that depends on V0 as exp (−1/ϱ0V0Ω0),
where ϱ0 is the discontinuity in the unperturbed DOS per unit area, V0 is
the depth of the potential well, and Ω0 is its 2-d extent. As we will see in
Chap. 6, this result is valid in all cases where the unperturbed DOS exhibits
a discontinuity at the band edge. The connection of this result with the theory
of superconductivity will be discussed in Chap. 6.

For the particular case of a circular potential well, the problem can be
solved directly from the Schrödinger equation, and the result for the discrete
level is

E0 −→
V0→0+

− 2π

e2γ

!2

mΩ0
exp

(
− 2π!2

mV0Ω0

)
, (4.78)

where Ω0 = πa2 is the area of the circular potential well and γ = 0.577 . . .
is Euler’s constant. For other shapes of the potential well (even simple ones
like the square potential well) it becomes extremely complicated to solve the
problem directly from the Schrödinger equation. Thus one can appreciate the
power of the Green’s function approach, which allowed us to obtain (4.77) for
every shape of the 2-d potential well. Note that the shape of the potential
well influences the preexponential factor S in (4.77) but not the dominant
exponential factor.

1-d Case

G0 (x, x′; E) = − m

!2k0
exp (−k0 |x − x′|) , k0 =

√
−2mE

!2
,

[see (3.31)]. In the limit V0 → 0+, E0 → 0− and k0 → 0+. Thus G0 can be
approximated by

G0 (x, x′; E) −→
E→0−

−
√

m

−2!2E
. (4.79)

Substituting in (4.74) we obtain

G ≈ G0

∞∑

n=0

(−G0V0Ω0)
n =

G0

1 + G0V0Ω0
=

G0

1 − Ω0V0

√
−m/2!2E

. (4.80)

Thus the discrete level, E0, as given by the pole of G(E), is

E0 = −mΩ2
0V 2

0

2!2
; (4.81)

Ω0 is the linear extent of the 1-d potential well. In the 1-d case, as in the
2-d case, a potential well, no matter how shallow, always creates a discrete
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level. In contrast to the 2-d case, the level E0 is an analytic function of V0Ω0

[E0 ∼ −(V0Ω0)2] as V0Ω0 → 0+. This behavior is a consequence of the square
root singularity of G0(E) or ϱ0(E) at the band edge.

The material of this section will be discussed again in detail in Chap. 6.

4.2.3 The KKR Method for Electronic Calculations in Solids

A widely used method for obtaining the electronic eigenfunctions and eigenen-
ergies in periodic solids was introduced by Korringa, Kohn, and Rostoker
(KKR) and employs Green’s function techniques, namely, (4.28). The un-
perturbed Hamiltonian is H0 = −

(
!2/2m

)
∇2; the periodic potential, V (r),

produced by the ions and all the other electrons is treated as the perturbation.
It is assumed that V (r) is of the following form:

V (r) =
∑

n

v (|r − Rn|) , (4.82)

where the local potential, v (|r − Rn|), around the atom located at the site
Rn is assumed to be spherically symmetric and nonzero only inside a sphere
centered at Rn and of radius r0; these spheres do not overlap.

Since there is no external incoming electronic beam, φ (r) = 0 in (4.28).
Furthermore, because of the periodicity, the eigenfunction ψ (r) obeys Bloch’s
theorem (see next chapter):

ψk (r) =
1√
Ω

eik · rwk (r) , (4.83)

where wk (r) is periodic with the same periodicity as V (r), i.e., wk (r) =
wk (r − Rn). We have then by substituting (4.82) and (4.83) into (4.28):

ψk (r) =
1√
Ω

∑

n

∫
dr′G0 (r − r′) v (|r′ − Rn|) eik · (r′−Rn)eik ·Rnwk (r′ − Rn) ,

or, by replacing r′ by ϱ + Rn,

ψk (r) =
1√
Ω

∑

n

∫
dϱG0 (r − ϱ − Rn) exp (ik ·Rn) v(ϱ)eik ·ϱwk(ϱ)

=
∫

dϱGk (r − ϱ) v(ϱ)ψk (ϱ) . (4.84)

In the last relation we have defined the lattice unperturbed Green’s function
Gk (r − ϱ) as follows:

Gk (r − ϱ) =
∑

n

G0 (r − ϱ − Rn) exp (ik ·Rn) . (4.85)
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The advantage of (4.84) and (4.85) is the separation of lattice information
[which is incorporated for each lattice and each k in Gk (r − ϱ)] from the
local potential, v (ϱ), which varies from material to material.

The solution of (4.84) proceeds as follows: in the interior of each sphere,
r < r0, the solution ψk (r) has the following form (because of the spherical
symmetry):

ψk (r) =
∑

ℓm

cℓmYℓm(θ, φ)Rℓ(r) ; r ≤ r0 , (4.86)

with
R′′

ℓ +
2
r
R′

ℓ +
2m

!2

(
E − v(r) − !2ℓ(ℓ + 1)

2mr2

)
Rℓ = 0 , (4.87)

where each ′ denotes differentiation with respect to r, and Rℓ is regular at
r = 0. Equation (4.87) is solved numerically, and the solution is substituted
into (4.86), which in turn is substituted into (4.84) to obtain ψk (r) outside
the sphere (r ≥ r0).

However, because of the continuity of ψk (r) we must have

lim
r→r−

0

ψk (r) = lim
r→r+

0

ψk (r) , (4.88)

where the left side of (4.88) is obtained from (4.86,4.87), while the right side
of (4.88) by employing (4.84). To implement (4.88) we employ the identity

∫
dφdθ sin θGk (r0, θ

′, φ′, r0, θ, φ)
∂

∂ϱ
ψ (ϱ, θ, φ)

∣∣∣∣
ϱ=r0

=
∫

dφdθ sin θψ (r0, θ, φ)
∂

∂ϱ
Gk(r0, θ

′, φ′, ϱ, θ, φ)
∣∣∣∣
ϱ=r0

, (4.89)

where the integration is over the angles θ and φ of ϱ, while both r and ϱ are
equal to r0. The final step is to substitute into (4.89) ψ (ϱ) from (4.86), to
multiply both sides of (4.89) by Y ∗

ℓ′m′ (θ′, φ′), and to integrate over the solid
angle dφ′dθ′ sin θ′.

We end up with a linear homogeneous system for the unknown coefficient
cℓm, which is solved numerically by truncating it to a finite number of un-
knowns and equations.

4.3 Summary

In this chapter we were interested in finding the eigenvalues and eigenfunctions
of a Hamiltonian H, which can be decomposed as

H = H0 + H1 , (4.1)

where H0 is such that its eigenvalues and eigenfunctions can be easily deter-
mined. This problem was solved by
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1. Calculating G0(z) corresponding to H0;
2. Expressing G(z) in terms of G0(z) and H1, where G(z) is the Green’s

function associated with H; and
3. Extracting from G(z) information about the eigenvalues and eigenfunc-

tions of H.

Here G(z) is related to G0(z) and H1 as follows:

G = G0(z) + G0(z)H1G0(z) + G0(z)H1G0(z)H1G0(z) + · · · (4.5)
= G0(z) + G0(z)H1G(z) (4.6)
= G0(z) + G(z)H1G0(z) . (4.7)

Equations (4.6) and (4.7) are inhomogeneous integral equations for G(z). It is
very helpful to introduce an auxiliary quantity, which is called t-matrix and
is given by

T (z) = H1 + H1G0(z)H1 + H1G0(z)H1G0(z)H1 + · · · (4.13)
= H1 + H1G(z)H1 (4.14)
= H1 + H1G0(z)T (z) (4.15)
= H1 + T (z)G0(z)H1 . (4.16)

G(z) can be easily expressed in terms of T (z):

G(z) = G0(z) + G0(z)T (z)G0(z) . (4.17)

Here T (z) has the same analytic structures as G(z), i.e., it may have poles
and/or branch cuts on the real z-axis. For E belonging to a branch cut we
define the side limits T±(E) = limT (E ± is) as s → 0+.

Information about the eigenvalues and eigenfunctions of H are extracted
as follows:

1. The poles of T (z) and G(z) give the discrete eigenenergies of H.
2. The residue of G(z) [or T (z)] at each pole determines the corresponding

eigenfunction (if it is nondegenerate).
3. The eigenfunction(s) of H associated with E belonging to the continuous

spectrum of H is (are) given by
∣∣ψ±(E)

〉
= |φ(E)⟩ + G±

0 (E)T±(E) |φ(E)⟩ (4.31)
= |φ(E)⟩ + G±(E)H1 |φ(E)⟩ , (4.33)

where φ(E) is any eigenfunction of H0 corresponding to the same eigen-
value E. In most physical applications the solution |ψ−(E)⟩ is excluded
on physical grounds.

4. The discontinuity of G(z) across the branch cut gives the density of states
(times 2π), as was discussed before.
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In the time-dependent case the time evolution of the system can be de-
scribed in terms of an infinite series involving g0(τ) and H1. The main quantity
of physical interest in this case is the probability amplitude for a transition
from the eigenstate (of H0) |φn⟩ to the eigenstate |φm⟩ as a result of H1 act-
ing during the infinite time interval [−∞, +∞]. This probability amplitude is
expressed as the ⟨φm|, |φn⟩ matrix element of the so-called S-matrix, which
can be expressed as an infinite series involving g0(τ) and H1. This series for
the S-matrix can be written as

S = 1 +
−i
!

∫ ∞

−∞
dt1HI

1 (t1)

+
(
−i
!

)2 ∫ ∞

−∞
dt1HI

1 (t1)
∫ t1

−∞
dt2HI

1 (t2)

+ · · · , (4.51)

where
HI

1(t) ≡ exp (iH0t/!)H1(t) exp (−iH0t/!) .

The S-matrix is unitary;
S†S = SS† = 1 . (4.49)

If H1 is time independent and En and Em belong to the continuous spectrum
of H0, one finds that S is related to T + as follows:

⟨φm |S |φn⟩ = δmn − 2πiδ (En − Em)
〈
φm

∣∣T + (En)
∣∣ φn

〉
, (4.46)

where H0 |φn⟩ = En |φn⟩ and H0 |φm⟩ = Em |φm⟩. The probability per unit
time for the transition |φn⟩ → |φm⟩ (n ̸= m) is

Wmn =
2π

!
∣∣〈φm

∣∣ T + (En)
∣∣φn

〉∣∣2 δ (Em − En) . (4.48)

Knowledge of T (z) permits us to obtain immediately the scattering amplitude,
f (kf , k), associated with a time-independent H1; indeed we have

f (kf , k) = − m

2π!2

〈
kf

∣∣T ′+(E)
∣∣k

〉
, (4.60)

where E = !2k2/2m = !2k2
f/2m and T ′(z) = ΩT (z). From the unitarity of S

and (4.46) and (4.60), the optical theorem follows:

σ =
4π

k
Im {f (k, k)} , (4.67)

where σ is the total cross section. Since f is proportional to T +, it follows that
the poles of scattering amplitude (if any) considered as a function of energy
E give the discrete levels of the system (E should not be restricted to positive
values, but it must be allowed to take negative values as well; this implies
imaginary values for k = kf ).

The formalism just outlined is applied to the question of the existence of
a discrete level in very shallow potential wells. It was found that:
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1. In the 3-d case, the product of the square of the linear extent times the
depth of the well3 must exceed a critical value for a discrete level to appear.

2. For the 2-d case, a discrete level at E0 always exists no matter how shallow
the potential well is; E0 is given by

E0 ∼ − exp
(
− 1

ϱ0V0Ω0

)
, as V0Ω0 → 0+ , (4.77)

where ϱ0 is the unperturbed DOS per unit area, V0 is the depth, and Ω0

is the 2-d extent of the potential well.
3. For the 1-d case, a discrete level is always present; it is given by

E0 −→
V0Ω0→0+

−mΩ2
0V 2

0

2!2
, (4.81)

where Ω0 is the linear extent of the well. The characteristic behavior
summarized in steps 1, 2, and 3 above is directly related to the analytic
structure of the unperturbed DOS at the band edge.

Further Reading

• The S-matrix is discussed in some books on quantum mechanics (see,
e.g., [12] pp. 503–512) and in books of field theory (e.g., [14] and [20]).

• Scattering theory is presented in all books on quantum mechanics (see in
particular [16], pp. 379–441 and [12, 19], pp. 502–590 and pp. 96–121).

• The problem of a bound state in a shallow potential well is treated in all
books on quantum mechanics for d = 1 and d = 3; the interesting case of
d = 2 is usually ignored.

• The Green’s function perturbation approach for the wave equation can be
found in the book by Sheng [21], pp. 15–26, pp. 51–55, and pp. 58–66.

Problems

4.1. Express (4.16) in the r-representation.

4.2. Express (4.27) in the k-representation.

4.3s. Prove (4.50) starting either from (4.46) or from T = H1 + H1GH1.

4.4. Prove (4.51).

3 This product can be expressed in more physical terms as the dimensionless ratio
of the depth, V0, of the potential well over the kinetic energy, !2/2mΩ2/3

0 , that
the particle would have if it were confined entirely within Ω0.
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4.5. Using the exact result (4.68), calculate the differential cross section for
the Coulomb potential −e2/r. Obtain the same quantity by employing the
Born approximation; how does the latter compare with the exact result?

4.6s. By minimizing the total energy of a particle in a very shallow potential
well, show that d = 2 is the critical dimensionality for the existence of a bound
state.

4.7s. Consider a potential well of depth V0 and radius a in 1-, 2-, and 3-d
space. Plot the eigenenergy −Ed (d = 1, 2, 3) of the ground state as a function
of the square of the dimensionless variable V0/

(
!2/2ma2

)
. Plot also the decay

length Ld (d = 1, 2, 3) of the ground state as a function of the square of
V0/

(
!2/2ma2

)
. What are the analytic expressions for Ed and Ld (d = 1, 2, 3)

as V0/
(
!2/2ma2

)
tends to infinity or to its critical value for the appearance

of the first bound state?

4.8. Consider the unperturbed wave equation
(
ω2/c2 −H0

)
|φ⟩ = 0, where

H0 = −∇2, and a time-independent perturbation H1. Taking into account
that the role of λ (Chap. 1) or E (Chap. 3) is played by k2 = ω2/c2, show
that the transition probability per unit time is given by (Fermi’s golden rule
for the scalar wave equation)

Wkf k =
πc2

ωk

∣∣〈kf

∣∣T +
(
k2

) ∣∣ k
〉∣∣2 δ

(
k2

f − k2
)

. (1)

Then, following the derivation of (4.66), prove that the total cross section σ
is related to the Im {T +} as follows:

σ = −Ω

k
Im

{〈
k

∣∣T +
(
k2

) ∣∣ k
〉}

. (2)

Furthermore, show that, for a wave equation in 3-d, the differential cross
section is related to the t-matrix by

f (kf , k) = − Ω

4π

〈
kf

∣∣T +
(
k2

) ∣∣ k
〉

. (3)

Combining (2) and (3) we obtain (4.67) for the 3-d wave equation as well.

4.9. Prove (4.89) by showing first that
(

E +
!2

2m
∇2

ϱ

)
Gk (r − ϱ) = δ (r − ϱ)

and by employing the Schrödinger equation
(
− !2

2m
∇2

ϱ + v(ϱ) − E

)
ψk(ϱ) = 0 .
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Green’s Functions
for Tight-Binding Hamiltonians

Summary. We introduce the so-called tight-binding Hamiltonians (TBH), which
have the form

H =
X

ℓ

|ℓ⟩ εℓ ⟨ℓ| +
X

ℓm

|ℓ⟩Vℓm ⟨m| ,

where each state |ℓ⟩ is an atomiclike orbital centered at the site ℓ; the sites {ℓ}
form a lattice. Such Hamiltonians are very important in solid-state physics. Here we
calculate the Green’s functions associated with the TBH for various simple lattices.
We also review briefly some applications in solid-state physics.

5.1 Introductory Remarks

In this chapter we examine the Green’s functions associated with a class of
periodic Hamiltonians, i.e., Hamiltonians remaining invariant under a trans-
lation by any vector ℓ, where {ℓ} form a regular lattice in d-dimensional space

ℓ =
d∑

a=1

ℓara , ℓa = 0 ,±1,±2, . . . (5.1)

and ra (a = 1, . . . , d) are d linear independent vectors forming the basis of
the lattice.

The reasons for considering here periodic Hamiltonians are the following.

1. They produce continuous spectra that possess not only a lower bound, as
in the free-particle case, but an upper bound (or bounds) as well. Thus,
the physics is not only richer but more symmetric and in some sense more
satisfying.

2. They are of central importance for understanding the electronic behavior
of perfect crystalline solids.

3. They provide the basis for understanding the electronic properties of real,
imperfect crystalline solids, since the imperfections can be treated as a per-
turbation H1 using techniques developed in Chap. 4.
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4. They are mathematically equivalent to a system of coupled 1-d harmonic
oscillators and, as a result, they describe (by direct generalization to 3-d)
the ionic motions in a crystalline solid. Furthermore, imperfections can be
treated by techniques presented in Chap. 4.

5. The class of simplified periodic Hamiltonians we consider here allows us to
obtain simple closed-form results for certain perturbation problems. Thus
the physics presented in Sect. 4.1 can be better appreciated without the
burden of a complicated algebra. This point will be examined in detail in
the next chapter.

Before we introduce the class of Hamiltonians under consideration, we
remind the reader of some of the basic properties of the eigenfunctions and
eigenvalues of a periodic Hamiltonian [22–30].

The eigenfunctions, which are called Bloch functions, are plane wavelike,
i.e.,

ψnk (r) =
1√
Ω

eik · runk (r) , (5.2)

where the preexponential unk (r) is not a constant, as in the genuine plane
waves, but a periodic function of r of the same periodicity as the potential;
the quantum number k determines how much the phase changes when we
propagate by a lattice vector ℓ:

ψnk (r + ℓ) = eik · ℓψnk (r) . (5.3)

Note that the quantity k is restricted to a finite region in k-space, called
the first Brillouin zone. The other quantum number n, which is called the
band index, takes integer values; the presence of n compensates somehow the
restriction of k in the first Brillouin zone. It is worthwhile to stress that
eigenstates of the type (5.2) imply propagation without any resistance similar
(but not identical) to the free-particle case.

Periodicity has more profound and characteristic effects on the energy
spectrum, which consists of continua, called bands, that may or may not over-
lap; there are also energy regions, called gaps, which do not belong to any band
and, as a result, correspond to zero density of states. The boundary points
between bands and gaps are called band edges. The eigenenergies En(k) are
continuous functions of k within each band n. The band edges correspond to
absolute minima or maxima of E vs. k for a given n or a set {n} of overlapping
bands.

There are two simple diametrically opposite starting points for obtain-
ing the electronic eigenenergies, En (k), and the eigenfunctions, ψnk (r), in
crystalline solids.

One, the nearly-free electron (NFE) model, takes the point of view that
in a solid the total effective potential felt by each electron is weak enough to
be treated by perturbation methods (the unperturbed solutions being plane
waves). Developments based on this approach led to the pseudopotential
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method, which was proven to be very fruitful indeed, especially for simple
metals and semiconductors [31–38].

The other approach views the solids as being made up of atoms brought
together from an infinite relative distance. It is then natural (following the
usual practice for molecules) to try to express the unknown electronic wave
functions as linear combinations of atomic orbitals (LCAO). In this chapter
we shall deal with the simpler possible version of this approach by considering
only one atom per primitive crystal cell, only one atomic orbital per atom,
nearest-neighbor coupling only, and orthonormality of the atomic orbitals.
We shall refer to this oversimplified version of the LCAO as the tight-binding
model (TBM); the atomic orbital associated with the atom located at site ℓ
will be symbolized by

w (r − ℓ) = ⟨r | ℓ⟩ . (5.4)

For more realistic calculations one needs to take into account several compli-
cating factors:

1. Usually one needs several orbitals per atom, e.g., tetrahedral solids (C,
Si, Ge, etc.) require at least four orbitals per site (one s-like and three
p-like), while transition metals require in addition five d-like orbitals. Fur-
thermore, one may need to employ hybrid atomic orbitals, or modified,
atomiclike orbitals such as Wannier functions (see Appendix E).

2. One may have more than one atom per primitive crystalline cell.
3. The matrix elements between orbitals at different sites may not decay

fast enough so that more than nearest-neighbor matrix elements may be
needed.

4. The atomiclike orbitals at different sites may not be orthogonal to each
other. Indeed, true atomic orbitals are not orthogonal.

Note that there is freedom in choosing the atomiclike orbitals. The Wannier
functions, mentioned before (Appendix E), are one possible choice; it has the
advantage of orthonormality and completeness and the disadvantage of weak
decay (and hence many appreciable matrix elements). One may employ this
freedom in choosing the basis so as to simplify the problem, i.e., to reduce the
number of appreciable matrix elements and facilitate their computation.

The direct calculation of the matrix elements in this atomiclike orbital
basis is in general a very difficult task. To obtain them indirectly one fits the
LCAO results to either alternative calculations (see, e.g., [39]) or to experi-
mental data (see, e.g., [40–42]). Harrison [25, 26, 43, 44] obtained very simple,
general, and more or less acceptable (but not accurate) expressions for the
matrix elements by requiring that the NFE and the LCAO methods produce
consistent results. Slater and Koster [45] were the first to study in detail
the dependence of the off-diagonal matrix elements on the orientation of the
orbitals relative to the vector joining two neighboring atoms. As shown in Har-
rison’s book [25], the LCAO method is a very useful tool for analyzing many
classes of materials such as covalent solids [39,46–52], ionic solids [53], simple
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metals [54], transition metals [55–57], transition-metal compounds [58–61],
the A15 (such as Nb3Sn) compounds [62,63], high Tc oxide superconductors
(such as YBa2Cu3O7) [64], etc.

5.2 The Tight-Binding Hamiltonian (TBH)

As was mentioned in Sect. 5.1, the basic set of functions within the TBM
consists of orthonormal, identical, atomiclike orbitals, each one centered at the
lattice sites ℓ = ℓ1r1 + ℓ2r2 + ℓ3r3 (for d = 3), where each ℓi takes all integer
values; thus ⟨r | ℓ⟩ = w (r − ℓ). The matrix elements of the Hamiltonian within
this subspace are

⟨ℓ | H |m⟩ = εℓδℓm + Vℓm . (5.5)

Following the usual notation we have denoted the diagonal matrix elements
by εℓ and the off-diagonal matrix elements by Vℓm (Vℓℓ ≡ 0).

The periodicity of the Hamiltonian, i.e., its invariance under translations
by a lattice vector ℓ, implies that

εℓ = ε0 for all ℓ , (5.6a)
Vℓm = Vℓ−m . (5.6b)

It should be stressed that the Hamiltonian, which describes a real periodic
solid, has matrix elements outside the subspace spanned by the |ℓ⟩ vectors and
that this subspace is coupled with the rest of the Hilbert space. Nevertheless,
we restrict ourselves to this subspace for the sake of simplicity. The price for
this approximation can be considered reasonable, since many important quali-
tative features are retained in spite of this drastic simplification. Furthermore,
bands arising from atomic orbitals weakly overlapping with their neighbors
(i.e., tightly bound to their atoms) can be described rather accurately by
working within the above-defined subspace or its straightforward generaliza-
tion [22,25,28]. For this reason, the Hamiltonian (5.5), which is confined within
the subspace spanned by {|ℓ⟩}, where ℓ runs over all lattice sites, is called the
tight-binding Hamiltonian (TBH) or the tight-binding model (TBM).

The TBH, (5.5), can be written equivalently as

H =
∑

ℓ

|ℓ⟩ εℓ ⟨ℓ| +
∑

ℓm

|ℓ⟩Vℓm ⟨m| , Vℓℓ = 0 , (5.7)

where εℓ and Vℓm satisfy (5.6a) and (5.6b). We shall also consider the more
general case where the lattice can be divided into two interpenetrating sublat-
tices such that each point of sublattice 1 is surrounded by points belonging to
sublattice 2; the Hamiltonian remains invariant under translation by vectors
of sublattice 1 or sublattice 2. In this case

εℓ =
{

ε1 if ℓ belongs to sublattice 1 , (5.8a)
ε2 if ℓ belongs to sublattice 2 . (5.8b)
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For the sake of simplicity we assume in our explicit results that

Vℓm =
{

V, ℓ, m nearest neighbors, (5.9a)
0, otherwise. (5.9b)

This last assumption, although not necessary, simplifies the calculational ef-
fort. The set {|ℓ⟩} is assumed orthonormal:

⟨ℓ |m⟩ = δℓm . (5.10)

Thus a TBH is characterized by:

1. The lattice structure associated with the points {ℓ}.
2. The values of the diagonal matrix element {εℓ}; in the simple periodic

case, where (5.6a) is satisfied, there is only one common value that can be
taken as zero by a proper redefinition of the origin of energy; in the two-
sublattice periodic case, where (5.8) is satisfied, the quantity of physical
significance is the difference ε1 − ε2 > 0.

3. The off-diagonal matrix elements Vℓm, which in the periodic case depend
only on the difference ℓ − m.

If the simplifying assumption (5.9) is made, there is only one quantity, V ,
which, following the usual practice in the literature, can be taken as negative
(for s-like orbitals V is indeed negative; for p- or d-orbitals the sign and
the magnitude of V depends on the relative orientation of the orbitals with
respect to the direction of the line joining the two neighboring atoms). It must
be pointed out that a negative V , in contrast to a positive V , preserves the
well-known property that as the energy of real eigenfunctions increases so does
the number of their sign alternation. In any case one can obtain the positive
V Green’s functions from those calculated here by employing the relation

G(ℓ, m; E + is, {εℓ} , V ) = −G(ℓ, m;−E − is, {−εℓ} ,−V ) . (5.11)

The first term on the rhs of (5.7) describes a particle that can be trapped
around any particular lattice site ℓ with an eigenenergy εℓ. The second term
allows the particle to hop from site ℓ to site m with a transfer matrix element
Vℓm. The quantum motion associated with the Hamiltonian (5.7) is equivalent
to the wave motion of the coupled pendula shown in Fig. 5.1. This can easily
be seen by writing the time-independent Schrödinger equation H |ψ⟩ = E |ψ⟩
as

(εi − E) ci +
∑

j

Vijcj = 0 , (5.12)

where |ψ⟩ =
∑

i ci |i⟩ and (5.7) and (5.10) are used. The equations of motion
of the coupled pendula are

⎛

⎝miω
2
i +

∑

j

κij − miω
2

⎞

⎠ui −
∑

j

κijuj = 0 , (5.13)
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i

j

(a)

ji

(b)

i
j

(c)

Fig. 5.1. One-dimensional coupled pendulum analog of the tight-binding Hamilto-
nian. Only nearest-neighbor couplings are shown (a). In the periodic case examined
in this chapter, all pendula and all nearest-neighbor couplings are identical (b). The
double spacing periodic case is also shown (c)

or ⎛

⎝ω2
i +

1
mi

∑

ij

κij − ω2

⎞

⎠ui −
1

mi

∑

ij

κijuj = 0 , (5.13′)

where ui is the 1-d displacement of the pendulum located at site i, ωi is its
eigenfrequency in the absence of coupling, and −

∑
j kij (ui − uj) is the force

exercised on the pendulum at the i site as a result of the couplings with all the
other pendula; mi is the mass at i. The correspondence between the electronic
and the pendulum case is illustrated in Table 5.1.

The simple mechanical system of coupled pendula is very important for
solid-state physics: through the analogies in Table 5.1, it allows us to introduce
the basic features of electronic behavior in crystalline solids and to obtain
a clear physical picture of electronic propagation in periodic media. (Actually
F. Bloch arrived at his famous explanation of almost unimpeded electronic
propagation in crystalline metals by recalling the free propagation of motion
in a periodic 1-d array of coupled pendula.) Furthermore, if we generalize to
3-d displacements, the problem of coupled pendula is reduced to that of the
ionic (or atomic) motion in solids (by setting ωi = 0) since each ion (or atom)
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Table 5.1. Analogy between the TBH and a system of coupled pendula

Electronic case Pendulum case

ci : component of eigenfunction
at site i

ui : displacement of pendulum located at site
i

−Vij : minus transfer matrix el-
ement between |i⟩ and |j⟩

κij/mi : spring constant coupling pendula at
sites i and j over mass mi

E: eigenenergy ω2: square of eigenfrequency

εi : site energy ω2
i + 1/mi

P
j κij : square of uncoupled eigen-

frequency plus sum of spring constants con-
nected to i over mass mi

is indeed performing small oscillations around its equilibrium position with
the restoring force being equal to −

∑
j kij (ui − uj). Thus for the periodic

(mi = m0, ωi = ω0, and κij = κi−j) case, the solution of system (5.13′) is,
according to (5.3):

uj = uieik · (j−i) , for each pair i, j , (5.14a)

and then
ω2(k) = ω2

0 +
1

m0

∑

j

κ0j − 1
m0

∑

j

κ0jeik · j . (5.14b)

The reader may verify by direct substitution that (5.14a) and (5.14b) satisfy
the system of equations (5.13′).

Setting i = 0 in (5.14a), replacing the dummy index j by ℓ, and using the
analogies in Table 5.1, we find for the electronic eigenfunctions and eigenen-
ergies of the TBM:

|k) =
∑

ℓ

cℓ |ℓ⟩ = c0

∑

ℓ

eik · ℓ |ℓ⟩ , (5.15a)

E(k) = ε0 +
∑

ℓ

V0ℓeik · ℓ , (5.15b)

where the orthonormality of the eigenstates {|k)} imply that c0 = 1/
√

N .
Equation (5.15a) means that the eigenmodes are propagating waves such

that the amplitude at each site is the same and the phase changes in a regular
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way: φℓ = k · ℓ. To obtain explicit results, we employ the simplifying equation
(5.9) so that (5.15b) becomes

E (k) = ε0 + V
∑

ℓ

′
eik · ℓ , (5.16)

where the summation extends over the sites neighboring the origin. For the
1-d case we have

E(k) = ε0 + 2V cos(ka) , 1-d , (5.17)

where a is the lattice constant. For a 2-d square lattice

E(k) = ε0 + 2V [cos(k1a) + cos(k2a)] , 2-d square. (5.18)

For the 3-d simple cubic we have

E(k) = ε0 +2V [cos(k1a) + cos(k2a) + cos(k3a)] , 3-d simple cubic. (5.19)

In Fig. 5.2 we plot E vs. k for the 1-d case; k is restricted within the first
Brillouin zone, which for the 1-d case extends from −π/a to π/a. The function
E(k) has an absolute maximum (which corresponds to the upper band edge)
for k = π/a or −π/a with a value Emax = ε0 + 2 |V |; it has an absolute
minimum (which corresponds to a lower band edge) for k = 0 with a value
Emin = ε0 − 2 |V |. Thus the spectrum is a continuum (a band) extending
from ε0 − 2 |V | to ε0 + 2 |V |. The bandwidth is 4 |V |. One can easily show
that cases (5.17) to (5.19) produce a single band extending from ε0−Z |V | to

π/a−π/a kE

ε0 − 2V

ε0 + 2V

ε0

Fig. 5.2. E vs. k for the 1-d tight-binding case with nearest-neighbor coupling
V (< 0)). B = 2 |V | is half the bandwidth
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ε0 + Z |V |, where Z is the number of nearest neighbors. The quantity Z |V |,
which is equal to half the bandwidth, is usually symbolized by B. For 2-d and
3-d cases the functions E(k) are presented either by plotting E vs. k as k
varies along chosen directions or by plotting the lines (2-d case) or surfaces
(3-d case) of constant energy (Figs. 5.3–5.5). In all cases k is restricted within
the first Brillouin zone.

For a 1-d periodic model of ionic vibration we obtain from (5.14b) (by
setting ω0 = 0 and assuming only nearest-neighbor couplings) the following
result:

m0ω
2(k) = 2κ [1 − cos(ka)] = 4κ sin2

(
ka

2

)
, (5.20a)

or
ω(k) = 2

√
κ

m0

∣∣∣∣sin
(

ka

2

)∣∣∣∣ −→k→0

√
κa

ϱ
k , (5.20b)

where ϱ = m0/a is the average linear density and κa = Bm is the bulk
modulus for the 1-d case. The quantity

√
Bm/ϱ is the phase or group sound

velocity for ka ≪ 1. As ka approaches π, the phase velocity, ω/k, and the
group velocity, vg ≡ dω/dk, are different with vg → 0 as ka → π.

Fig. 5.3. E vs. k for 3-d simple cubic tight-binding case with nearest-neighbor
coupling V (< 0), as k varies along the straight-line segments of the first Brillouin
zone (1BZ) shown in the insert
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-3 -2 -1 0 1 2 3
-3

-2
-1

0
1

2
3

ε0 − 4V

ε0 + 4V

E(k) k1a
k2a

E(k)

Fig. 5.4. Two-dimensional plot of E vs. k according to (5.18) (V < 0). The first
Brillouin zone (1BZ) is the square −π < k1a, k2a ≤ π. The contours of equal energy
are also shown within the 1BZ

Fig. 5.5. Surface of constant energy [E (k) = ε0 + 1.5V ] in k-space for the case
of (5.19). The 1BZ (shown) is the cube −π < k1a, k2a, k3a ≤ π; the lines α, β, γ
are intersections of this surface by various planes, and they give the semiclassical
electronic trajectories in the presence of a static magnetic field perpendicular to
each plane
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5.3 Green’s Functions

The Green’s function for the TBH examined in the previous section is

G(z) =
∑

k

|k) (k|
z − E (k)

, (5.21)

where |k) is given by (5.15a) and E (k) by (5.16). The matrix elements of
G(z) are

G (ℓ, m; z) ≡ ⟨ℓ |G(z) |m⟩ =
∑

k

⟨ℓ|k) (k|m⟩
z − E (k)

=
Ω

N(2π)d

∫

1BZ
dk

eik · (ℓ−m)

z − E (k)
, (5.22)

where the symbol 1BZ denotes that the integration must be restricted within
the first Brillouin zone. In particular, all diagonal matrix elements are equal
to each other and are given by

G (ℓ, ℓ; z) =
Ω

N(2π)d

∫

1BZ

dk

z − E (k)
. (5.23)

For large z one can omit E (k) in the denominator of the integrand in (5.23)
so that

G (ℓ, ℓ; z) −→
z→∞

1
z

Ω

N(2π)d

∫

1BZ
dk .

The volume of the first Brillouin zone equals (2π)d/Ω0, where Ω0 = Ω/N is
the volume of the primitive cell of the lattice. Hence,

G (ℓ, ℓ; z) −→
z→∞

1
z

. (5.24)

This behavior can be understood if one expresses G (ℓ, ℓ; z) in terms of the
density of states per site ϱ(E)

G (ℓ, ℓ; z) =
∫

ϱ(E)
z − E

dE −→
z→∞

1
z

∫
ϱ(E)dE ; (5.25)

but
∫

ϱ(E)dE = 1 since there is one state per site. Below we give some explicit
results for the various matrix elements of G for several lattices.
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5.3.1 One-Dimensional Lattice

Substituting (5.17) into (5.22) we obtain (taking into account that L/N = a)

G(ℓ, m; z) =
L

2πN

∫ π/a

−π/a
dk

eika(ℓ−m)

z − ε0 − 2V cos(ka)

=
1
2π

∫ π

−π
dφ

eiφ(ℓ−m)

z − ε0 − 2V cosφ
, φ = ka . (5.26)

To evaluate the integral, we observe first that it depends on the absolute
value |ℓ − m|. Next we transform it into an integral over the complex variable
w = eiφ along the unit circle. Thus we have

G(ℓ, m; z) =
1

2πi |V |

∮
dw

w|ℓ−m|

w2 + 2xw + 1
, (5.27)

where
x =

z − ε0

B
, B = 2 |V | . (5.28)

The two roots of w2 + 2xw + 1 = 0 are given by

ϱ1 = −x +
√

x2 − 1 , (5.29a)

ϱ2 = −x −
√

x2 − 1 , (5.29b)

where by
√

x2 − 1 we denote the square root whose imaginary part has the
same sign as Im {x}. (For real x one has to follow a limiting procedure.) It
follows that ϱ1ϱ2 = 1. One can show that |ϱ1| < 1 and |ϱ2| > 1 unless x
is real and satisfies the relation −1 ≤ x ≤ 1. In the latter case both roots
lie on the unit circle, and the integral (5.27) is not well defined. Hence, this
condition gives the continuous spectrum of H which lies in the real E-axis
between ε0 − 2 |V | and ε0 + 2 |V |. For z not coinciding with this singular line,
we obtain for G(ℓ, m; z) by the method of residues

G(ℓ, m; z) =
1
|V |

ϱ1 |ℓ − m|
ϱ1 − ϱ2

=
1√

(z − ε0)2 − B2
ϱ|ℓ−m|
1 , (5.30)

where ϱ1 is given by (5.29a). For z coinciding with the spectrum we have

G±(ℓ, m; E) =
∓i√

B2 − (E − ε0)2

(
−x ± i

√
1 − x2

)|ℓ−m|
, (5.31)

where ε0−B ≤ E ≤ ε0 +B, x = (E−ε0)/B and the symbol
√

1 − x2 denotes
the positive square root.
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The density of states per site is given by

ϱ(E) = ∓ 1
π

Im
{
G±(ℓ, ℓ; E)

}
=

θ (B − |E − ε0|)

π
√

B2 − (E − ε0)
2

. (5.32)

In Fig. 5.6 we plot the real and the imaginary part of the diagonal matrix
element G(ℓ, ℓ; E) vs. E Notice the square root singularities at both band
edges. As was mentioned in Chap. 3, this behavior is characteristic of one-
dimensionality. Note that the off-diagonal matrix elements G(ℓ, m; z) decay
exponentially with the distance |ℓ − m| when z does not coincide with the
spectrum. On the other hand, when z belongs to the spectrum, |ϱ1| = 1, and
the matrix elements G(ℓ, m; z) do not decay with the distance |ℓ − m|.

2

1.5

1

0.5

-0.5

-1

-1.5

-2

21.510.5-0.5-1-1.5-2

E − ε0

B

0

BRe
˘
G±¯

∓BIm
˘
G±¯

Fig. 5.6. The diagonal matrix element G±(ℓ, ℓ;E) vs. E for the 1-d lattice. B = 2 |V |
is half the bandwidth

5.3.2 Square Lattice

For the square lattice we have, by substituting (5.18) into (5.23),

G (ℓ, m; z) =
a2

(2π)2

∫

1BZ
d2k

eik · (ℓ−m)

z − ε0 − 2V [cos (k1a) + cos (k2a)]
, (5.33)

where
k · (ℓ − m) = a [k1 (ℓ1 − m1) + k2 (ℓ2 − m2)] . (5.34)
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Here ℓ1, ℓ2, m1, and m2 are integers, a is the lattice constant; in the present
case, the first Brillouin zone is the square

−π/a ≤ k1 < π/a , −π/a ≤ k2 < π/a .

Thus (5.33) can be rewritten as

G (ℓ, m; z)

=
1

(2π)2

∫ π

−π
dφ1

∫ π

−π
dφ2

exp [iφ1 (ℓ1 − m1) + iφ2 (ℓ2 − m2)]
z − ε0 − 2V (cosφ1 + cosφ2)

=
1
π2

∫ π

0
dφ1

∫ π

0
dφ2

cos [φ1 (ℓ1 − m1)] cos [φ2 (ℓ2 − m2)]
z − ε0 − 2V (cosφ1 + cosφ2)

(5.35a)

=
1
π2

∫ π

0
dφ1

∫ π

0
dφ2

{
cos [(ℓ1 − m1 + ℓ2 − m2)φ1]

z − ε0 − 4V cosφ1 cosφ2

× cos [(ℓ1 − m1 − ℓ2 + m2) φ2]
}

. (5.35b)

For a derivation of the last expression see [65]. By taking matrix elements of
the operator equation, (z − H)G = 1, one obtains recurrence relations that
allow one to express the arbitrary matrix element G (ℓ, m; z) in terms of the
matrix elements G (ℓ, m; z) with ℓ1−m1 = ℓ2−m2 [65] [see also (5.47) below].
Furthermore, the matrix elements G (ℓ, m; z) with ℓ1 −m1 = ℓ2 −m2 can be
expressed by recurrence relations in terms of the diagonal matrix element
G (ℓ, ℓ; z) and the matrix element G (ℓ, m; z) with ℓ1 − m1 = ℓ2 − m2 = 1,
which will be denoted by G(1; z) [65] (see also Problem 5.3). For the diagonal
matrix element G (ℓ, ℓ; z) we have

G (ℓ, ℓ; z) =
1
2π

∫ π

−π
dφ1

1
2π

∫ π

−π
dφ2

1
z − ε0 + B cosφ1 cosφ2

=
1
2π

∫ π

−π
dφ1

1√
(z − ε0)2 − B2 cos2 φ1

=
1

π (z − ε0)

∫ π

0

dφ√
1 − λ2 cos2 φ

, (5.36)

where
λ =

B

z − ε0
; B = 4 |V | , (5.37)

hence
G (ℓ, ℓ; z) =

2
π (z − ε0)

K(λ) , (5.38)

where K is the complete elliptic integral of the first kind. In a similar way, by
performing the integration over φ2 we obtain from (5.35b)
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G(1; z) =
1
π

∫ π

0
dφ1

cos (2φ1)√
(z − ε0)

2 − B2 cos2 φ1

(5.39a)

=
2

π (z − ε0)

[(
2
λ2

− 1
)
K(λ) − 2

λ2
E(λ)

]
, (5.39b)

where E(λ) is the complete elliptic integral of the second kind.
For z = E + is, s → 0± and E within the band, one may use the analytic

continuation of K(λ) and E(λ) [1] to obtain explicit expressions for G± (ℓ, ℓ; E)
and G±(1; z); e.g., for G± (ℓ, ℓ; E) we have

G (ℓ, ℓ; E) =
2

π (E − ε0)
K

(
B

E − ε0

)
, |E − ε0| > 4 |V | = B ,

Re
{
G± (ℓ, ℓ; E)

}
= − 2

πB
K

(
E − ε0

B

)
, −B < E − ε0 < 0 ,

Re
{
G± (ℓ, ℓ; E)

}
=

2
πB

K
(

E − ε0

B

)
, 0 < E − ε0 < B ,

Im
{
G± (ℓ, ℓ; E)

}
= ∓ 2

πB
K

⎛

⎝

√

1 − (E − ε0)
2

B2

⎞

⎠ , |E − ε0| < B . (5.40)

The density of states per site is given by

ϱ(E) = ∓ 1
π

Im
{
G± (ℓ, ℓ; E)

}

=
2

π2B
θ (B − |E − ε0|)K

⎛

⎝

√

1 − (E − ε0)
2

B2

⎞

⎠ . (5.41)

These functions are plotted in Fig. 5.7. Note that the DOS exhibits at both
band edges a discontinuity that produces the logarithmic singularities of the
Re {G} at the band edges. As was discussed before, this behavior is char-
acteristic of the two-dimensionality of the system. Note also the singularity
at the interior of the band (at E = ε0); the Re {G±} is discontinuous there
and Im {G±} has a logarithmic singularity. The singularities of G± within the
band are associated with saddle points in the function E(k). A minimum num-
ber of such saddle points exists and depends on the number of independent
variables k1, . . . , kd [66, 67] (see Problem 5.8 at the end of this chapter).

As was mentioned before, recurrence relations allow one to express all
G (ℓ, m; z) in terms of G(0; z) ≡ G(ℓ, ℓ; z), (5.38), and G(1; z), (5.39). These
recurrence relations develop numerical instabilities for |E − ε0| ≥ B, espe-
cially along the direction of the x- and y-axes. The reason is that the recur-
rence relations are satisfied not only by the Green’s functions, which decay to
zero as |ℓ − m| → ∞, but by an independent set as well, which blows up as
|ℓ − m| → ∞. Because of numerical errors, a very small component of this di-
vergent set is present in G(0; z) and G(1; z) and magnified as |ℓ − m| increases,
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Fig. 5.7. Diagonal matrix elements G± (ℓ, ℓ; E) vs. E for the 2-d square lattice.
B = 4 |V | is half the bandwidth

until it eventually dominates the solution. To avoid this difficulty, one has to
use asymptotic expansions of G(m, 0; z), which are valid for |m| ≫ R0 [see
(5.42) below] and which can be obtained using the method of stationary phase
in evaluating the integral for G(m, 0; z) [68]. See also the solution of Prob-
lem 5.2s, equation (15). Setting k0 ·R = k01am1 + k02am2 = φ01m1 +φ02m2,
R = |m| a, |m| =

√
m2

1 + m2
2, and

R0 ≡
√

sin2 φ01 + sin2 φ02∣∣∣ ε0−E
2|V | (1 − cosφ01 cosφ02)

∣∣∣
, (5.42)

we find for |E − ε0| < B and for |m| ≫ R0

2 |V |G+ (m, 0; E) =
±1 − i
2
√

π

exp [i (m1φ01 + m2φ02)]√
|m| /R0

, (5.43)
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where the upper (lower) sign corresponds to E > ε0 (E < ε0), m1 and m2 are
the cartesian components of m, and φ01 and φ02 are solutions of the following
relations:

(ε0 − E) /2 |V | = cosφ01 + cosφ02 , (5.44)
m2 sinφ01 = m1 sinφ02 , (5.45)
m1 sinφ01 ≥ 0 . (5.46)

It follows from (5.42)–(5.46) that the length R0 (in units of the lattice spacing
a) depends on the direction m1/m2 as well as the energy E. In particular, as
we approach the singular points E = ε0 and E = ε0±B, the quantity R0 → ∞.

In the limit E → ε0, cosφ01 → − cosφ02, sin2 φ01 → sin2 φ02, and thus

R0 →
∣∣∣∣

2V

E − ε0

∣∣∣∣

√
2 |sinφ01|

1 + cos2 φ01
→ ∞ as E → ε0 . (5.42′)

R0 being infinite implies that G(m, 0; E) does not decay as |m| → ∞ when
E = ε0. Indeed, by using the defining equation (E − H)G = 1, or more
explicitly

(E − ε0)G (m, 0; E) −
∑

ℓ ̸=m

⟨m | H | ℓ⟩ ⟨ℓ |G | 0⟩ = δm,0 , (5.47)

we find in the limit E = ε0 that

G± (m, 0; E) =
(−1)m1

4V
=

(−1)m1+1

4 |V | , m1 − m2 = odd ,

when the difference m1 − m2 is an odd integer. In the case where m1 −m2 is
an even integer, all G (m, 0; E) blow up as E → ε0. We can show that, to the
leading order in E − ε0 → 0, we have

G (m, 0; E) ≃ (−1)m1G(0, 0; E) , m1 − m2 = even.

To prove this last relation, show first that the difference δG (m, 0; E) ≡
G (m, 0; E) − (−1)m1G(0, 0; E) is finite in the limit E → ε0; then use the
recursion relation (5.47).

In the limit E → ε0 − B, the quantity R0 →
√
|V | / |E − ε0 + B| → ∞.

Hence G (m, 0; E) does not decay as E → ε0 −B since R → ∞; furthermore,
all G (m, 0; E) blow up in the limit E → ε0 −B. In the same limit, the differ-
ences δG (m, 0; E) ≡ G (m, 0; E) − G(0; E) are finite numbers [69] that obey
the same recurrence relations as the Gs; the starting values for δG (m, 0; E)
with m1 = m2 are δG(0; E) = 0 and δG(1; E) = −1/(π |V |). Using these val-
ues and the recurrence relations obtained by Morita [65] or by solving Prob-
lem 5.3, we obtain first δG (m, 0; E) for m1 = m2 and then, by employing
(5.47), we can calculate the Green’s function elements for m1 ̸= m2. However,
these recurrence relations may eventually develop numerical instabilities.
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For E outside the band, the quantities φ1 and φ2 in (5.43) become imag-
inary, and consequently G (m, 0; E) decays exponentially with the distance
|m|. In particular, for E = ε0 −B − δE, δE > 0, and δE/B ≪ 1, one obtains
for large |m|

2 |V |G (m, 0; ε0 − B − δE) = −
exp

(
− |m|

√
δE/ |V |

)

√
2π

(
|m|2 δE/ |V |

)1/4
. (5.48)

Similar relations appear at the upper band edge E = ε0 + B. Several other
2-d lattices have been studied. Thus, Horiguchi [70] has expressed Green’s
functions for the triangular and honeycomb lattices in terms of the complete
elliptic integrals of the first and second kind. Horiguchi and Chen [71] ob-
tained the Green’s function for the diced lattice. For all these lattices, the
DOS exhibits the characteristic discontinuity at the band edges and Re {G}
has a logarithmic singularity. There are singular points within the band where
the Re {G} exhibits a discontinuity and the DOS has a logarithmic singularity.

If we are not interested in quantitative details, we can approximate the
Green’s functions for 2-d lattices by a simple function that retains the correct
analytic behavior near the band edges and that gives one state per site. This
simple approximation is

G(ℓ, ℓ; z) =
1

2B
ln

(
z − ε0 + B

z − ε0 − B

)
, (5.49)

which gives the following DOS:

ϱ(E) =
1

2B
θ (B − |E − ε0|) . (5.50)

We must stress that the simple expression (5.49) does not correspond to a real
2-d lattice and that it does not possess any Van Hove singularity in the interior
of the band. In Fig. 5.8 we plot G(ℓ, ℓ; E) as given by (5.49) vs. E.

5.3.3 Simple Cubic Lattice

The first Brillouin zone for the simple cubic lattice is the cube

−π/a ≤ k1 < π/a , −π/a ≤ k2 < π/a , −π/a ≤ k3 < π/a ,

where a is the lattice constant. Substituting (5.19) into (5.22) and introducing
the variables φi = kia (i = 1, 2, 3) we obtain

G (ℓ, m; z) =
1

(2π)3

∫ π

−π
dφ1

∫ π

−π
dφ2

∫ π

−π
dφ3

×cos [(ℓ1 − m1)φ1 + (ℓ2 − m2)φ2 + (ℓ3 − m3)φ3]
z − ε0 − 2V (cosφ1 + cosφ2 + cosφ3)

.(5.51)
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Fig. 5.8. Plot of Re
˘
G±¯

and ∓Im
˘
G±¯

vs. E for approximate expression
G(ℓ, ℓ; z) = ln [(z − ε0 + B) / (z − ε0 − B)] /2B, where B = 4 |V | is half the band-
width. Compare with the exact expression for the square lattice (Fig. 5.7)

In particular, the diagonal matrix element G(ℓ, ℓ; z) is

G (ℓ, ℓ; z) =
1

(2π)3

∫ π

−π
dφ1

∫ π

−π
dφ2

∫ π

−π
dφ3

× 1
z − ε0 − 2V (cosφ1 + cosφ2 + cosφ3)

; (5.52)

the integration over φ2 and φ3 in (5.52) can be done as in the square lattice
case yielding tK(t)/2πV , where

t =
4V

z − ε0 − 2V cosφ1
; (5.53)
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thus
G (ℓ, ℓ; z) =

1
2π2V

∫ π

0
dφ1tK(t) . (5.54)

The last integral can be calculated numerically [72]. Re{G± (ℓ, ℓ; E)} and
∓Im {G± (ℓ, ℓ; E)} for real E are plotted in Fig. 5.9. The behavior is typical
for a 3-d system: near both band edges, the DOS, −Im {G+} /π, approaches
zero continuously as

√
|∆E|, where |∆E| is the difference of E and the corre-

sponding band edge. Re {G} remains finite around the band edges, although
its derivative with respect to E blows up as we approach the band edges from
outside the band. Within the band are two Van Hove singularities, where both
Im {G} and Re {G} are continuous while their derivatives are discontinuous
and blow up sidewise (however, see point 4 in Problem 5.8).
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∓BIm
˘
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Fig. 5.9. Diagonal matrix elements G (ℓ, ℓ; E) vs. E for simple cubic lattice. B =
6 |V | is half the bandwidth
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When |ℓ − m| is along an axis (e.g., the x-axis), one can perform the
integration over φ2 and φ3 in (5.51) as in the square lattice, yielding again
tK(t)/2πV ; thus

G (ℓ1 − m1, 0, 0; z) =
1

2π2V

∫ π

0
dφ1 cos [(ℓ1 − m1) φ1] tK(t) . (5.55)

Details concerning the evaluation of integral (5.55) are given in [73]; in the
same reference some recurrence relations1 are obtained that allow the com-
putation of G (ℓ, m; z) for small |ℓ − m| in terms of G (ℓ1 − m1, 0, 0; z). Us-
ing these techniques, Table 5.2 at the end of this chapter was constructed.
Joyce [74] was able to prove that G (ℓ, ℓ; z) can be expressed as a product
of two complete elliptic integrals of the first kind. Morita [75] obtained re-
currence relations for the simple cubic lattice that allow the evaluation of all
G (ℓ, m) in terms of G(0, 0, 0) ≡ G (ℓ, ℓ), G(2, 0, 0), and G(3, 0, 0). The last
two Green’s functions were expressed by Horiguchi and Morita [76] in closed
forms in terms of complete elliptic integrals. The reader is also referred to the
papers by Austen and Loly [77], by Hioe [78], by Rashid [79], by Inawashiro
et al. [80], by Katsura et al. [81], and by Joyce [82]. Asymptotic expansions
valid for large values of |ℓ − m| were obtained [68]; within the band G (ℓ, m)
decays slowly as |ℓ − m|−1; outside the band it decays exponentially (Prob-
lem 5.4.)

The Green’s functions for other 3-d lattices, such as face- and body-
centered cubic, have been calculated [72, 75, 77–79, 83–88]. Note that the
Green’s functions for the fcc and bcc lattices blow up at the upper band
edge and in the interior of the band, respectively [72] (Problem 5.5s). This
behavior is atypical for a 3-d system. A small perturbation such as the inclu-
sion of second-nearest-neighbor transfer matrix elements will eliminate these
pathological infinities.

In many cases where quantitative details are not important, it is very useful
to have a simple approximate expression (for G) that can be considered as
typical for a 3-d lattice. Such an expression must exhibit the correct analytic
behavior near the band edges and must give one state per site. Such a simple
expression, widely used and known as the Hubbard Green’s function, is the
following:

G (ℓ, ℓ; z) =
2

z − ε0 +
√

(z − ε0)2 − B2

, (5.56)

where the sign of Im
{√

(z − ε0)2 − B2

}
is the same as the sign of Im {z}. The

DOS corresponding to (5.56) is of a semicircular form: the real and imaginary
parts of G as given by (5.56) are shown in Fig. 5.10. Note that the simple
approximation (5.56) does not reproduce any Van Hove singularity within the
band.
1 There is a typographical error in (3.8) and (3.9) of [73]: Gsc(t; 1, 0, 0) must be

multiplied by t3 instead of t2.
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G±¯
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vs. E for approximate 3-d G (ℓ, ℓ; z) =

2

ffi»
(z − ε0) +

q
(z − ε0)

2 − B2

–
, where B is half the bandwidth. Compare with

the exact G (ℓ, ℓ; z) for the simple cubic lattice (Fig. 5.9)

5.3.4 Green’s Functions for Bethe Lattices (Cayley Trees)

Bethe lattices or Cayley trees are lattices which have no closed loops and
are completely characterized by the number of nearest neighbors Z or the
connectivity K = Z − 1. In Fig. 5.11 we show a portion of a Bethe lattice for
K = 2 (Z = 3). The 1-d lattice is a Cayley tree with K = 1 (Z = 2).

Calculation of Green’s functions in Bethe lattices can be performed
by using the renormalized perturbation expansion (RPE) as explained in
Appendix F.

For the double spacing periodic case shown in Fig. 5.11 (with ε1 > ε2),
the result for G (ℓ, ℓ; z) is (Appendix F)

G (ℓ, ℓ; z) = G1(z) ≡ 2K (z − ε2)
D

; εℓ = ε1 ,

G2(z) ≡ 2K (z − ε1)
D

; εℓ = ε2 . (5.57)

Here D is given by

D = (K − 1) (z − ε1) (z − ε2)

+ (K + 1)
√

(z − ε1) (z − ε2) [(z − ε1) (z − ε2) − 4KV 2] , (5.58)

where the sign of the imaginary part of the square root in (5.58) is the
same as the sign of Im {(z − ε1)(z − ε2)}. For the off-diagonal matrix element
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Fig. 5.11. Part of a Bethe lattice (Cayley tree) with Z = 3 nearest neighbors. The
site energies {εℓ} are arranged in an alternating periodic manner

G(ℓ, m; z) we have (Appendix F)

G(ℓ, m) = G(ℓ, ℓ)V |m−ℓ|[G(ℓ + 1, ℓ + 1[ℓ])]|m−ℓ|/2

×[G(ℓ, ℓ[ℓ + 1])]|m−ℓ|/2 , (5.59a)

when |m − ℓ| even,

G(ℓ, m) = G(ℓ, ℓ)V |m−ℓ|[G(ℓ + 1, ℓ + 1[ℓ])](|m−ℓ|+1)/2

×[G(ℓ, ℓ[ℓ + 1])](|m−ℓ|−1)/2 ; (5.59b)

when |m − ℓ| odd, and

G (ℓ + 1, ℓ + 1[ℓ]; z) =
K + 1

z − εℓ+1 + K [G(ℓ + 1, ℓ + 1; z)]−1 , (5.60)

G (ℓ, ℓ[ℓ + 1]; z) =
K + 1

z − εℓ + K [G(ℓ, ℓ; z)]−1 . (5.61)

As can be seen from (5.58), the spectrum consists of two subbands, the lower
one extending from (ε1 + ε2)/2−

√
(ε1 − ε2)2/4 + 4KV 2 to ε2 and the upper

one from ε1 to (ε1 + ε2)/2 +
√

(ε1 − ε2)2/4 + 4KV 2. There is a gap from ε2

to ε1. The DOS at sites with ε1(ε2) is ϱ1 (ϱ2), where

ϱi(E) = − 1
π

Im
{
G+

i (E)
}

; i = 1, 2 . (5.62)

A plot of G1(z) is shown in Fig. 5.12. Note the analytic behavior at the band
edges, which is typical 3-d except at one of the interior band edges, where
a square root divergence appears.

The double spacing periodic case in a Cayley tree describes the basic qual-
itative features of ionic crystals such as NaCl and CsCl. Indeed, in these mate-
rials, the lower subband is fully occupied by electrons while the upper subband
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Fig. 5.12. Re
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G±(ℓ, ℓ)

¯
and ∓Im

˘
G±(ℓ, ℓ)

¯
vs. E for a Bethe lattice with four

nearest neighbors (K = 3); εℓ+2n = ε1, εℓ+2n+1 = ε2, where n integer and ε1 ≥ ε2;
ε0 = (ε1 + ε2) /2, B = 2

√
KV 2 and the difference ε1−ε2 has been taken equal to B.

Re
˘
G±(ℓ + 1, ℓ + 1; E)

¯
= −Re

˘
G±(ℓ, ℓ;−E + 2ε0)

¯
; Im

˘
G±(ℓ + 1, ℓ + 1; E)

¯
=

Im
˘
G±(ℓ, ℓ;−E + 2ε0)

¯

is completely empty. Any electronic excitation has to overcome the gap width,
Eg, in order to take place. Thus Eg plays an important role in optical absorp-
tion, photoconductivity, electronic polarizability, lattice vibrations, etc. Our
simple model gives Eg as being equal to ε1 − ε2. If we make the approxi-
mation that ε1 and ε2 are equal to the corresponding atomic levels, we find
Eg = 14.52 eV for LiF (the experimental value is 13.6 eV), Eg = 8.83 eV for
NaCl (the experimental value is 8.5 eV), and Eg = 7.6 eV for CsI (the experi-
mental value is 6.2 eV). The subband widths, W , in the large-gap case, where
Eg ≫ 4

√
K |V |, are given by W ≃ 4KV 2/Eg = B2/Eg, where B ≡ 2

√
KV 2

is half the bandwidth in the case where ε1 = ε2. (In Fig. 5.12 we have taken
ε1 = −ε2 = B/2 so that Eg = B and the width of the subbands is 0.618B.)
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The simple periodic case is obtained by setting ε1 = ε2 = ε0. We then
have

G (ℓ, ℓ; z) =
2K

(K − 1) (z − ε0) + (K + 1)
√

(z − ε0)2 − 4KV 2
, (5.63)

where the sign of the imaginary part of the square root is the same as the
sign of Im {z}. We obtain thus a single band centered around ε0 with a half
bandwidth B = 2 |V |

√
K. Note that (5.63) reduces to the Hubbard Green’s

function in the limit K → ∞ with B = 2 |V |
√

K remaining constant. For
the quantity G(ℓ, ℓ[ℓ + 1]) we have when ε1 = ε2 = ε0:

G(ℓ, ℓ[ℓ + 1]) =
2

(z − ε0) +
√

(z − ε0)
2 − 4KV 2

. (5.64)

Hence the off-diagonal matrix elements are

G(ℓ, m) =
2K

(K − 1) (z − ε0) + (K + 1)
√

(z − ε0)
2 − 4KV 2

×

⎡

⎣ 2V

(z − ε0) +
√

(z − ε0)
2 − 4KV 2

⎤

⎦
|ℓ−m|

. (5.65)

For K = 1 the Bethe lattice is identical to the 1-d lattice, and consequently
(5.65) reduces to (5.30) when K = 1. Similarly, (5.57), (5.59a), and (5.59b)
give the double spacing periodic 1-d results when K = 1.

Note that the Green’s functions for Bethe lattices have several applications
in solid-state physics, especially for analyzing amorphous solids [89–92] by
the method of “cluster–Bethe–lattice.” For a review the reader is referred to
a paper by Thorpe [93].

5.4 Summary

In this chapter we introduced the tight-binding Hamiltonian (TBH)

H =
∑

ℓ

|ℓ⟩ εℓ ⟨ℓ| +
∑

ℓm

|ℓ⟩Vℓm ⟨m| , Vℓℓ = 0 , (5.7)

where each state |ℓ⟩ is an atomiclike orbital centered at site ℓ and ⟨ℓ |n⟩ = δln.
The {ℓ} sites form a regular lattice. The quantity εℓ is the energy of an
electron located at site ℓ in the absence of Vℓm. The quantity Vℓm is the
matrix element for transferring an electron from site ℓ to site m. The electronic
motion governed by the TBH (5.7) is mathematically equivalent to the motion
of a coupled set of 1-d pendula (Table 5.1).
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We examined the case of a periodic TBH with the same period as the
lattice. This periodicity implies that

εℓ = ε0 for all ℓ , (5.6a)
Vℓm = Vℓ−m . (5.6b)

The eigenfunctions and eigenvalues of the periodic TBH are of the following
form:

|k) =
1√
N

∑

i

eik · i |i⟩ , (5.15a)

E (k) = ε0 +
∑

ℓ

V0ℓeik · ℓ , (5.15b)

where k is restricted to a finite region called the first Brillouin zone. Using
the general formula G(z) =

∑
k (|k) (k|) / [z − E(k)] together with (5.15a)

and (5.15b), we can calculate G(z). In the case where

Vℓm =
{

V, ℓ, m nearest neighbors , (5.9a)
0, otherwise , (5.9b)

we obtain explicit expressions for G(z) for various lattices such as the 1-d
lattice, the 2-d square, the 3-d simple cubic, and the Bethe lattice (Figs. 5.6,
5.7, 5.9, and 5.12). The analytic behavior of these Green’s functions near the
band edges depends in general on the dimensionality as in the free-particle
case (although exceptions do exist; see Problem 5.5s).

Finally, we discussed briefly the applications of the TBH [or the linear com-
bination of atomic orbitals (LCAO) method] to the problem of the electronic
structure of solids.

Further Reading

Several textbooks present the subject of solid-state physics at the introductory
level, such as those by Kittel [22] and Ibach and Lüth [23], and to a more
advanced level such as the books by Ashcroft and Mermin [28], Marder [30],
and Harrison [25].

Problems

5.1s. Prove that |ϱ2| > |ϱ1| unless −1 ≤ x ≤ 1, where ϱ1 and ϱ2 are given by
(5.29).

5.2s. Using (5.43)–(5.46) prove (5.42).
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5.3. Define the functions

Fn

(
k2

)
≡

∫ π

0
dx

cos(nx)√
1 − k2 cos2 x

, (1)

Gn

(
k2

)
≡

∫ π

0
dx cos(nx)

√
1 − k2 cos2 x . (2)

Show that

Gn

(
k2

)
= −k2

4
Fn+2

(
k2

)
+

(
1 − k2

2

)
Fn

(
k2

)
− k2

4
Fn−2

(
k2

)
. (3)

Show also by partial integration of (2) that

Gn

(
k2

)
= − k2

4n

[
Fn−2

(
k2

)
− Fn+2

(
k2

)]
. (4)

Comparing (3) and (4) obtain a recurrence relation of Fn+2 in terms of Fn

and Fn−2. Use this recurrence relation to obtain a recurrence relation for
G (m, 0; E) when m1 = m2.

5.4. Following the procedures of Problem 5.2s, prove that the asymptotic
expansion of (5.51) for large values of |ℓ − m| are given by

G (R) =
−1

4π |V |
exp (ik0 ·R)

(R/a)

×

√
sin2 φ1 + sin2 φ2 + sin2 φ3

sin2 φ1 cosφ2 cosφ3 + sin2 φ2 cosφ3 cosφ1 + sin2 φ3 cosφ1 cosφ2
.

5.5s. Find the E vs. k for the body-centered cubic (bcc) and the face-centered
cubic (fcc) lattices within the framework of the Hamiltonian (5.7). Then de-
termine the energies where the DOS blows up.

5.6. To describe qualitatively elemental semiconductors we can consider the
simplest possible model, i.e., a 1-d TBM with two atomiclike orbitals per site
(one s and one p along the direction of the chain). For the diagonal matrix
elements of the Hamiltonian we shall choose the values appropriate for Si
(εs = −14.79 eV and εp = −7.58 eV). For the off-diagonal matrix elements we
shall make the following choices (see [25]):

⟨n, s | H |n + 1, s⟩ = V2 = −1.32
!2

md2
= −1.32

7.61
d2

eV Si= −1.82 eV ,

⟨n, p | H |n + 1, p⟩ = V ′
2 = 2.22

!2

md2
= 2.22

7.61
d2

eV Si= 3.06 eV ,

⟨n, s | H |n + 1, p⟩ = −⟨n, p | H |n + 1, s⟩

= V ′′
2 = 1.42

!2

md2
= 1.42

7.61
d2

eV Si= 1.96 eV , (1)

where d is the bond length (in the last expressions d is in Å). For Si d = 2.35 Å.



104 5 Green’s Functions for Tight-Binding Hamiltonians

Show that :

1. For each k there are now two solutions, E(k), given by setting the deter-
minant D equal to zero:

D ≡
∣∣∣∣
E − εs − 2V2 cos(kd) −2iV ′′

2 sin(kd)
2iV ′′

2 sin(kd) E − εp − 2V ′
2 cos(kd)

∣∣∣∣ = 0 . (2)

2. For d very large, two bands are formed around εs and εp of widths 4 |V2|
and 4V ′

2 , respectively. The gap is Eg = εp − εs − 2 (V ′
2 + |V2|).

3. For d = dSi, two bands are formed around εh−|V2h| and εh+|V2h| of width
εp−εs±1.8!2/md2 for the upper and lower band, respectively, where εh =
(εs + εp) /2, V2h = − 1

2 (|V2| + V ′
2 + 2V ′′

2 ). So the gap is approximately
equal to 2 |V2h| − (εp − εs). Substituting the values for Si we find Eg ≃
1.59 eV, to be compared with the experimental value of Eg = 1.16 eV.

4. Interpret the results in item 3 above by changing the basis from |s⟩ and |p⟩
to the atomic hybrids |χ1⟩ = 1√

2
(|s⟩ + |p⟩) and |χ2⟩ = 1√

2
(|s⟩ − |p⟩) and

then to the bonding, |ψbn⟩ ≡ 1√
2

(|χ1,n⟩ + |χ2,n+1⟩), and the antibonding,
|ψan⟩ ≡ 1√

2
(|χ1,n⟩ − |χ2,n+1⟩), orbitals. By appropriate approximation,

the two sets {|ψbn⟩} and {|ψan⟩} are decoupled.
5. Plot the four band edges of the two bands as a function of d (2Å < d < ∞)

by employing the solutions of (2). Are there values of d where the gap
disappears?

5.7s. Starting from (F.10)–(F.13) prove (5.60) and (5.61).

5.8. The states of a quantum particle moving in a periodic potential are char-
acterized by the crystal wavevector k and the band index n. In what follows
we shall not display explicitly the band index. (In the TBM we considered in
this chapter there is only one band).

Prove that the density of states (DOS) exhibits a singularity, as shown in
Fig. 5.13, near an energy E0 such that ∇kE (k) = 0 for an isolated point,
k = k0, satisfying the relation E0 = E (k0).

The quantities Ai are defined by the relations Ai ≡ ∂2E (k) /∂k2
i for k =

k0; the components i are along the principal axes, which by definition satisfy
the relations ∂2E (k) /∂ki∂kj = 0 for i ̸= j.

Hints:

1. It is better and easier to work first with the quantity R (E, E0) represent-
ing the number of states whose eigenenergies fall between E and E0. Then
the DOS is obtained by taking the derivative

ϱ(E) =
dR (E, E0)

dE
as E → E0 . (1)

The number of states, R (E, E0), per primitive cell (and per band) is given
by the general formula
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E0 E
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A > 0 A < 0
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2−d

3−d
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Ai<0

Aj,Ak>0
Ai>0

Aj,Ak<0

Fig. 5.13. Behavior of DOS near an isolated energy E0 corresponding to an ex-
tremum or a saddle point of E(k) for 1-d, 2-d, and 3-d systems

R (E, E0) =
Ω0

(2π)d
Ωk , (2)

where d is the dimensionality of space (d=1,2,3), Ω0 the “volume” of
the primitive cell (a, a2, a3 for d = 1, 2, 3 and for the examples we have
considered), and Ωk the extent (volume, area, length for d = 3, 2, 1, re-
spectively) of the region in k-space whose points satisfy the inequalities
E0 < E (k) < E. Notice that the total number of states in the whole first
Brillouin zone is exactly one (per band).

2. Consider the E(k) vs. k in the 1-d case as shown schematically in the
figure below. When E is below the local minimum Em, there is only one
k point such that E = E(k), and consequently R(E + δE, E) ≡ ϱ(E)δE
is, according to (2), (a/2π)δk. Thus

ϱ(E) =
a

2π

1
|dE/dk| , E < Em , (3)

where the derivative is computed at point k such that E(k) = E. If E is
between Em and EM , then there are three k points such that E (ki) = E
and the DOS is equal to (a/2π)

∑3
i=1 |dE/dk|−1

i . For E higher but close
to Em, R (E, Em) = (a/2π) [k1 + k3 − k2]. But around km we can write

E = Em +
1
2
A (ki − km)2 , i = 2, 3, E → E+

m . (4)



106 5 Green’s Functions for Tight-Binding Hamiltonians

kM km k3k2k1O k

E(k)

EM

E

Em

Fig. 5.14. Example of E vs. k for 1-d system

Thus k3 − km = km − k2 =
√

2 (E − Em) /A. Substituting in R (E, Em)
and differentiating with respect to E we find

ϱ(E) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

a

2π

(
1

|dE/dk|1
+

√
2
A

1√
E − Em

)
, E → E+

m ,

a

2π

1
|dE/dk|1

, E → E−
m . (5)

In a similar way show that

ϱ(E) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

a

2π

1
|dE/dk|3

, E → E+
M ,

a

2π

(
1

|dE/dk|3
+

√
2

A (E − EM )

)
, E → E−

M . (6)

3. In two dimensions we have for E close to E0, such that E (k0) = E0, and
∇kE(k) = 0 for k = k0, where k0 is an isolated point:

E = E (k) = E0 +
1
2
Ax (kx − kx0)

2 +
1
2
Ay (ky − ky0)

2 , (7)

where x and y are the principal axes.
If both Ax > 0 and Ay > 0, then k0 corresponds to a local minimum;
if both Ax < 0 and Ay < 0, then k0 corresponds to a local maximum;
finally, if AxAy < 0, then k0 is a saddle point.
Show that:
(a) If Ax, Ay > 0, then for E just above E0 an extra δR(E, E0) is added

corresponding to an ellipse in k-space of area proportional to δE =
E − E0. Thus a discontinuity in the DOS would result in the form
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ϱ
(
E+

0

)
− ϱ

(
E−

0

)
=

a2

2π

1√
AxAy

. (8)

(b) If Ax, Ay < 0, then we find a similar expression

ϱ
(
E+

0

)
− ϱ

(
E−

0

)
= − a2

2π

1√
AxAx

. (9)

(c) If AxAy < 0, then the area in k space corresponding to R (±E ∓ E0) is
between the two straight lines ky − k0y = ±

√
−Ax/Ay (kx − kx0) and

the hyperbola 2 (E − E0) = Ax (kx − kx0)
2 + Ay (ky − ky0)

2, where
E − E0 is either positive or negative. The corresponding area in k-
space is

Ωk =
2√

−AxAy
|E − E0| |ln |E − E0|| + O (|E − E0|) .

Hence

ϱ(E) =
a2

(2π)2
2√

−AxAy
|ln |E − E0|| as E → E0 . (10)

4. Following a similar approach in three dimensions show that

ϱ(E) →

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

+
a3

√
2π2

√
E − E0

AxAyAz
+ const. as E → E±

0 , (11a)

− a3

√
2π2

√
E − E0

AxAyAz
+ const. as E → E±

0 , (11b)

where (11a) is for E0 being an extremum (either minimum or maximum)
while (11b) is for E0 being a saddle point of E (k).
Note that if ∇kE (k) is zero along a line, then the 2-d singularity is as in
1-d. Similarly, if ∇kE (k) is zero along a line in 3-d, then the singularities
are as in the 2-d case, and if ∇kE (k) = 0 in a surface in 3-d, then the
singularities are as in the 1-d case.
Apply (11a) and (11b) to sketch the shape of the DOS for the case of
E(k) = ε0 + 2V [cos(kxa) + cos(kya) + cos(kza)].

5.9. Using (5.47) prove that G(1; z) = B−1 −G(l, l; z)/λ. Then show (5.39b).
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6

Single Impurity Scattering

Summary. In this chapter we examine (using techniques developed in Chap. 4)
a model tight-binding Hamiltonian describing the problem of a substitutional impu-
rity in a perfect periodic lattice. We obtain explicit results for bound and scattering
states. Certain important applications, such as gap levels in solids, Cooper pairs in
superconductivity, resonance and bound states producing the Kondo effect, and
impurity lattice vibrations, are presented.

6.1 Formalism

We consider here the case of a tight-binding Hamiltonian (TBH) whose per-
fect periodicity has been broken at just one site (the ℓ site); there, the diagonal
matrix element εℓ equals ε0 + ε; at every other site it has the unperturbed
value ε0. This situation can be thought of physically as arising by substituting
the host atom at the ℓ site by a foreign atom having a level lying by ε higher
than the common level of the host atoms. Thus our TBH can be written as

H = H0 + H1 , (6.1)

where the unperturbed part H0 is chosen as the periodic TBH examined in
Chap. 5, i.e.,

H0 =
∑

m

|m⟩ ε0 ⟨m| + V
∑

nm

′
|n⟩ ⟨m| , (6.2)

and H1 is the perturbation arising from the substitutional impurity, which
for simplicity is assumed to not affect the off-diagonal matrix elements:

H1 = |ℓ⟩ ε ⟨ℓ| . (6.3)

The Green’s function G0 corresponding to H0 was examined in detail for var-
ious lattices in Chap. 5. In this chapter we would like to find the Green’s
function G corresponding to H ≡ H0 + H1; having G (or, equivalently, the
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t-matrix T ), one can extract all information about the eigenvalues and eigen-
functions of H. Our starting point is (4.5), which expresses G in terms of G0

and H1, i.e.,

G = G0 + G0H1G0 + G0H1G0H1G0 + · · · . (6.4)

One could use the equivalent equation for T ,

T = H1 + H1G0H1 + H1G0H1G0H1 + · · · . (6.5)

Substituting (6.3) into (6.5), we obtain

T = |ℓ⟩ ε ⟨ℓ| + |ℓ⟩ ε ⟨ℓ|G0 |ℓ⟩ ε ⟨ℓ| + |ℓ⟩ ε ⟨ℓ|G0 |ℓ⟩ ε ⟨ℓ|G0 |ℓ⟩ ε ⟨ℓ| + · · ·

= |ℓ⟩ ε
{
1 + εG0 (ℓ, ℓ) + [εG0 (ℓ, ℓ)]2 + · · ·

}
⟨ℓ|

= |ℓ⟩ ε

1 − εG0 (ℓ, ℓ)
⟨ℓ| , (6.6)

where
G0 (ℓ, ℓ) ≡ ⟨ℓ|G0 |ℓ⟩ . (6.7)

Having obtained a closed expression for T we have immediately G:

G = G0 + G0TG0 = G0 + G0 |ℓ⟩
ε

1 − εG0 (ℓ, ℓ)
⟨ℓ|G0 . (6.8)

As discussed in previous chapters, the poles of G(E) [or T (E)] correspond to
the discrete eigenvalues of H. In the present case the poles of G (or T ) are
given by

G0 (ℓ, ℓ; Ep) = 1/ε , (6.9)

as can be seen by inspection of (6.8) or (6.6). Note that the poles Ep must
lie outside the band of H0, because inside the band G0 (ℓ, ℓ; E) has a nonzero
imaginary part and consequently (6.9) cannot be satisfied. Using (6.8) we
obtain for the residue of G(n, m) at the pole Ep

Res {G (n, m; Ep)} = −G0 (n, ℓ; Ep) G0 (ℓ, m; Ep)
G′

0 (ℓ, ℓ; Ep)
, (6.10)

where the prime denotes differentiation with respect to E. The degeneracy fp

of the level Ep can be found by using (3.6) and (6.10):

fp = Tr {Res {G (Ep)}} =
∑

n

Res {(n, n; Ep)}

= − 1
G′

0 (ℓ, ℓ)

∑

n

G0 (n, ℓ)G0 (ℓ, n) = −⟨ℓ| (Ep −H0)−2 |ℓ⟩
G′ (ℓ, ℓ)

= 1 , (6.11)
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where the last step follows because of (1.31). Since the level Ep is nondegen-
erate, the discrete eigenfunction |b) satisfies (3.7), which in the present case
can be written as

⟨n|b) (b|m⟩ = Res {G (n, m; Ep)} . (6.12)

Substituting (6.10) into (6.12) we obtain for |b)

|b) =
G0 (Ep)√

−G′
0 (ℓ, ℓ; Ep)

|ℓ⟩ , (6.13)

or more explicitly
|b) =

∑

n

bn |n⟩ , (6.14)

where bn is given by

bn =
G0 (n, ℓ; Ep)√
−G′

0 (ℓ, ℓ; Ep)
. (6.15)

We remind the reader that G′
0 (ℓ, ℓ; Ep) is always negative for E not belonging

to the spectrum [see (1.31)].
We have seen in Chap. 5 that for E outside the band, G0 (n, ℓ; E) decays

exponentially with the distance Rnℓ ≡ |n − ℓ|, i.e.,

G0 (n, ℓ; E) −→
Rnℓ→∞

const. × exp [−a(E)Rnℓ] , (6.16)

with α(E) > 0. Hence, (6.14) and (6.15) imply that the eigenfunction |b) is
localized in the vicinity of the impurity site ℓ and decays far away from it as
exp[−a(Ep)Rℓn]. The quantity α−1(Ep) is a measure of the linear extent of
the eigenfunction. In the 1-d case α(E) is given by

a(E) = −1
a

ln

⎡

⎣ |E − ε0|
B

−

√
(E − ε0)

2

B2
− 1

⎤

⎦ , |E − ε0| > B . (6.17)

Let us now examine the effects of the perturbation on the continuous
spectrum of H0 (i.e., for E inside the band).

The partial DOS at site n is given by ϱ(n; E) = −Im {⟨n |G+(E) |n⟩} /π
which, by using (6.8), becomes

ϱ(n; E) = ϱ0(n; E) − 1
π

Im

{
ε
〈
n

∣∣G+
0 (E)

∣∣ ℓ
〉 〈

ℓ
∣∣ G+

0 (E)
∣∣n

〉

1 − εG+
0 (ℓ, ℓ; E)

}
. (6.18)

In particular, the DOS at the impurity site ℓ can be written after some simple
algebraic manipulations as

ϱ (ℓ; E) =
ϱ0 (ℓ; E)

∣∣1 − εG±
0 (ℓ, ℓ; E)

∣∣2
. (6.19)
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Taking into account that G0(E) −→
E→∞

1/E, we can easily see from (6.8) that

G(E) −→
E→∞

1/E; hence

G (n, n; E) ≡ ⟨n |G(E) |n⟩ −→
E→∞

1
E

.

This relation implies (by Cauchy’s theorem; see Problem 6.1) that
∫ ∞

−∞
ϱ (n; E) dE = − 1

π
Im

{∫ ∞

−∞
G+ (n, n; E) dE

}
= 1 . (6.20)

Equation (6.18) implies that the DOS ϱ(n; E) is a nonzero continuous function
of E within the unperturbed band (except possibly at isolated points) and that
the continuous band of H coincides with the band of H0. Unlike ϱ0(n; E), the
quantity ϱ(n; E) exhibits a δ-function singularity outside the band at the
energy Ep of the bound state, where (6.18) can be recast as

ϱ(n; E) =
G0 (n, ℓ; Ep)G0 (ℓ, n; Ep)

−G′
0 (ℓ, ℓ; Ep)

δ (E − Ep)

= |bn|2 δ (E − Ep) , E ≈ Ep . (6.21)

To obtain the last result we have used (6.15). Equation (6.20) can be written
then as ∫ Eu

Eℓ

ϱ (n; E) dE +
∑

p

|bn|2 = 1 , (6.22)

where the summation is over all the poles of G (if any), and Eℓ and Eu are
the lower and upper band edges, respectively. If we sum over all sites n and
take into account that the bound eigenfunctions are normalized, we obtain

∫ Eu

Eℓ

N (E)dE + P = N , (6.23)

where P =
∑

p is the total number of poles (i.e., of discrete levels; P = 0
or 1 in the present model) and N (E) is the total DOS within the continuous
band. Here N is the number of lattice sites, which coincides with the total
number of independent states in our Hilbert space. Equation (6.23) means that
any discrete levels were formed at the expense of the continuous spectrum.
Equation (6.22) means that this “sum rule” is valid for each site n and that
the transfer of weight from the continuum at n to each discrete level equals
the overlap |bn|2 of this discrete level with site n.

The eigenstates in the band are of the scattering type and are given by
(4.31), which, in the present case, can be written as

|ψE) = |k⟩ + G+
0 (E)T +(E) |k⟩ , (6.24)
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where |k⟩ is the Bloch wave given by (5.15a) and (5.15b); as was discussed in
Chap. 4, G+T + selects the physically admissible outgoing solutions.

Substituting (6.6) into (6.24), we obtain (after some simple algebraic ma-
nipulations) the n-site amplitude of |ψE), ⟨n|ψE)

⟨n|ψE) = ⟨n |k⟩ +
〈
n

∣∣ G+
0 (E)

∣∣ ℓ
〉
ε ⟨ℓ |k⟩

1 − εG+
0 (ℓ, ℓ; E)

. (6.25)

In particular, the amplitude of |ψE) at the site of the impurity is

⟨ℓ|ψE) =
⟨ℓ |k⟩

1 − εG+
0 (ℓ, ℓ; E)

. (6.26)

We saw in Chap. 4 that the cross section |f |2 for an incident wave |ki⟩
to be scattered to the final state |kf ⟩ is proportional to |⟨kf |T +(E) |ki⟩|

2,
where T is the t-matrix. Using (6.6), (5.15a), and (5.15b), we obtain for the
scattering cross section

|f |2 ∼ ε2

∣∣1 − εG+
0 (ℓ, ℓ; E)

∣∣2
. (6.27)

We have pointed out that 1 − εG±
0 (ℓ, ℓ; E) cannot become zero for E within

the band. However, it is possible, under certain conditions, that the magni-
tude

∣∣1 − εG±
0 (ℓ, ℓ; E)

∣∣2 becomes quite small for E ≈ Er. Then, for E ≈ Er,
the quantity |⟨ℓ|ψE) |2 will become very large, as can be seen from (6.26). On
the other hand, for n far away from ℓ, i.e., Rnℓ → ∞, |⟨n|ψE) |2 → |⟨n |k⟩|2,
because ⟨n |G0(E) | ℓ⟩ goes to zero as Rnℓ → ∞. Thus the eigenfunction
|ψEr ) reduces to the unperturbed propagating Bloch wave |k⟩ for Rnℓ → ∞,
while around the impurity site ℓ it is considerably enhanced, as shown in
Fig. 6.1b. For comparison we have also plotted schematically a bound eigen-
state (Fig. 6.1a) and a regular (i.e., one for which |1 − εG0 (ℓ, ℓ; E)|2 is not
small) band state (Fig. 6.1c). Eigenstates of the type shown in Fig. 6.1b are
called resonance eigenstates. They resemble, somehow, local (or bound) eigen-
states in the sense that it is much more probable to find the particle around
site ℓ than around any other site. On the other hand, they share with the other
band states the property of being propagating and nonnormalizable. Note that
the resonance eigenenergies Er will appear as peaks, both in the scattering
cross section [see (6.27)] and in the perturbed DOS ϱ (ℓ; E) [see (6.19)]. For
the DOS ϱ (ℓ; E), the peak may be shifted somehow if the unperturbed DOS
ϱ0 (ℓ; E) has a strong E dependence around Er.

The quantity
∣∣1 − εG±

0 (ℓ, ℓ; E)
∣∣2 can be written as

(
1 − εRe

{
G±

0

})2 + ε2
(
Im

{
G±

0

})2
.
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(a)

O

|⟨n|ψ) |2

Rnℓ

(b)

O

N |⟨n|ψ) |2

Rnℓ

(c)

O

N |⟨n|ψ) |2

Rnℓ

Fig. 6.1. Schematic plot of |⟨n|ψ) |2 or N |⟨n|ψ) |2 vs. distance Rnℓ of site n from
site ℓ; for an eigenstate |ψ) localized around site ℓ (a); for a resonance eigenstate
(b); and for an ordinary propagating (or extended) eigenstate (c)

If Im
{
G±

0 (ℓ, ℓ; E)
}

is a slowly varying function of E (for E around Er), then
the resonance energy will be given approximately as a solution of

1 − εRe {G0 (ℓ, ℓ; E)} ≈ 0 . (6.28)

Obviously a sharp resonance requires that ε2 (Im {G0 (ℓ, ℓ; Er)})2 must be
much smaller than 1. If, furthermore, the derivative of Re {G0 (ℓ, ℓ; E)} is
a slowly varying function of E (for E around Er), then we can write

|1 − εG0 (ℓ, ℓ; E)|2 ≈ A−2
[
(E − Er)

2 + Γ 2
]

; E ≃ Er , (6.29)

where
Γ =

|Im {G0 (ℓ, ℓ; Er)}|
|Re {G′

0 (ℓ, ℓ; E)}| ,

and A−1 = |εRe {G′
0 (ℓ, ℓ; E)}| for E = Er.
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Substituting the approximate expression (6.29) into (6.19), (6.26), and
(6.27), we obtain

ϱ (ℓ; E) ≈ A2ϱ0 (ℓ; E)
(E − Er)

2 + Γ 2
=

A2ϱ0 (ℓ; E)
|E − zr|2

, (6.30)

|⟨ℓ|ψE) |2 ≈ 1
N

A2

(E − Er)
2 + Γ 2

=
A2/N

|E − zr|2
, (6.31)

|f |2 ∝ A2ε2

(E − Er)2 + Γ 2
=

A2ε2

|E − zr|2
, (6.32)

where
zr ≡ Er − iΓ . (6.33)

Thus, assuming the validity of (6.29), the resonance eigenstates appear
as poles in the lower [upper ] half plane of the analytic continuation of
G+ (ℓ, ℓ; E) [G− (ℓ, ℓ; E)], across the branch cut; remember that G± (ℓ, ℓ; E)
equals G±

0 (ℓ, ℓ; E) /
[
1 − εG±

0 (ℓ, ℓ; E)
]
. The inverse is also true: if the ana-

lytic continuation of G+ (ℓ, ℓ; E) across the branch cut exhibits a pole near
the real axis (with Γ/B ≪ 1, B being the half bandwidth), then a resonance
appears. Note, though, that the analytic continuation of G± (ℓ, ℓ; E) may
possess a more complicated structure, in which case the quantities ϱ (ℓ; E),
|⟨ℓ|ψE) |2, and |f |2 do not have the simple form shown in (6.30)–(6.32). An
example of this case is resonances appearing close to the band edges. We will
see later that these resonances appear when the real pole Ep lies very close to
the band edge.

Consider a particle whose motion is described by H, placed initially (t = 0)
at site ℓ, i.e., cn(0) = δnℓ. Using (2.20), (2.10), and (2.8) we obtain for the
probability amplitude, cℓ(t), of still finding the particle at the same site later
(t > 0) the following expression:

cℓ(t) =
i

2π

∫ ∞

−∞
e−iEt/!G+ (ℓ, ℓ; E) dE . (6.34)

The contribution to cℓ(t) from a bound state [i.e., a pole of G+ (ℓ, ℓ; E)], cℓb(t),
is

cℓb(t) = −2πi
i

2π
Res

{
G+ (ℓ, ℓ; Ep)

}
exp (−iEpt/!)

= |bℓ|2 exp (−iEpt/!) , (6.35)

where (6.8) and (6.15) were taken into account. Equation (6.35) means physi-
cally that in the presence of the local eigenstate |b) the particle will not diffuse
away; even as t → ∞ there will be a finite probability |bℓ|4 of finding the par-
ticle at site ℓ. The contribution, cℓB(t), to cℓ(t) from all the states (of the
type as in Fig. 6.1c) belonging to the band decays with time in a power law.
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In particular,

cℓB(t) =
{

J0(Bt/!) , (6.36a)
2J0(Bt/!) + 2J ′′

0 (Bt/!) , (6.36b)

where (6.36a) is the result of the 1-d DOS, (5.30), and (6.36b) is for the
Hubbard DOS, (5.55), and J0(x) is the Bessel function of the first kind and
zero order (Problem 6.2). Thus, the ordinary band eigenstates help the particle
to diffuse away at a characteristic time of the order !/B, where B is the
half bandwidth. Finally, the contribution to cℓ(t) from resonance eigenstates,
cℓr(t), is, assuming a single pole representation of the resonance as in (6.30)–
(6.32),

cℓr(t) ∼ exp (−Γ t/!) exp (−iErt/!) . (6.37)

Thus for t ≪ !/Γ the resonance behaves similarly to the bound state as far
as the quantity cℓ(t) is concerned. The width Γ must be much smaller than
B; otherwise the concept of a resonance eigenstate has no meaning at all.

To summarize this section: Any discrete eigenvalues of H are found as
solutions of (6.9). The corresponding eigenfunctions are local (or bound) and
are given by (6.14) and (6.15). The DOS in the continuum is given by (6.18)
and (6.19) and the scattering eigenfunctions by (6.25) and (6.26). Resonance
eigenstates may appear in the continuum; these are propagating states that are
considerably enhanced in the vicinity of the impurity site. The corresponding
eigenenergies Er appear as a sharp maximum in the DOS or in the scattering
cross section. This maximum may come from a single pole zr in the analytic
continuation of G+ (ℓ, ℓ; E) across the branch cut; then the real part of this
pole gives the resonance eigenenergy and the inverse of the imaginary part
determines a “lifetime” for the diffusion of a particle initially placed at the
impurity site.

6.2 Explicit Results for a Single Band

6.2.1 Three-Dimensional Case

As was discussed in Chap. 5, the typical 3-d DOS behaves as Cℓ
√

E − Eℓ (or
Cu

√
Eu − E) near the lower (or upper) band edge Eℓ (or Eu). As a result of

this, Re {G0 (ℓ, ℓ; Eℓ)} ≡ Iℓ and Re {G0 (ℓ, ℓ; Eu)} ≡ Iu are finite;1 further-
more, because dG/dE is negative outside the band and G(E) → 0 as E → ∞,
we have

Iℓ ≤ G0 (ℓ, ℓ; E) < 0 for E ≤ Eℓ , (6.38)

and

0 < G0 (ℓ, ℓ; E) ≤ Iu for Eu ≤ E . (6.39)

1 Exceptions appear in some cases; see Chap. 5.
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Hence, the solution of (6.9) requires us to distinguish several cases:

1. ε ≤ I−1
ℓ ; then (6.9) has one and only one solution Ep lying below Eℓ. This

is shown in Fig. 6.2 for the case of a simple cubic lattice.
2. I−1

ℓ < ε ≤ 0; then there is no solution of (6.9) because 1/ε lies below Iℓ

and consequently there is no intersection of G0 with 1/ε for E − ε0 < −B
(Fig. 6.2). The physical interpretation of this result is that an attractive
(ε < 0) impurity potential can create a bound eigenstate only when its
strength |ε| exceeds a critical value, 1/ |Iℓ|.

3. For positive ε, the behavior is similar: |ε| needs to exceed a critical value,
1/ |Iu| before one (and only one) bound level appears; this level lies above
the upper band edge Eu.

Thus a repulsive (ε > 0) potential can trap a quantum particle in a level
above the upper bound of the unperturbed continuum the same way that
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1/ε

0

Re
˘
G±¯

∓Im
˘
G±¯

Fig. 6.2. Graphical solution of the equation εG±
0 (ℓ, ℓ; E) = 1 for the simple cubic

lattice and for ε < I−1
ℓ < 0 (B = 1)



120 6 Single Impurity Scattering

an attractive potential can trap a particle in a level below the lower bound
of the continuum. This is a purely wave mechanical property of the same
nature as the appearance of an upper bound to the continuous spectrum, or
the appearance of gaps. One can “understand” the connection better if one
keeps in mind that in the vicinity of an upper bound of the spectrum the
so-called effective mass2 is negative; hence the acceleration in a repulsive
perturbing potential is attractive and a bound state is formed. Note that
for H0 = p2/2m (free particle) the continuous spectrum has a lower bound
at E = 0 but no upper bound; in this case repulsive perturbing potentials
cannot trap a particle.

We can conclude by pointing out that for ε < −1/ |Iℓ| there is one bound
level below the continuum; for −1 |Iℓ| < ε < 1/Iu there is no bound level;
finally, for 1/Iu < ε there is one discrete (bound) level above the band.

It is interesting to see how the spectrum of H changes as |ε| gradually in-
creases from zero. To simplify the calculations, we use the Hubbard G0 (ℓ, ℓ; E)
(with ε0 = 0), i.e., G0 (ℓ, ℓ; E) = 2/

(
E ±

√
E2 − B2

)
. For this simple case

|Iℓ|−1 = I−1
u = B/2, and Ep = (B2 +4ε2)/4ε for |ε| > B/2. The DOS ϱ (ℓ; E)

is given by

ϱ (ℓ; E) = ϱ0(E)

∣∣∣∣∣

(
1 − 2Eε

B2
+ i

2ε
√

B2 − E2

B2

)∣∣∣∣∣

−2

=
2
π

√
B2 − E2

B2 + 4ε2 − 4Eε
, |E| < B . (6.40)

ϱ (ℓ; E) exhibits a maximum at E = Er, where

Er =
4εB2

B2 + 4ε2
, (6.41)

which can be considered as a resonance eigenenergy3 if the maximum is
sharp enough. In Fig. 6.3 we plot ϱ(ℓ; E) for various negative values of ε. As

2 In the 1-d case the effective mass, m∗, is defined as m∗ = !2
`
∂2E/∂k2

´−1
=

!2/A (Problem 5.8). In higher dimensions m∗ is a tensor given by the relation`
!2/m∗´

ij
= ∂2E/∂ki∂kj ; its eigenvalues m∗

i satisfy the relation m∗
i = !2/Ai,

where Ai is defined in Problem 5.8.
3 Notice that for the Hubbard G0 and for |ε| less than the critical value, B/2,

Re {1 − εG0} = 1 −
`
2Eε/B2

´
cannot become zero for |E| < B, i.e., for |E|

within the band. This is obvious if in Fig. 6.2 we replace the simple cubic G0 by
the Hubbard whose plot is given in Fig. 5.10. Thus for the Hubbard G0 and for
|ε| < B/2 the resonance energy is not given by (6.29). In contrast, for the simple
cubic G0 and for |ε| less than the critical value |εc| the quantity 1 − εRe {G0}
can become zero for E within the band; this is clear from Fig. 6.2, which shows
that for 1/ |ε| between |Iℓ| = 1.516/B and 1.929/B there is a value of |E| between
B and B/3 that makes 1 − εRe {G0(E)} equal to zero. However, this difference
between the simple Hubbard G0 and the more complicated G0 shown in Fig. 6.2
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Fig. 6.3. Perturbed DOS ϱ(ℓ; E) vs. E for different values of attractive local po-
tential. As |ε| increases from zero, states are pushed toward the lower band edge,
and at a critical value (|ε| /B = 0.5) a discrete level is split off the continuum. The
unperturbed DOS ϱ0(ℓ; E) has been taken as in (5.56)

|ε| increases from zero, states are pushed toward the lower band edge; the
maximum of ϱ(ℓ; E) moves toward lower values and becomes sharper until
a well-defined resonance near the lower band edge appears. This resonance
coincides with the band edge for the critical value of |ε| = B/2. As |ε| exceeds
B/2, part of the resonance is split off the continuum to form a δ-function
(which corresponds to the bound level) at E = Ep of weight

|bℓ|2 =

√
E2

p − B2

|ε| =
4ε2 − B2

4ε2
.

Further increase of |ε| lowers the energy of the bound level and increases its
weight |bℓ|2 at the expense of the continuum; at the same time the resonance
recedes toward the center of the band and becomes ill defined. This resonance

does not show up in a substantial way in the plot of the DOS. The reader may
verify this by approximating the simple cubic G0(E) as E → −B+ as follows:

B Re {G0} ≃ −1.5164 − 0.6184(B + E)/B ,

B Im
˘
G+

0

¯
≃ 1.1695

p
(B + E)/B ,

or by looking at the plot of the DOS vs. E/B for the simple cubic lattice and
for various values of ε in the solution of Problem 6.3s.
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is associated with the appearance of the pole of G(E) on the real axis and
at the vicinity of the band edge and not with a complex pole in the analytic
continuation of G±. Similar behavior is exhibited around the upper band edge
Eu for repulsive (ε > 0) potentials.

In Fig. 6.4 we summarize the above discussion by plotting: (a) The tra-
jectories of the band edges Eℓ and Eu, (b) the bound level Ep, and (c) the
resonance [as defined from the peak of ϱ(ℓ; E)] as a function of parameter ε,
for the simple case of the Hubbard Green’s function.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5

Ep

Er

Eu

E − ε0

B

Er

Ep

El

ε/B

0.5

1

1.5

−0.5

−1

−1.5

Fig. 6.4. Discrete level (Ep), resonance level (Er), and band edges (Eℓ, Eu) vs.
local attractive (ε < 0) or repulsive (ε > 0) potential. The shaded area corresponds
to the continuous spectrum. The unperturbed DOS ϱ0(ℓ; E) has been taken as in
(5.56)

Note that in more complicated systems consisting of overlapping simple
bands more than one bound level and resonance may appear, as in the case of
a potential well examined in Chap. 4. A typical case is shown schematically
in Fig. 6.5.
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Fig. 6.5. Schematic plot of various discrete (Epi) and resonance (Eri) levels vs.
magnitude of attractive local perturbation. Eℓ is the lower edge of a composite
band consisting of overlapping simple bands and corresponding to more than one
state per site

6.2.2 Two-Dimensional Case

As discussed in Chap. 5, the unperturbed DOS, ϱ0(ℓ; E), exhibits a disconti-
nuity as E approaches the band edge, i.e.,

ϱ0(ℓ; E) −→
E→E+

ℓ

ϱd . (6.42)

As a result

G0 (ℓ, ℓ; E) −→
E→E−

ℓ

ϱd ln
∣∣∣∣
(E − Eℓ)

C

∣∣∣∣ −→
E→E−

ℓ

−∞ , (6.43)

where C is a positive constant. A similar behavior appears in the upper band
edge. Thus, both Iℓ and Iu are infinite, and consequently there is always one
solution to (6.9) no matter how small |ε| is. For very small |ε|, Ep lies very
close to the band edge, and one can use (6.43) for G0 (ℓ, ℓ; E). Substituting
in (6.9) we obtain

Ep − Eℓ ≈ −C exp
(
− 1
|ε| ϱd

)
; ε ≤ 0 . (6.44)
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Thus the binding energy |Ep − Eℓ| for weak perturbation depends exponen-
tially on the inverse of the strength of the perturbation. This dependence
stems directly from the discontinuity of the unperturbed DOS at the band
edge, which in turn is a characteristic feature of 2-d systems. For the case of
the square lattice one obtains, by taking the limit4 E → (ε0 − B)− in (5.38),

G0 (ℓ, ℓ; E) −→
E→(ε0−B)−

1
πB

ln
(
|E − ε0 + B|

8B

)
,

which means that ϱd = 1/πB and C = 8B. Thus for a square lattice

Ep − Eℓ −→
ε→0−

−8Be−πB/|ε| . (6.45)

It should be noted that (6.44) is applicable to the case of a particle of mass m
moving in a 2-d potential well of depth V0 and 2-d extent Ω0; in this case
ϱd = ϱ0Ω0, where ϱ0 is the free-particle DOS per unit area and |ε| = V0.
Substituting in (6.44) we obtain (4.77). The relevance of (6.44) to the theory
of superconductivity will be discussed in the next section.

The interested reader may calculate explicitly various quantities of physical
interest and construct a diagram of the type shown in Fig. 6.4 by employing
for the 2-d G0 (ℓ, ℓ; E) the simple model (5.49).

6.2.3 One-Dimensional Case

In the 1-d case the unperturbed DOS near a lower band edge behaves as

ϱ0(ℓ; E) −→
E→E+

ℓ

C√
E − Eℓ

, (6.46)

which implies that

G0(ℓ, ℓ; E) −→
E→E−

ℓ

− πC√
Eℓ − E

→ −∞ . (6.47)

Thus Iℓ (and Iu) is infinite, and consequently there is always a bound state
no matter how small |ε| is. For small negative ε the bound level is very close
to the lower band edge, and thus one can use expression (6.47) in (6.9). We
then obtain for the binding energy Eb the following expression:

Eb = |Ep − Eℓ| −→
ε→0−

ε2π2C2 . (6.48)

For a particle of mass m moving in an ordinary potential well of depth V0 and
linear extent Ω0, we have that |ε| = V0 and C = Ω0!−1π−1

√
m/2 [see (4.79)],

then Eb is

4 K(k) → ln(4/
√

1 − k2) as k → 1−.
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Eb −→
V0Ω0→0

mV 2
0 Ω2

0

2!2
, (6.49)

which agrees with (4.81).
The question of resonances in 1-d systems requires special attention.

Firstly, instead of the scattering cross section, one defines the transmission
and reflection coefficients, |t|2 and |r|2, which in the present case are given

by (Problem 6.4s)

|t|2 =
1

|1 − εG0(ℓ, ℓ; E)|2
, (6.50)

|r|2 =
|εG0(ℓ, ℓ; E)|2

|1 − εG0(ℓ, ℓ; E)|2
. (6.51)

Secondly, the quantity G0(ℓ, ℓ; E) is purely imaginary for E within the band
so that |r|2+|t|2 = 1. The perturbed DOS ϱ(ℓ; E) is given by combining (6.19)
and (6.50); so

ϱ(ℓ; E) = ϱ0(ℓ; E) |t|2 . (6.52)

Similarly, the quantity |⟨ℓ|ψ) |2 is

|⟨ℓ|ψ) |2 =
|t|2

N
. (6.53)

Since |t|2 ≤ 1, a resonance would appear as a sharp peak in |t|2 vs. E,
where |t|2 rises from values much smaller than one to values approaching one.
As an example of such behavior, see [13], p. 109.

For a 1-d lattice, G0(ℓ, ℓ; E) is (for ε0 = 0)

G0(ℓ, ℓ; E) =
1√

E2 − B2
, |E| > B . (6.54)

Thus, the bound level is
Ep = ±

√
B2 + ε2 , (6.55)

for ε ≷ 0, respectively. The transmission coefficient is given by

|t|2 =
B2 − E2

B2 + ε2 − E2
, (6.56)

which does not exhibit any resonance structure. Our model is too simple (no
possibility for interference effects) for a resonance to appear.

6.3 Applications

6.3.1 Levels in the Gap

The Hamiltonian we considered in this chapter is an oversimplified model for
describing what happens to the electronic properties of a crystalline solid in
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the presence of a substitutional impurity. The present model, in spite of its
simplicity, retains the essential qualitative features of a real solid.

However, if quantitative features are of interest, one has to incorporate
several complicating factors, the most important of which is the presence of
more than one state for each atom located at site n (see Problem 5.6 on
the presence of two states in each primitive cell). As we have seen in the
case of double spacing periodic Cayley tree and in Problem 5.6, the pres-
ence of more than one atomiclike orbital per primitive cell may lead to the
appearance of a gap separating a fully occupied lower band (called valence
band) from a completely empty upper band (called conduction band). This
happens to important classes of materials such as semiconductors and insu-
lators, and it is crucial in determining electric, optical, and other properties
of these materials. The presence of substitutional or other local defects usu-
ally introduces bound levels in the gap. These levels dramatically affect the
conductivity and other properties, especially in semiconductors. Some impu-
rities (such as P or Ga atoms in the Si lattice) produce extremely beneficial
behavior from a technological point of view. Others (such as vacancies, which
can be described mathematically by setting the impurity level ε0 + ε equal to
infinity) are detrimental to the function of devices based on doped semiconduc-
tors (i.e., semiconductors including desirable substitutional impurities). In the
next chapter, Problem 7.2s, we shall examine the appearance of a bound level
within the gap of a simple model such as the one in Problem 5.6. A detailed
discussion can be found in the original papers by Koster and Slater [94, 95],
in subsequent work by Callaway and coworkers [68,96–98], in a paper by Pa-
paconstantopoulos and Economou [52], in a paper by Bernholc et al. [99,100],
and in a book by Lannoo and Bourgoin [101], where a more extensive list of
references is given.

To perform realistic electronic calculations in the presence of isolated de-
fects, one must determine the impurity potential. Even if this potential is
known for a perfect periodic solid consisting only of impurity atoms, still
in the environment of the host material the electronic charge will be redis-
tributed around the defect, thus modifying the local potential. To face this
problem one has to carry out a self-consistent calculation [101,102]: start with
a given impurity potential; calculate the Green’s function as explained ear-
lier; then determine the change in the electronic charge density [101]; using
Poisson’s equation obtain the local (impurity) potential; repeat the procedure
until self-consistency is reached.

A further complication of the defect problem stems from the lattice re-
laxation (i.e., the displacement of the ions around the impurity to new equi-
librium positions), which modifies directly as well as indirectly the electronic
potential. The first-principle determination of this relaxation is a very diffi-
cult problem that requires an accurate calculation of the total (electronic as
well as ionic) energy for various plausible relaxations; the actual relaxation
is the one that minimizes the total energy. Such a sophisticated calculation
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was carried out by Baraff et al. [103] and by Lipari et al. [104] for an isolated
vacancy in Si.

6.3.2 The Cooper Pair and Superconductivity

Consider a system of identical fermions, each of mass m, interacting through
an attractive pairwise potential: V (r) = −V0 for r ≡ |ri − rj | < a and zero
otherwise. We will examine the motion of a pair of particles omitting the in-
teractions of the pair with the rest of the particles. We shall take into account,
however, that the Pauli principle forbids any member of the pair to be in an
already occupied state.

In the absence of the interaction V , the eigenstate of the pair is |k1, s1, k2, s2⟩,
where the momenta k1, k2 lie outside the Fermi sea defined by the rest of the
particles. The spins s1 and s2 are arbitrary.

It is more convenient to transform to the center of mass and relative
coordinates. Then the Hamiltonian of the pair, H12, can be written as

H12 = HCM + Hr =
!2K2

2M
− !2∇2

r

2µ
+ V (|r|) , (6.57)

where M = 2m, µ = m1m2/(m1 + m2) = m/2, and r ≡ r1 − r2. The
total momentum K = k1 + k2 is a good quantum number of H12. Thus, the
problem has been reduced to the examination of Hr, which is the Hamiltonian
of a spherical potential well, i.e., the problem examined in this chapter. All we
need then is the unperturbed Green’s function, which in turn depends on the
unperturbed DOS, ϱ0 (E; K), per unit volume for the noninteracting pair of
total momentum K. The quantity ϱ0 (E; K) is given by the volume in k-space
subject to the restriction E = ε(k1) + ε(k2), i.e.,

ϱ0 (E; K) =
1

(2π)3

∫
dk δ (E − ε (k1) − ε (k2))

×θ (ε (k1) − EF ) θ (ε (k2) − EF ) , (6.58)

where k = (k1 − k2) /2 is the momentum for the relative motion; k1 and k2 in
(6.58) must be replaced by K/2+ k and K/2−k, respectively. The two step
functions assure that neither electron of the pair can occupy levels below the
Fermi energy EF as required by Pauli’s principle; for finite temperatures the
product θθ has to be replaced by [1 − f(ε(k1))][1 − f(ε(k2))], where f is the
Fermi distribution. Note that (6.58) remains valid even when the pair moves
in an external periodic potential (such as in crystalline solids), in which case
k1, k2, K, and k are crystal momenta and ε(k) is in general more complicated
than ε(k) = !2k2/2m. It is clear from (6.58) that the presence of the Fermi sea
drastically modifies the unperturbed DOS reducing it to zero for E < 2EF ,
i.e.,

ϱ0 (E; K) = 0 for E < 2EF . (6.59)
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Furthermore for K = 0, ϱ0 becomes

ϱ0(E; 0) =
1
2
ϱ(E/2)θ(E/2 − EF ) , (6.60)

where ϱ(E) is the DOS per unit volume for a noninteracting particle of energy
E and given spin orientation. Then it follows that

ϱ0(E; 0) −→
E→2E+

F

1
2
ϱF , K = 0 , (6.61)

where ϱF = ϱ(EF ). On the other hand

ϱ0(E; K) −→
E→2E+

F

const. × E − 2EF

K
, K ̸= 0 . (6.62)

Thus only for K = 0 does the unperturbed DOS drop discontinuously at
E = 2EF from ϱF /2 to 0. Under these conditions, as we have shown, a bound
state will be formed no matter how weak the attractive potential is. The
binding energy of the K = 0 pair is given for weak attraction by (6.44), i.e.,

Eb(0) = C exp
(
− 2

V0ϱF a3

)
. (6.63)

The basic result (6.63) was first obtained by Cooper [105]. For pairs with K ̸=
0, the bound state, in order to appear at all, will require an attractive potential
of strength proportional to K and, in any case, will have weaker binding
energy than Eb(0). For spherically symmetric potentials V (|r1 − r2|) (as the
one we consider here) the bound pair, which is the ground state, is spherically
symmetric and consequently remains invariant under the transformation r →
−r, i.e., under exchanging the two particles of the pair. Since the total wave
function is odd under the exchange 1 ↔ 2, the spin part must be odd, i.e.,
the pair must be in a singlet state. For spherically asymmetric potentials it is
possible that the orbital ground state is odd under the exchange 1 ↔ 2, and
then the pair must be in a triplet spin state.

It should be stressed that the binding energy shown in (6.63) stemmed from
the discontinuity in the unperturbed DOS for the relative motion of the pair.
This discontinuity arose because of the presence of the other fermions, which
made the states below 2EF unavailable to the pair. Thus a system of fermions
in the presence of an attractive interaction achieves its lowest energy by com-
plete pair formation with each pair having a momentum K = 0. This means
that in the ground state (T = 0) all pairs undergo a quantum condensation.
The existence of a condensate implies that independent pair excitations are
suppressed. Thus the low-lying excitations are either pair-breaking individual
fermions [each of which has a minimum energy Eb(0) as in (6.63)] or collec-
tive density fluctuations (i.e., quantized sound waves for neutral fermions or
plasmons for charged fermions). Under these conditions, conservation of en-
ergy and momentum (see, e.g., Landau and Lifshitz [106] and [107]) implies
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that no elementary excitations can appear in a slow-moving “condensed” sys-
tem. Hence, such a system will be either superfluid (for neutral fermions
as in He3) or superconducting (for charged fermions as in various metallic
superconductors).

The picture that emerged from our simple considerations is in qualitative
agreement with the results of a sophisticated many-body theory of supercon-
ductivity [108–114]. However, there are quantitative discrepancies: the correct
result for the binding energy of the pair is proportional to exp

(
−1/V0ϱF a3

)

rather than exp
(
−2/V0ϱF a3

)
as in (6.63). The resolution of this discrepancy

is directly related to the answer to the following apparent paradox: Consider
a system of noninteracting fermions moving in an external, 3-d, static weak
potential unable to bind any particle. Clearly, it is enough to find the lev-
els (none of which is bound) of a single fermion in this potential and then
occupy these levels according to the Fermi distribution f(E). However, if
we consider a given fermion in the presence of all the others, then the avail-
able unperturbed DOS is ϱ(E)[1 − f(E)], which at T = 0 exhibits a discon-
tinuity ϱF ; consequently, and in contrast to what was concluded before, it
seems that there should be a bound level with binding energy proportional to
exp

(
−1/ |V | ϱF a3

)
.

The origin of these difficulties is our omission of some processes, to be
termed indirect, that take place as a result of the indistinguishability of the
fermions. The DOS for the single-fermion problem was found to be ϱ(E)[1 −
f(E)], because it was assumed that all the other fermions of the Fermi sea
played no role other than the passive one dictated by the Pauli principle.
However, the fermions of the Fermi sea make possible additional processes
(the indirect ones): a Fermi sea fermion can jump to the final state, and the
fermion under consideration fills up the created hole. Obviously the DOS for
these indirect processes involving the occupied levels equals ϱ(E)f(E). Adding
this DOS to the direct-process DOS ϱ(E)[1 − f(E)] we obtain that the total
DOS is ϱ(E), i.e., the same as in the absence of the Fermi sea, which is the
correct result.

There is an extensively studied case where the cancellation of the f(E)-
dependent term between the direct and the indirect processes is not complete:
this case leads to the so-called Kondo effect, which will be summarized in the
next subsection.

Returning now to the problem of the K = 0 electronic pair we see that the
omitted indirect processes involve two Fermi sea electrons jumping to the final
states while the original electrons fill up the resulting holes. The corresponding
DOS equals ϱ(E/2)f(E/2)f(E/2)/2. This DOS must be subtracted from the
direct DOS ϱ(E/2)[1 − f(E/2)][1 − f(E/2)]/2. The subtraction rather than
addition of the two DOS has to do with the antisymmetry of the pair function
under particle exchange (Chap. 13). The total effective DOS is then

ϱ0(E; 0) = ϱ(E/2)
1 − 2f(E/2)

2
. (6.64)
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Equation (6.64) shows that the discontinuity at T = 0 and E = 2EF is now
ϱF instead of ϱF /2 as predicted by (6.60). This eliminates the spurious factor
of 2 in the exponent of the rhs of (6.63).

Using the general expression

G0(E; 0) =
∫

dE′ ϱ0 (E′; 0)
E − E′ (6.65)

and (6.64) we obtain G0(E; 0). The integration limits in (6.65) are 2EF −
2!ωD and 2EF + 2!ωD. The cutoff energy, 2!ωD, is introduced because
the attractive potential is nonzero only when the pair energy is in the range
[2EF − 2!ωD, 2EF + 2!ωD]. For low temperatures T , where 1−2f(E/2) varies
rapidly at EF , |G0(E; 0)| exhibits a maximum at E = 2EF proportional
to ϱF /kBT . As one lowers the temperature, this maximum becomes more
pronounced until a critical temperature Tc is reached such that

a3 |G0(2EF ; 0)|V0 = 1 . (6.66)

For T < Tc the equation 1 − a3V0G0(E; 0) = 0 will be satisfied and conse-
quently a bound pair will be formed. Thus Tc is the critical temperature below
which superconductivity appears. Substituting (6.64) in (6.65) and assuming
that ϱ(E/2) ≈ ϱF and that !ωD/kBTC ≫ 1, we obtain (Problem 6.7s)

G0 (2EF ; 0) = −ϱF ln
(

2eγ!ωD

πkBT

)
. (6.67)

Substituting (6.67) into (6.66) we obtain for Tc

Tc =
2eγ

π

!ωD

kB
e−1/λ , (6.68)

where λ = ϱF V0a3 and γ = 0.577 . . . is Euler’s constant. Equation (6.68) is
exactly the BCS [108,109] result for Tc.

We conclude our brief summary of the theory of superconductivity by
commenting on the origin of the attractive potential and on the so-called
strong coupling modifications of (6.68).

The attraction required to overcome the Coulomb repulsion and bind the
partners of each pair together can only be provided by the polarizable medium
in which the electrons are embedded. The analogy of two persons on a mattress
(which plays the role of the polarizable medium) suggests that the attractive
interaction V between two electrons is proportional to the interaction of each
electron with the polarizable medium Ve−m, and proportional to how easily
the medium is polarized, which can be characterized by the inverse of a typical
eigenfrequency ωm of the medium. Thus V is given by

V ∼
V 2

e−m

hωm
. (6.69)
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In all well-understood cases, the polarizable medium is the ionic lattice; then
Ve−m = Ve−p, where Ve−p is the electron–phonon interaction and ωm is a typ-
ical phonon frequency, which can be taken to be equal to the Debye frequency
ωD. Much effort has been devoted to finding a V mediated by degrees of free-
dom other than the ionic ones, but no definite results have been established.
The discovery of high Tc superconductivity in ceramic Copper oxides, such
as YBa2Cu3O7−x, and in other materials, such as alkali doped fullerenes or
MgB2, has given new impetus to the search for alternative or complementary
mechanisms to mediate electron–electron attraction. Despite intense efforts
over the last 18 years, there is no consensus on any of the various other mech-
anisms proposed. Taking into account that Ve−p depends on the momenta of
each electron we see that actually V 2

e−m in (6.69) is an appropriate Fermi sur-
face average,

〈
V 2

e−p

〉
, of the electron–phonon interaction. Furthermore, there

is not simply one eigenfrequency, as was assumed in (6.69), but a continuum
of eigenfrequencies characterized by a distribution F (ω). Thus (6.69) must be
replaced by

V =
∫

dωF (ω)
〈
V 2

e−p

〉

hω
. (6.70)

The quantity of interest is

λ = ϱF V0a
3 = ϱF

∫
V d3r ,

on which Tc depends exponentially. It is customary to express λ in terms of

α2(ω) ≡ ϱF

2!

∫
d3r

〈
V 2

e−p

〉
;

taking into account (6.70) one obtains

λ = 2
∫

dωF (ω)
a2(ω)

ω
. (6.71)

The phonon-mediated electron–electron attraction V depends on the square
of the electron–phonon interaction V 2

e−p. But the same quantity, V 2
e−p, deter-

mines (in the Born approximation) the scattering probability of an electron
by the lattice vibrations and, consequently, the phonon contribution to the
electrical resistivity ϱe. Thus one expects that the materials with high lattice
resistivity to have a high λ and hence to be high Tc superconductors. Such
a correlation does indeed exist. As a matter of fact, one can show that at high
temperatures the derivative of the metallic resistivity ϱe is given by

dϱe

dT
=

8π2k

!
1
ω2

p
λtr , (6.72)

where ωp is the plasma frequency and λtr results from λ by substituting
〈
V 2

e−p

〉

by
〈
V 2

e−p(1 − cos θ)
〉
, where θ is the angle between the incoming wavevector,
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k1, and the wavevector, k2, of the scattered wave. In [115], λtr, as obtained
by (6.72), is compared with λ, as obtained from Tc measurements, and/or
tunneling experiments, and/or first-principle calculations [116], for various
metals. The overall agreement is impressive, suggesting that knowledge of ωp,
ωD, and dϱe/dT for a given metal provides a reasonable estimate of Tc through
(6.72) and (6.68) (assuming of course that phonon-mediated attraction is the
dominant mechanism).

From (6.70) one can see that a large V can be obtained if there are many
low-frequency phonons. This means that a soft, not-so-stable lattice may imply
a high Tc. Indeed, most high-Tc materials are not so stable structurally.

Let us examine finally how (6.68) can be improved. An obvious modifica-
tion is the subtraction from V of a quantity V ∗ proportional to the screened
Coulomb repulsion between the two electrons of the pair. This means that λ
must be replaced by λ−µ∗, where µ∗ ≡ ϱF

∫
d3rV ∗. Usually µ∗ is about 0.1.

The origin of other modifications is more subtle and requires for its compre-
hension concepts that will be presented in Part III of this book. Nevertheless,
a simplified exposition of these so-called strong coupling modifications will be
attempted now.

In arriving at (6.68) we have implicitly assumed that the electron–phonon
interaction V and the Coulomb repulsion Vc are so weak that they have no
effect on the propagation of the individual electrons that comprise the pairs.
Actually, both Ve−p and Vc modify the properties of each electron; it is these
modified electrons (which are called dressed or quasi electrons) that combine
to make up the pairs. One important modification is that the discontinuity
at the Fermi level is reduced by a factor wF ≡ (1 − ∂Σ∗/!∂ω)−1 for each
electron of the pair (see Part III, Sects. 12.4 and 13.1), where Σ∗(ω, k) is
the so-called proper self-energy. One way to understand this reduction is by
taking into account that only a fraction wF of each electron propagates as
a quasi electron, while the rest, 1−wF , has no well-defined energy-momentum
relation and thus does not produce any discontinuity at EF . The net result is
to multiply the DOS given by (6.64) by a factor w2

F .
Another important effect of Ve−p and Vc is that they change the electron

velocity at the Fermi level from its unperturbed value vF to

v′
F =

(
vF +

∂Σ∗

!∂k

)
wF .

Since the single-particle DOS is inversely proportional to the magnitude of
the velocity, it follows that the DOS ϱF must be replaced by (vF /v′F ) ϱF .

The result of the above two effects together is to multiply the quantity
λ−µ∗ by a factor equal to w2

F (vF /v′F ) and the outcome to replace λ in (6.68).
To calculate this factor explicitly one needs to obtain the proper self-energy,
Σ∗(ω, k), which depends on both Ve−p and Vc. It is usually assumed that the
Coulomb interaction Vc has no significant effects on ∂Σ∗/∂ω; furthermore,
calculations employing the Hubbard dielectric function give that the effect
of Vc on ∂Σ∗/∂k is negligible for the usual electronic densities [rs ≈ 2.5;
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see (13.14)] [112]. Thus in calculating Σ∗ we usually keep only Ve−p and we
employ second-order perturbation theory to obtain [110, 112, 117]

Σ∗ (ω, p) = −λ!ω , (6.73)

from which we get wF = (1 + λ)−1, vF /v′F = (1 + λ), and w2
F (vF /v′F ) =

(1 + λ)−1. Hence the expression for Tc becomes

Tc = p exp
(
− 1 + λ

λ − µ∗

)
, (6.74)

where the prefactor p is not equal to that of (6.68) because of contributions
due to the non-quasi-particle smooth background of each electron propagator.

A more rigorous analysis based on the Eliashberg gap equations [117]
gives the following expression for Tc [117, 118]:

Tc = p exp
(
− 1.04(1 + λ)

λ − µ∗(1 + 0.62λ)

)
, (6.75)

which is remarkably close to our simplified result. According to McMillan
[117], the prefactor in (6.75) is

p =
!ωD

1.45kB
. (6.76)

A more accurate value of p is given in [118].

6.3.3 The Kondo Problem

In most metals, when the temperature is lowered, the electrical resistivity
decreases as a result of the decreasing amplitude of the thermal ionic vi-
brations. In some metals containing magnetic impurities the resistivity rises
as the temperature is lowered below a certain characteristic temperature. In
1964, Kondo [119] examined a system of noninteracting electrons undergoing
spin flip scatterings by external local moments. He was able to show that
second-order contributions to the resistivity increased logarithmically with T
as T was lowered. By keeping the most divergent contributions to all orders,
Abrikosov [120] concluded that the resistivity blows up at a characteristic
temperature TK . Many attempts were made (see, e.g., [121–123]) to remove
the nonphysical singularity and to understand the low-temperature (T ≪ TK)
state of the system. Kondo [124] reviewed in detail the early literature. An-
derson and Yuval [125, 126] introduced the idea of scaling and noticed the
analogy of the Kondo problem with other problems in statistical physics;
they managed thus to predict correctly the nature of the low-temperature
state: one electron is bound to each local moment in a singlet state and each
such combination is inaccessible to the other electrons. The difficult task is
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how to follow continuously the solution from the high-temperature (T ≫ TK)
weak-scattering region to the low-temperature (T ≪ TK) bound-state regime
through the intermediate crossover (T ≈ TK) region. Some contributions [127]
are reviewed in [128]. Finally, Wilson [129], by employing nonperturbative nu-
merical treatment of the crossover regime, succeeded in connecting the high-T
region to the low-T regime and thus obtained explicit numerical results for
the T = 0 behavior. A clear presentation of the basic physical ideas is given
in a review by Nozieres [130]. Subsequently, Andrei [131] and, independently,
Wiegmann [132] managed to diagonalize exactly the Kondo Hamiltonian
and to obtain quantities like the zero-temperature magnetic susceptibility in
closed form. More recent treatments of the Kondo problem are given in [114]
and in [133–135].

Here we give a brief simplified explanation of why the bound state appears
for T ≪ TK and why the resistivity exhibits the logarithmic increase for
T ≫ TK by considering a tight-binding version of the Kondo Hamiltonian.
Assume that one local moment is located at site ℓ. The scattering potential
H1K [instead of (6.3)] is given now by

H1K = −J (|ℓ ↓⟩S+ ⟨ℓ ↑| + |ℓ ↑⟩S− ⟨ℓ ↓|
+ |ℓ ↑⟩Sz ⟨ℓ ↑|− |ℓ ↓⟩Sz ⟨ℓ ↓|) , (6.77)

where the arrows indicate the direction of the electronic spin and S+ ≡ Sx +
iSy, S− ≡ Sx − iSy, and Sz are the spin components of the local moment.
By considering the expansions (6.4) and (6.5) one sees immediately that the
direct-process DOS (for a given electronic spin), ϱ(1−f), is between a product
of Ss, say, S−S+. The corresponding indirect-process DOS, ϱf , is sandwiched
between S+ and S−; the reversal of the ordering of the Ss reflects the reversal
of the time sequence of the two consecutive spin flip events. Thus the total
DOS (omitting terms that do not depend on f) is (S−S+ −S+S−)ϱ(1− f) =
−Sz2ϱ(1 − f). Hence the problem is reduced to that of a local interaction
J and an unperturbed DOS equal to 2ϱ(1 − f). At T = 0, the latter has
a discontinuity equal to 2ϱF , which for negative J (antiferromagnetic coupling)
will be responsible for a bound state of energy Eb given by

Eb = C exp
(
− 1

2 |J | ϱ′F

)
, (6.78)

where ϱ′F = ϱF a3. Furthermore, by the same method as for the Cooper pair,
one obtains that the bound state appears only for T < TK , where TK is

TK =
2eγ

π

D

kB
exp

(
− 1

2 |J | ϱ′F

)
, (6.79)

with D being an energy cutoff analogous to the !ωD in superconductivity.
Finally, for T ≫ TK the t-matrix is proportional to J/(1 − JG0), where
G0 is the Green’s function associated with the unperturbed DOS 2ϱ′(1 − f).
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Calculating G0 at E = EF [see (6.67)] and taking into account that the
resistivity ϱe is proportional to the square of the t-matrix, we obtain that

ϱe ∼ |J |2

[1 − 2 |J | ϱ′F ln (T0/T )]2
, (6.80)

where T0 is the prefactor on the rhs of (6.79). Equation (6.80) exhibits the
observed logarithmic increase with decreasing T (for TK ≪ T ≪ T0).

We conclude this subsection by summarizing the physical origin of the
Kondo effect: because of the S operators in (6.77), the f -dependent terms
in the direct and indirect DOS do not cancel out as in the simple static case.
As a result, the effective total DOS is proportional to (1 − f). This factor
creates a discontinuity at T = 0 and hence a bound state. The same factor
accounts for a decrease in the binding energy with increasing T until a critical
temperature TK is reached beyond which no bound state exists. For T > TK

there is, however, a resonance state that becomes less and less pronounced as
T is further increased. This behavior of the resonance state accounts for the
anomalous temperature dependence of the resistivity.

6.3.4 Lattice Vibrations in Crystals Containing “Isotope”
Impurities

In this subsection we will examine the problem of small oscillations of a system
of atoms of mass m placed at the {i} sites of a periodic lattice and experiencing
a harmonic interaction of the form

U =
1
2

∑

ij

κij (ui − uj)
2 , (6.81)

where ui is the displacement from equilibrium of the atom placed at the i site.
We assume that κij = κ for i, j nearest neighbors, and κij = 0 otherwise.
For simplicity we consider here a 1-d lattice, where the number, Z, of nearest
neighbors is Z = 2. Assuming a time dependence of the form e−iωt, we obtain
the following equation of motion:

−ω2miui = Fi = − ∂V

∂ui
=

∑

n

κin (un − ui) (6.82)

or (
Zκ − ω2mi

)
ui = κ

∑

n

′
un , (6.83)

where the sum extends only over nearest neighbors of site i. Taking into
account (5.9), we can rewrite (5.12) as follows:

(εi − E) ci = −V
∑

n

′
cn , (6.84)
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where the sum extends over nearest neighbors. A simple inspection of (6.83)
and (6.84) shows that the problem of lattice vibrations is mathematically
equivalent to the TBM (Sect. 5.2).

We consider now the so-called single-isotope impurity case, where

mi =
{

m0 , i ̸= ℓ,
m0 + ∆m , i = ℓ,

corresponding to a single impurity in the TBM. Below we put in columns the
corresponding quantities in the two equivalent problems

Electrons ε0 V E ε

Lattice vibrations Zκ −κ ω2m0 −∆mω2
(6.85)

The solution of the lattice problem at ω = 0 is equivalent to the solution
of the electronic problem at E − ε0 = 0 − Zκ = −Z |V | and ε = 0, i.e., at
the lower band edge without any perturbation. As ω2 increases from zero the
equivalent parameters E − ε0 and ε in the TBM change: ε = −ω2∆m and
E − ε0 = m0ω2 − Z |V |; by eliminating ω2 and substituting Z |V | by Zκ we
obtain

E = − m0

∆m
ε . (6.86)

As ω2 varies, the parameters E and ε of the equivalent TBM move along the
straight line defined by (6.86). In Fig. 6.6 we plot the E vs. ε diagram for the
TBM; we also draw two straight lines according to (6.86) (0AB corresponding
to ∆m > 0 and 0CD corresponding to ∆m < 0). We see immediately from
Fig. 6.6 that for ∆m > 0 (i.e., the impurity mass heavier than the host mass)
there is no discrete eigenfrequency; the spectrum is continuous and extends
from 0

(
ω2 = 0

)
to B

(
ω2 = 2Zκ/m0

)
. The frequency corresponding to any

point A is

ω2
A =

2Zκ

m0

(0A)
(0B)

. (6.87)

Note that resonance eigenstates may appear at low frequencies if ∆m becomes
very large, so that the line 0B would rotate counterclockwise until it crossed
any dashed resonance line around the 0 point.

For ∆m < 0 (i.e., impurity mass lighter than the host mass) there is a dis-
crete eigenfrequency ω2

D because the ω2 line crosses the Ep line (for typical
3-d cases |∆m| must exceed a critical value for a discrete eigenfrequency to
appear). The discrete eigenfrequency lies above the upper bound of the con-
tinuous spectrum and corresponds to a local oscillation, i.e., one confined
around the impurity atom and decaying exponentially as one moves away
from it. Using the analogies (6.85) and known results for the TBM, one can
obtain all information about the lattice vibration problems.

We conclude this subsection by pointing out that a lighter impurity mass
tends to push the eigenfrequencies up and to split off a discrete eigenfrequency
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Ep

B

Er

A A′

ε0

A′′

Ep

Eℓ = 0

Er

D

C

Eu = 2Z|V |

ω2,∆m > 0
ω2,∆m < 0

ε0

E

Fig. 6.6. The electronic spectrum vs. ε diagram (1-d case is shown) can be used
to obtain the spectrum of the lattice vibration (see text)

above the upper bound(s) of the continuum(a). On the other hand, a heavier
impurity mass tends to push the eigenfrequencies down; it cannot, of course,
split a discrete eigenfrequency below ω2 = 0. However, if a lower band edge
exists at a nonzero frequency (as in the case of an optic branch), then a heavier
impurity mass can create a discrete level below the corresponding band.

6.4 Summary

In this chapter we examined (using the techniques developed in Chap. 4)
a model Hamiltonian describing the problem of a substitutional impurity in
a perfect periodic lattice. The Hamiltonian is given by H = H0 + H1, where
H0 is a periodic TBH of the type studied in Chap. 5 and H1 describes the
change of the potential as a result of the impurity and is given by

H1 = |ℓ⟩ ε ⟨ℓ| . (6.3)

As before, each state |n⟩ is centered around the corresponding lattice site n.
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The Green’s function corresponding to H can be evaluated exactly in terms
of G0 and ε. The result is

G (m, n; z) = G0 (m, n; z) + ε
G0 (m, ℓ; z)G0 (ℓ, n; z)

1 − εG0 (ℓ, ℓ; z)
. (6.8)

Any discrete levels Ep are given by the poles of G(z), i.e., by

G0 (ℓ, ℓ; Ep) = 1/ε . (6.9)

In typical 3-d cases the strength |ε| of the perturbing potential must exceed
a critical value for a discrete level to appear. On the other hand, in 2-d
systems a discrete level appears no matter how small |ε| is. For small |ε|, the
binding energy Eb is given by

Eb = const. × exp
[
− 1
|ε| ϱd

]
, d = 2 , (6.44)

where ϱd is the discontinuity of the unperturbed DOS per site at the band
edge. Equation (6.44) follows from (6.9) and the logarithmic behavior of
G0 (ℓ, ℓ; E) near the band edge. As was pointed out earlier, this logarith-
mic behavior is a direct consequence of the discontinuity of ϱ0(ℓ; E). In 1-d
systems G0 (ℓ, ℓ; E) has a square root infinity at the band edge. As a result,
(6.9) always has a solution Ep that for small values of |ε| behaves as

Eb = |Ep − EB| = const. × ε2 , (6.48)

where EB is the band edge.
The eigenstate |b) associated with the nondegenerate discrete level Ep can

be obtained as follows:
|b) =

∑

n

bn |n⟩ , (6.14)

with
bn =

G0 (n, ℓ; Ep)√
−G′

0 (ℓ, ℓ; Ep)
, (6.15)

where the prime denotes differentiation with respect to E.
The |ψE) eigenstates associated with the continuous part of the spectrum

(scattering eigenstates) are given by

|ψE) = |k⟩ +
G+

0 (E) |ℓ⟩ ε ⟨ℓ |k⟩
1 − εG+

0 (ℓ, ℓ; E)
, (6.25)

where |k⟩ is the unperturbed Bloch functions.
The DOS at each site n can be obtained by taking the imaginary part of

(6.8) with m = n. The DOS has a continuous part for E within the band
and a δ-function contribution at the discrete level Ep, if the latter exists. As
was mentioned above, infinities of G outside the band correspond to discrete
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levels associated with eigenstates localized around the impurity. Sharp peaks
of G (or equivalently of the t-matrix) within the band correspond to resonance
levels associated with extended (or propagating) eigenstates, which are con-
siderably enhanced around the impurity site. The question of the appearance
of resonance eigenstates with increasing |ε| is examined.

Among the various applications examined, two (superconductivity and
Kondo effect) deserve special mention because the present formalism provides
a very simple derivation of their basic features.

Indeed, if one considers a system of identical fermions, it is a simple matter
to show that the DOS for the relative motion of a pair of total momentum
K = 0 is given by ϱ(1 − 2f)/2, where f is the Fermi distribution. This DOS
at T = 0 exhibits a discontinuity equal to ϱF and hence, in the presence of an
attraction between the partners of the pair, will be responsible for the creation
of a bound state with binding energy of the form (6.44). Furthermore, for
T > 0 this DOS exhibits no discontinuity at EF but a maximum finite slope
proportional to 1/T ; as a result the Green’s function |G0| does not blow up
at EF but exhibits a maximum of the form

max |G0| = ϱF ln (T0/T ) , (6.67)

where T0 ≡ 2eγ!ωD/πkB is proportional to the cutoff !ωD. Combining (6.67)
with (6.9) one sees immediately that the bound state (and hence supercon-
ductivity) exists only for T < Tc, where Tc is obtained by equating max |G0|
with 1/ |ε|, i.e.,

Tc = T0 exp
(
− 1
|ε| ϱ′F

)
, (6.68)

where ϱ′F = a3ϱF . Equation (6.68) is exactly the BCS result for Tc.
Similarly, for the Kondo problem (where a system of noninteracting

fermions is scattered with strength J by a local moment undergoing spin
flips), the DOS, instead of being independent of f (as in the case of a static
scatterer), includes a term of the form 2ϱ(1 − f). Then, by the same simple
reasoning as for the pair case above, one concludes that a bound electron–local
moment state will be formed for T < TK [where TK is given by (6.79)] and
that the binding energy at T = 0 is as in (6.78). Furthermore, for TK < T ,
the resistivity, which is proportional to the square of the t-matrix, will contain
a factor

|1 − |J |max |G0||−2 =
∣∣∣∣1 − 2 |J | ϱ′F ln

(
T0

T

)∣∣∣∣
−2

that accounts for the logarithmic increase of the resistivity with decreasing
temperature for TK ≪ T ≪ T0.

Further Reading

An introduction to superconductivity and the Kondo effect can be found in
solid-state physics books such as that by Ashcroft and Mermin [28]. A more
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extensive treatment employing second quantization formalism is given in the
recent book by Taylor and Heinonen [133]. Books on many-body theory, such
as those by Mahan [114] and Abrikosov et al. [113], present the theory of
superconductivity and the Kondo effect. Finally, there are many specialized
books and articles devoted to those subjects. The book by Rickayzen [111]
gives an extensive and clear presentation of superconductivity.

Problems

6.1. Define a closed contour in the upper half plane consisting of a straight
line from −∞ to +∞ just above the real axis and a semicircle, c, at infinity.
Show that

∮
G (n, n; z) dz = 0 =

∫ ∞

−∞
G+ (n, n; z) dE +

∫

c
dz G (n, n; z) ,

∫

c
dz G (n, n; z) = iπ .

6.2. Using the relation J0(z) = (1/π)
∫ π
0 dθ cos(z sin θ) prove (6.36a) and

(6.36b).

6.3s. Plot the DOS vs. E/B for the simple cubic lattice and for ε/B = −0.6,
−0.8, and −0.9.

6.4s. Prove (6.50) and (6.51).

6.5s. Consider the Green’s function for the double spacing periodic Cayley
tree given by (5.57). Let us introduce a local perturbation H1 = |ℓ⟩ ε ⟨ℓ|,
where ⟨ℓ |H0 | ℓ⟩ = εℓ (ℓ = 1, 2). Plot the bound, Ep, and the resonance,
Er, eigenenergies vs. ε for both ℓ = 1 and ℓ = 2 (following the examples of
Figs.6.4 and 6.5). Choose K = 3, ε1 = B/2, ε2 = −B/2,

(
B = 2

√
KV 2

)
.

What qualitative changes would occur if K = 1?
Hint : In the solutions we plot schematically the Ep’s vs. ε for the case

K = 3, i = 1.

6.6s. Prove (6.60) and (6.62).

6.7s. Prove (6.67) taking into account (6.64) and (6.65).
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Two or More Impurities; Disordered Systems

Summary. In this chapter we examine first a system consisting of two “impurities”
embedded in a periodic tight-binding model (TBM). This prepares the way for the
approximate treatment of a disordered system containing a nonzero concentration
of impurities. We examine in particular the average DOS, which depends on the av-
erage Green’s function, ⟨G⟩. For the calculation of the latter, various approximation
methods are employed; prominent among them is the so-called coherent potential
approximation (CPA).

7.1 Two Impurities

We consider here the case where two substitutional impurities have been in-
troduced at two different sites of the lattice, ℓ and m. The Hamiltonian for
such a system is assumed to be

H = H0 + Hℓ + Hm , (7.1)

where H0 is the periodic TBH studied in Chap. 5, and

Hℓ = |ℓ⟩ ε ⟨ℓ| , (7.2)

Hm = |m⟩ ε′ ⟨m| . (7.3)

We define further

H0ℓ = H0 + Hℓ , (7.4)
H0m = H0 + Hm . (7.5)

Hence,
H = H0ℓ + Hm = H0m + Hℓ . (7.6)

We denote by G0, G0ℓ, G0m, and G the Green’s functions corresponding to
H0, H0ℓ, H0m, and H, respectively. For simplicity we do not display the ±
superscripts in G, T , tℓ, etc.
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We saw in Chap. 6 that

G0ℓ = G0 + G0TℓG0 , (7.7)

where the t-matrix, Tℓ, associated with H0 and Hℓ is given by

Tℓ = |ℓ⟩ tℓ ⟨ℓ| ; tℓ =
ε

1 − εG0 (ℓ, ℓ)
. (7.8)

By considering H0ℓ as the unperturbed part and Hm as the perturbation, we
obtain by applying the general formula (4.5)

G = G0ℓ + G0ℓHmG0ℓ + G0ℓHmG0ℓHmG0ℓ + · · · . (7.9)

As before, the summation in (7.9) can be performed exactly, because of the
simple form of Hm. We obtain

G = G0ℓ + G0ℓ |m⟩ ε′

1 − ε′G0ℓ (m, m)
⟨m|G0ℓ . (7.10)

Substituting (7.7) and (7.8) into (7.10) we have, after some lengthy but
straightforward algebra,

G = G0 + G0TG0 , (7.11)

where the t-matrix, T , associated with the unperturbed part H0 and the
perturbation Hℓ + Hm is given by

T = fmℓ (Tℓ + Tm + TℓG0Tm + TmG0Tℓ)
= fmℓ [|ℓ⟩ tℓ ⟨ℓ| + |m⟩ tm ⟨m| + |ℓ⟩ tℓG0 (ℓ, m) tm ⟨m|

+ |m⟩ tmG0 (m, ℓ) tℓ ⟨ℓ|] . (7.12)

The quantity fmℓ is

fmℓ =
1

1 − tmtℓG0 (m, ℓ)G0 (ℓ, m)
, (7.13)

and tm equals ε′/[1 − ε′G0(m, m)].
The Green’s function G(j, i) is obtained by combining (7.11) and (7.12).

The resulting expression can be represented in a diagrammatic way as shown
in Fig. 7.1, where we have drawn all continuous paths starting from site i
and ending at site j; the intermediate sites (if any) are the scattering centers
ℓ and m. With each path (diagram) we associate a product according to
the rules given in the caption of Fig. 7.1. Thus the total contribution of the
diagrams of subgroup (a) is

G0 (j, ℓ) tℓG0 (ℓ, i) + G0 (j, ℓ) tℓG0 (ℓ, m) tmG0 (m, ℓ) tℓG0 (ℓ, i) + · · ·
= G0 (j, ℓ) tℓG0 (ℓ, i)

×
{
1 + tℓG0 (ℓ, m) tmG0 (m, ℓ) + [tℓG0 (ℓ, m) tmG0 (m, ℓ)]2 + · · ·

}

= G0 (j, ℓ) tℓG0 (ℓ, i) fmℓ , (7.14)
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Fig. 7.1. Diagrammatic representation of the various terms contributing to the
Green’s function G (j, i) (thick line) associated with two scatterers at sites ℓ and
m. Each diagram corresponds to a product of factors according to the following
rules: a thin line starting from the arbitrary lattice site i and ending at the arbitrary
lattice site j without visiting any other site corresponds to the factor G0 (j, i); each
time the scattering site ℓ (m) is visited by the diagram a factor tℓ(tm) is introduced.
The diagrams have been classified into four subgroups

where fmℓ is given by (7.13). Similarly, the total contribution of subgroups
(b)–(d) in Fig. 7.1 are

G0 (j, m) tmG0 (m, i) fmℓ ,

G0 (j, m) tmG0 (m, ℓ) tℓG0 (ℓ, i) fmℓ ,
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and
G0 (j, ℓ) tℓG0 (ℓ, m) tmG0 (m, i) fmℓ ,

respectively. Hence the summation of all diagrams of the type shown in Fig. 7.1
is

G (j, i) = G0 (j, i)
+ ⟨j |G0 (Tℓ + Tm + TℓG0Tm + TmG0Tℓ)G0 | i⟩ fmℓ , (7.15)

which agrees with (7.11) and (7.12).
The diagrams shown in Fig. 7.1 allow a physical interpretation of the

various terms contributing to G (j, i). Thus, if the thick line from i to j
[i.e., G (j, i)] represents the propagation of the particle from site i to site j,
the various terms can be interpreted as follows. The first diagram represents
propagation without any scattering event [G0 (j, i), zero-order contribution];
the first diagram in subgroup (a) represents propagation from site i to site
ℓ, i.e., G0 (ℓ, i), scattering at the impurity site ℓ (of amplitude tℓ) and then
propagation from ℓ to j, i.e., G0 (j, ℓ); a similar interpretation can be given
to any other diagram of the type shown in Fig. 7.1. Because G0 (j, i) can be
interpreted as representing the propagation from site i to site j, it is customary
to call the Green’s function G (j, i) a propagator. Some authors use the name
locator for the diagonal matrix elements G (i, i) for obvious reasons. Others
use the name propagator for all matrix elements of G or for G itself so that
the term propagator becomes synonymous with the term Green’s function.

The diagrammatic representation has the advantage of allowing us to give
a physical meaning to each term. This feature facilitates the development of
various approximations, which in most cases are necessary. The vivid physical
picture that emerges from the diagrams helps also in the memorization of
the corresponding formula. It should be stressed that many types of diagrams
appear in various branches of physics depending on the unperturbed part H0,
the perturbation H1, the complete set of basic functions |m⟩, and the quantity
calculated. The reader may see an example of this statement by comparing
the diagrams of Fig. 7.1 with those introduced in Appendix F.

We would like to point out that the t-matrix, T , associated with two
scattering centers at ℓ and m is not simply the sum of the t-matrices associated
with the impurity at ℓ and the impurity at m. The difference is due to all the
multiple scattering terms shown in Fig. 7.1. However, to the first order in tℓ or
tm one keeps the zero-order diagram and the first diagrams in subgroups (a)
and (b), and thus

T = Tℓ + Tm + O (TℓTm) . (7.16)

Because G0 (ℓ, m) decays to zero as |ℓ − m| approaches infinity (except in
the 1-d case and for E within the band), it follows that the multiple scat-
tering terms, which involve at least a factor G0 (ℓ, m), approach zero as
|ℓ − m| → ∞; thus, in the limit |ℓ − m| → ∞, T = Tℓ + Tm. The only
exception is the 1-d case for E within the band, because in this case the
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reflected or transmitted wave from one scattering center propagates with con-
stant amplitude throughout the linear chain, and thus it can be scattered
again by the other impurity no matter how far apart the two impurities are.

It is interesting to examine the question of discrete level(s) in the present
case of two impurity atoms. The most convenient way to find these levels is
by finding the poles of G as given by (7.10). These poles are solutions of

1 − ε′G0ℓ (m, m) = 0 . (7.17)

The quantity G0ℓ (m, m) has been examined in detail in Chap. 6. In Fig. 7.2
we plot schematically the quantity Re{G0ℓ (m, m; E)} vs. E for the 1-d chain
and for the special case where ℓ and m are nearest neighbors; then we use this
plot to obtain the qualitative features of the roots of (7.17). We examine first
the case where both ε and ε′ are negative. When |ε| is small (Fig. 7.2a), there
is only one intersection and, hence, only one discrete level no matter how large
|ε′| is. This discrete level lies below the discrete level of the Hamiltonian H0ℓ.
Thus, the additional attractive potential ε′ simply pushes the discrete level
further down. When |ε| > B/2, then G0ℓ (Eℓ) < 0, and, consequently, there
is the possibility of two intersections (Fig. 7.2b). Thus, when |ε| > B/2, the
additional attractive potential not only pushes the first discrete level further
down but also creates a second level when ε′ < ε′c. The quantity ε′c can be
found as a solution of the equation G0ℓ (Eℓ) = 1/ε′, which gives

B

ε′c
+

B

ε
= −2 . (7.18)

Let us now examine the case ε < 0 but ε′ > 0 (Fig. 7.2c). When ε′ is very
small, there is only one intersection below the band but above the discrete
level of H0ℓ. Thus an additional weak repulsion pushes the discrete level up,
and if |ε| is small (< B/2) and ε′ is large (ε′ > ε′c), then this level is pushed
all the way inside the continuum. On the other hand, a discrete level above
the band (Fig. 7.2c) has already appeared (for ε′ > ε′′c , where ε′′c < ε′c). The
quantity ε′′c is given as the solution of the equation G0ℓ (Eu) = 1/ε′, which,
with the help of (5.30) and (6.8), becomes

B

ε′′c
+

B

ε
= 2 . (7.19)

Similar behavior is exhibited in the case ε > 0. The hyperbolae (7.18) and
(7.19) separate the ε − ε′ plane into regions such that one or two discrete
levels appear below and/or above the band (Fig. 7.3a). It should be noted
that the results depend on the separation of sites ℓ and m. As the distance
|ℓ − m| increases the hyperbolae shown in Fig. 7.3a approach the ε − ε′ axes.
In Fig. 7.3b we plot the results of a similar study in a Bethe lattice with
K = 4 and for the sites ℓ and m being nearest neighbors. The boundaries are
the hyperbolae
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Fig. 7.2. Re {G0ℓ(m, m)} vs. E for three different values of ε in the 1-d case. The
intersections of Re {G0ℓ(m, m;E)} with 1/ε′ are also shown. The sites ℓ and m are
nearest neighbors

(
2ε

B
± 1

) (
2ε′

B
± 1

)
=

1
4

. (7.20)

The main qualitative difference from the 1-d case is the existence around the
origin of the ε− ε′ plane of a region where no discrete levels appear at all; in
the 1-d case this region has collapsed to a single point, namely, the origin.

Recall that intersections of Re {G0ℓ (m, m; E)} with 1/ε′ within the band
are not solutions of (7.17), since for E within the band Im {G0ℓ (m, m; E)}
is not zero. However, such intersections may produce resonances if they occur
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Fig. 7.3. The ε − ε′ plane is divided into regions where the following appear: no
discrete levels (0L); one discrete level above the band (1LA); one discrete level below
the band (1LB); two discrete levels, one above and the other below (1LA, 1LB); two
discrete levels above the band (2LA); and two discrete levels below the band (2LB).
In the 1-d case (a) the region 0L has collapsed to a single point (the origin). For
a typical 3-d case such as a Bethe lattice with K = 4 (b), or the simple cubic lattice
(c), the region 0L centered around the origin is of finite extent. The sites ℓ and m
are nearest neighbors
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at energies such that Im {G0ℓ (m, m; E)} is small. In the 1-d case this occurs
only for E near the band edges. We leave it to the reader to find the positions
of any resonances as a function of the quantities ε and ε′.

We have derived the basic result (7.12) by repeating twice the method
developed in Chap. 6. Equation (7.12) could be obtained in one step by con-
sidering H1 ≡ Hℓ + Hm as the perturbation and applying (4.13). We have
then, by introducing the unit operator

∑
n |n⟩ ⟨n| =

∑
i |i⟩ ⟨i|,

T = H1 + H1

∑

n

|n⟩ ⟨n|G0

∑

i

|i⟩ ⟨i| H1 + · · · ; (7.21)

from the summation over all states we need to keep only two terms, namely,
|m⟩ ⟨m| + |ℓ⟩ ⟨ℓ|, because all other terms give zero as a result of the form of
H1 = |ℓ⟩ ε ⟨ℓ| + |m⟩ ε′ ⟨m|. Now we can write

|ℓ⟩ ⟨ℓ| + |m⟩ ⟨m| = [|ℓ⟩ , |m⟩]
[
⟨ℓ|
⟨m|

]
; (7.22)

we denote by |α⟩ the matrix [|ℓ⟩ , |m⟩] and by ⟨α| the adjoint matrix
[
⟨ℓ|
⟨m|

]
.

With this notation (7.21) can be rewritten as

T = H1 + H1 |α⟩ ⟨α|G0 |α⟩ ⟨α| H1

+H1 |α⟩ ⟨α|G0 |α⟩ ⟨α| H1 |α⟩ ⟨α|G0 |α⟩ ⟨α| H1 + · · · . (7.23)

The quantity ⟨α |G0 |α⟩ is a 2 × 2 matrix

⟨α |G0 |α⟩ =
[

G0 (ℓ, ℓ) G0 (ℓ, m)
G0 (m, ℓ) G0 (m, m)

]
; (7.24)

similarly,

⟨α | H1 |α⟩ =
[

ε 0
0 ε′

]
, (7.25)

and
⟨α |T |α⟩ =

[
⟨ℓ |T | ℓ⟩ ⟨ℓ |T |m⟩
⟨m |T | ℓ⟩ ⟨m |T |m⟩

]
. (7.26)

We obtain then from (7.23)

⟨α |T |α⟩ = ⟨α | H1 |α⟩ (1 + ⟨α |G0 |α⟩ ⟨α | H1 |α⟩ + · · · )
= ⟨α | H1 |α⟩ (1 − ⟨α |G0 |α⟩ ⟨α | H1 |α⟩)−1 . (7.27)

By calculating the inverse of the 2×2 matrix 1−⟨α |G0 |α⟩ ⟨α | H1 |α⟩, one can
easily show that (7.27) is equivalent to (7.12). This matrix approach is very
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convenient for generalization to three, four, etc., impurities. If the number of
impurities becomes very large, then the calculation becomes tedious because
of the need to invert a large matrix. In this case it is sometimes useful to
consider a third method of calculating the total t-matrix; this method is the
following. Let

H1 =
∑

m

Hm (7.28)

be the perturbative part of the Hamiltonian; the quantity Hm has the form

Hm = |m⟩ ε′m ⟨m| , (7.29)

and the summation runs over all sites m; the sites occupied by the host
atoms have ε′m = 0. We denote again by Tm = |m⟩ tm ⟨m| the t-matrix
associated with the unperturbed part H0 and the perturbation Hm; obviously,
tm = ε′m/[1 − ε′mG0(m, m)].

If T is the total t-matrix associated with the unperturbed part H0 and the
perturbation H1, we have

T = H1 + H1G0T = H1 (1 + G0T ) =
∑

m

Hm (1 + G0T ) =
∑

m

Qm , (7.30)

where Qm is given by
Qm = Hm (1 + G0T ) . (7.31)

From (7.30) T =
∑

n Qn; substituting in (7.31) we have

Qm = Hm

(
1 + G0

∑

n

Qn

)

or

(1 −HmG0)Qm = Hm

⎛

⎝1 + G0

∑

n ̸=m

Qn

⎞

⎠ (7.32)

or

Qm = (1 −HmG0)
−1 Hm

⎛

⎝1 + G0

∑

n ̸=m

Qn

⎞

⎠ . (7.33)

However, the quantity (1 −HmG0)
−1 Hm equals Tm; thus, (7.33) becomes

Qm = Tm

⎛

⎝1 + G0

∑

n ̸=m

Qn

⎞

⎠ . (7.34)

If one solves (7.34) for all Qm, then one has managed to express T =
∑

Qm

in terms of Tms and G0. The reader is urged to solve (7.34) for the case of
two impurities and recapture (7.12) in this way.
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7.2 Infinite Number of Impurities

In this section we consider the case where a nonzero percentage of the lattice
sites are occupied by impurity atoms in a random way. An example of such
a system is the binary alloy AxB1−x where a fraction x of the lattice sites are
occupied by A atoms with site energy ε0 + εA and the rest are occupied by B
atoms with site energy ε0 + εB. It should be mentioned that in reality we do
not know the specific sites occupied by A and the specific sites occupied by
B. What we may know is the probability for each particular configuration of
As and Bs. Thus, we are led to the concept of a random or disordered system,
the Hamiltonian of which is not known; what we know is the probability
distribution of the matrix elements of the Hamiltonian. In the specific example
of the binary alloy, if no correlations among the random variables {ε′n} are
present, then their probability distribution is given by

P ({ε′n}) =
∏

n

p (ε′n) , (7.35)

with
p (ε′n) = xδ (ε′n − εA) + (1 − x)δ (ε′n − εB) . (7.36)

In a random system we are interested in the average (over all configurations)
of the physical quantities. More specifically, we would like to calculate the
average of the Green’s function ⟨G⟩ defined as

⟨G⟩ =
∫

d {ε′n}P ({ε′n})G ({εn}) . (7.37)

We assume that the average value is representative of the ensemble, i.e., that
the probability distribution of G ({ε′n}) is sharply peaked around the average
value, ⟨G⟩. If this assumption is realistic, then the DOS observed experimen-
tally will coincide with −Im {⟨G+⟩} /π; this justifies our interest for calculat-
ing ⟨G⟩. However, there are quantities and/or conditions such that the average
value is not representative of the ensemble. In this case, some other averages
(e.g., geometric averages) may be representative of the ensemble, or it may be
necessary to calculate the full probability distribution of the quantity under
consideration.

In general, ⟨G⟩ cannot be calculated exactly; a notable exception, exam-
ined by Lloyd [136], is the case where p(ε′n) is a Lorentzian

p(ε′n) =
1
π

Γ

ε′2n + Γ 2
.

Then, because p(ε′n) has two poles ε′n = ±iΓ in the complex ε′n plane, each
integration over ε′n in (7.37) replaces ε′n by ∓iΓ , with the upper sign corre-
sponding to G+ and the lower to G−; thus, finally, ⟨G±(E)⟩ = G0(E ± iΓ ).
We mention that, besides the binary alloy and the Lorentzian, the rectangular
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distribution

p(ε′n) =

{ 1
W

for |ε′n| < W/2 ,

0 otherwise,

has been widely used in the literature.
Note that our Hamiltonian is the simplest one to model a random system.

Even within the framework of a TBM there are physically important aspects
that we ignored: the off-diagonal matrix elements Vij may actually be random
variables as well (off-diagonal disorder); the quantity ε′n, and hence its proba-
bility distribution, may depend on the other sites in the vicinity of n, as, e.g.,
in the case of coupled pendula examined in Chap. 5 (environmental disorder);
the random variables {ε′n} may be statistically correlated (short-range order),
etc. Furthermore, in real systems, such as amorphous semiconductors, there is
disorder resulting not from small displacements from the crystal sites but in
association with new bonding configurations (topological disorder). Such dis-
order is much more difficult to treat. For more details concerning the various
types of disorder the reader is referred to Ziman’s book [137].

In spite of the drastic simplifications in our model Hamiltonian, one is
still forced to develop approximate schemes for obtaining ⟨G⟩. Here we review
briefly three of the most widely used methods.

7.2.1 Virtual Crystal Approximation (VCA)

Our Hamiltonian is H = H0 +H1, where H0 is periodic tight-binding and H1

is given by (7.28) and (7.29). By averaging the basic equation (4.6) we obtain

⟨G⟩ = G0 + G0 ⟨H1G⟩ ; (7.38)

G0 does not depend on the random variables {ε′n}, and hence ⟨G0⟩ = G0.
Now, we make the approximation

⟨H1G⟩ ≃ ⟨H1⟩ ⟨G⟩ (7.39)

and take into account that

⟨H1⟩ =
∑

m

⟨Hm⟩ =
∑

m

|m⟩ ⟨ε′m⟩ ⟨m| = ⟨ε′m⟩ . (7.40)

Since we are dealing with systems that are macroscopically homogeneous, the
average ⟨ε′m⟩ is independent of site m and will be denoted by ε:

ε ≡ ⟨ε′m⟩ . (7.41)

Substituting in (7.38) from (7.39)–(7.41) we obtain

⟨G⟩ = G0 + G0ε ⟨G⟩ ,
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which can be rewritten as

⟨G(E)⟩ =
1

E −H0 − ε
=

1
E − ⟨H⟩ . (7.42)

Equation (7.42) is known as the VCA for ⟨G⟩; this approximation consists in
calculating ⟨G (H)⟩ as G (⟨H⟩) and simply shifts the energy levels by ε = ⟨ε′m⟩.
This shift can be made equal to zero (which means that the VCA ⟨G⟩ equals
G0) by choosing H0 ≡ ⟨H⟩, which means ⟨ε′m⟩ = 0 and H1 ≡ H − ⟨H⟩.
Henceforth we adopt this notation.

The VCA fails completely for large values of
〈
ε′2m

〉
. For more comments

about this very simple method see the review article by Elliott et al. [138] and
references therein.

7.2.2 Average t-Matrix Approximation (ATA)

If T is the t-matrix associated with H0 and H1, we have

⟨G⟩ = G0 + G0 ⟨T ⟩G0 . (7.43)

Here T is a complicated function of the individual tms

T = f({tm}) , (7.44)

where
tm =

ε′m
1 − ε′mG0 (m, m)

. (7.45)

The basic approximation in ATA is to set

⟨T ⟩ = f ({⟨tm⟩}) . (7.46)

Because the rhs of (7.46) has the same form as (7.44) with an m-independent
⟨tm⟩, it follows that ⟨T ⟩ is the same as the t-matrix, Te, associated with H0

and a periodic H1e of the form

H1e =
∑

m

|m⟩Σ ⟨m| = Σ , (7.47)

provided [as can be seen from (7.45)] that Σ is chosen to satisfy the relation

⟨tm⟩ = Σ [1 − ΣG0 (m, m)]−1 . (7.48)

Substituting Te for ⟨T ⟩ in (7.43) we obtain immediately

⟨G(E)⟩ = (E −H0 −H1e)−1 = G0(E − Σ) . (7.49)

Thus the ATA calculates ⟨G⟩ from the periodic effective Hamiltonian He ≡
H0 +H1e, which shifts the energy by the complex, energy-dependent quantity
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Σ; within the ATA, the so-called self-energy Σ is obtained from (7.48), which
can be recast as

Σ =
⟨tm⟩

1 + ⟨tm⟩G0 (m, m)
. (7.50)

The above derivation can be translated into a diagrammatic language [138].
In the limit of weak scattering, ε′m → 0, we obtain from (7.50) and (7.45),

in lowest order and taking into account our choice of ⟨ε′m⟩ = 0, that

Σ →
〈
ε′2m

〉
G0 (m, m) . (7.51)

This is the correct limit. The ATA is also successful in the very dilute
limit, where the concentration of impurities is ≪ 1. The ATA has been
used by Ehrenreich and Schwartz [139], Schwartz [140], Bansil [141–147], and
coworkers to calculate the electronic structure of real random alloys, such as
CuxNi1−x.

The concept of self-energy is more general and can be introduced outside
the framework of any approximation. Indeed, we define the operator Σ±(E)
from the relation

〈
G±(E)

〉−1 ≡
[
G±

0 (E)
]−1 − Σ±(E) . (7.52)

Taking into account (7.43) we can express Σ±(E) in terms of ⟨T (E)⟩ as follows
(again for simplicity we omit the superscripts ±):

Σ = ⟨T ⟩ [1 + ⟨T ⟩G0]−1 = ⟨T ⟩ [1 + G0 ⟨T ⟩]−1 , (7.53)

which resembles (7.50). In the k-representation both G0 and ⟨T ⟩ are diagonal
because the unperturbed Hamiltonian as well as the average t-matrix possess
the periodicity of the lattice. Hence Σ is also diagonal in the k-representation.
We have then from (7.52) and (7.53), respectively,

⟨G (E, k)⟩ = [E − E0 (k) − Σ (E, k)]−1 (7.52′)

Σ (E, k) = ⟨T (E, k)⟩
[
1 +

⟨T (E, k)⟩
E − E0 (k) ± is

]−1

. (7.53′)

We see that in the general case the self-energy is a function of both E and k.
The ATA missed the k dependence of the self-energy.

7.2.3 Coherent Potential Approximation (CPA)

As in the ATA case, the CPA calculates ⟨G⟩ through an effective Hamiltonian

He =
∑

n

|n⟩Σ(E) ⟨n| + V
∑

mn

′
|n⟩ ⟨m| ,
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which in the simplest case is characterized by a single, complex, energy-
dependent self-energy Σ. In other words, we assume that

⟨G(E)⟩ = Ge(E) = (E −He)
−1 = G0(E − Σ) ,

with a k-independent self-energy, Σ(E), as in the ATA. In contrast to the
ATA, the CPA determines the effective medium characterized by the as yet
unknown self-energy Σ by expanding G in terms of Ge ≡ (E −He)

−1 and
H′

1 ≡ H−He, i.e.,1
G = Ge + GeT

′Ge , (7.54)

and by demanding self-consistency, i.e., ⟨G⟩ = Ge, which in view of (7.54)
implies that

⟨T ′⟩ = 0 . (7.55)

The t-matrix, T ′, is a complicated function of all the individual t-matrices,
t′m,

T ′ = f ({t′m}) , (7.56)

t′m =
ε′m − Σ

1 − (ε′m − Σ)Ge (m, m)
. (7.57)

The central approximation is again similar to that of the ATA

⟨T ′⟩ ≈ f ({⟨t′m⟩}) . (7.58)

Equation (7.55), in view of the approximation (7.58), leads to

⟨t′m⟩ = 0 . (7.59)

Equation (7.59) is an implicit equation for the self-energy Σ, which can be
recast as

Σ =
〈

ε′m
1 − (ε′m − Σ)Ge (m, m)

〉
(7.59a)

or as 〈
1

1 − (ε′m − Σ)Ge (m, m)

〉
= 1 . (7.59b)

In (7.57), (7.59), (7.59a), and (7.59b) the quantity Ge (m, m) depends on Σ
through (7.49)

Ge (m, m; E) = G0 (m, m; E − Σ) . (7.60)

Having determined Σ(E) [usually by solving iteratively (7.59a)] we can obtain
approximately several quantities of physical interest:

(i) The average DOS per site, ϱ(E)

ϱ(E) = − 1
π

Im {Ge (m, m; E)} = − 1
π

Im {G0 (m, m; E − Σ(E))} .

(7.61)
1 The prime in (7.54)–(7.58) does not imply multiplication of T ′ or t′m by Ω.
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(ii) The complex propagation constant, k, given by the equations

E0 (k) = E − Σ(E) , (7.62a)
(

∂E0 (q)
!∂q

)

q=k

× t0 = R ; (7.62b)

[see (6a) and (6b) of the solution of Problem 5.2s].
In the simple case where the unperturbed E0 (k) equals !2k2/2m∗, we
have from (7.62a)

k = k1 + ik2 =
√

2m∗

!2
(E − Σ) (7.63)

or

k2
1 =

m∗

!2

[
E − Σ1(E) +

√
(E − Σ1(E))2 + Σ2(E)2

]

→ 2m∗

!2
|E − Σ1| , (7.63a)

k2 =
m∗

!2

|Σ2|
k1

=
|Σ2|
!v

→
√

m∗

2!2

|Σ2|√
|E − Σ1|

, (7.63b)

where Σ1(E) and Σ2(E) are the real and the imaginary parts of Σ(E),
v = !k1/m∗ is the group velocity at energy E, and the limiting expressions
are valid for |Σ2| ≪ |E − Σ1(E)|.
From (7.63a) we see that the real part, k1, of the propagation constant
is renormalized because of the presence of the self-energy Σ(E) [compare
with (3.23)]. The imaginary part k2 would lead to a decay of the average
of the off-diagonal matrix element ⟨G (n, m; E)⟩ as |n − m| → ∞, so that
in the simple case E0 (k) = !2k2/2m∗ we shall have

⟨G (n, m; E)⟩ ≃ Ge (n, m; E)

= −m∗a2

2π!2

exp (ik1a |n − m|− k2a |n − m|)
|n − m| , (7.64)

where a is the lattice constant of the simple cubic lattice.
(iii) The renormalized wavelength, λ, and the mean free path ℓ.

The renormalized wavelength, λ, corresponding to the energy E is given
by

λ =
2π

k1
≃ 2π!√

2m∗ |E − Σ1|
. (7.65)

The mean free path ℓ is defined through the decay of the average Green’s
function G (r, r′; E) ∼ exp (− |r − r′| /2ℓ) for large values of |r − r′|.
Comparing this definition with (7.64) we find that

ℓ =
1

2k2
=

!v

2 |Σ2|
. (7.66)
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From the mean free path ℓ one defines the relaxation time τ = ℓ/v. We
have then

τ =
!

2 |Σ2|
. (7.67)

Thus the imaginary part of Σ(E) is directly related to the inverse of the
energy-dependent relaxation time.

It must be stressed that the decay of the average of G (r, r′; E) does not
necessarily imply that the eigenfunctions of the Hamiltonian H are decaying
as r → ∞. Remember that

G (r, r′; E) =
∑

i

ψi (r)ψ∗
i (r′)

E − Ei

=
∑

i

|ψi (r)ψ∗
i (r′)| exp{i [φi (r) − φi (r′)]}

E − Ei
. (7.68)

When we average over all configurations of the random variables involved in
the Hamiltonian, the phase differences φi (r) − φi (r′) oscillate strongly (for
large |r − r′|) and, as a result, contribute to the decay of ⟨G (r, r′; E)⟩ for
|r − r′| ≫ ℓ. For weak disorder and for dimensionality larger than 2, this
phase oscillation is the only source of decay; for strong disorder or for d ≤ 2
the decay of the amplitude of the eigenfunctions contributes also to the decay
of ⟨G (r, r′; E)⟩.

We conclude these remarks by pointing out that a reliable determination
of the self-energy Σ(E) is of central importance since it allows us to obtain
quantities such as the DOS, ϱ, the wavelength, λ, the phase velocity, v, the
mean free path, ℓ, and the relaxation time, τ , as functions of energy. Almost
all quantities of physical interest involve one or more of ϱ, λ, v, ℓ, and τ .

The CPA has been proven impressively successful for obtaining Σ(E). It
gives the correct result in the weak scattering limit [where it reduces to (7.51)
as can be seen from (7.59a)], in the strong scattering (or atomic) limit (i.e.,
when

〈
ε′m

2
〉
≫ V 2), and in the dilute limit; and it interpolates properly

between these limits.
Having mentioned the successes of the CPA, let us discuss now its limita-

tions and failures. The only approximation we have employed is that ⟨t′m⟩ = 0
implies ⟨T ′⟩ = 0. The physical meaning of this approximation is revealed if we
express T ′ in terms of the T ′

ms by iterating (7.34) and substituting in (7.30):

T ′ =
∑

m

T ′
m +

∑

n ̸=m

T ′
nGeTm +

∑

n̸=m ̸=r

T ′
nGeT

′
mGeT

′
r + · · · . (7.69)

In the present case where {ε′m} are independent random variables, the quan-
tities {t′m} are independent random variables. By averaging (7.69) we can
easily see that the average of the first three terms on the rhs of (7.69) are
proportional to ⟨t′m⟩; the fourth term is not in general proportional to ⟨t′m⟩
because of contributions of the type
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∑

n ̸=m

⟨T ′
nGeT

′
mGeT

′
nGeT

′
m⟩

=
∑

n ̸=m

|n⟩
〈
t′n

2
〉 〈

t′m
2
〉
Ge (n, m)Ge (m, n)Ge (n, m) ⟨m| ,

which are proportional to
〈
t′m

2
〉
. Similarly, higher-order terms in the expan-

sion (7.69) corresponding to multiple scattering events from clusters of a fixed
number of sites will introduce terms that are proportional to ⟨t′mn⟩, where n is
any integer. Since, in general, ⟨t′m⟩ = 0 does not necessarily imply ⟨t′mn⟩ = 0,
we can conclude that the CPA incorrectly treats multiple scattering terms as-
sociated with clusters of a fixed number of neighboring sites. These multiple
scattering events by the sites of a particular cluster are of great importance
if they lead to a resonance behavior associated with a peak in the DOS and
an enhancement of the corresponding eigenstates in the vicinity of the cluster
that traps the particle for a long time. Hence, at energies where the DOS is
dominated by contributions from resonance or localized (around a cluster of
sites) eigenstates, the CPA is expected to fail. As we will discuss below, the
near tails of the band are due, largely or entirely, to such cluster-localized
eigenstates, and consequently the CPA is a poor approximation there; actu-
ally, the CPA predicts no tails at all when the probability distribution, p (ε′n),
is terminating as in the binary, (7.36), or the rectangular case. On the con-
trary, for nonterminating distributions, such as the Gaussian, the near tail in
the DOS is due mostly to states trapped around a cluster of sites, but the
deeper tails are due to states trapped around a single site; the CPA treats
these states correctly and produces reliable results for the deeper tails (Prob-
lem 7.6s). Cluster-localized eigenstates may, under certain circumstances, be
responsible for the appearance of considerable structure in the DOS by creat-
ing peaks at certain energies or depleting states from other energies. Again the
CPA tends to eliminate this structure. It should be noted that when the prob-
ability of occurrence of a cluster capable of trapping a particle in it is small,
the role of cluster-localized eigenstates is small. If short-range order is absent,
the probability of occurrence of such special clusters is small and decreases
with increasing dimensionality. Thus the CPA works better in 3-d systems
than in 1-d ones. A sketch in the preface of a book edited by Thorpe [93]
summarizes the CPA situation best.

The CPA combines two basic ideas: one is to calculate the average of
a given quantity associated with a random medium by introducing a periodic
(or a position-independent) effective medium; the second is to determine this
effective medium by a self-consistency requirement, i.e., by demanding that
the fluctuations of the given quantity due to local fluctuations around the effec-
tive medium average out to zero. As was pointed out by Sen [148], these ideas
can be traced back to Maxwell [149]. Hubbard [150] was probably the first to
use the CPA in an electronic structure calculation. The CPA was brought to
its present form by Taylor [151] and Soven [152], who are usually credited for
the invention of the method. The basic equation (7.59a), which determines
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the effective medium, has been rederived by various techniques. Among them
must be mentioned diagrammatic methods based upon the expansion of G in
powers of H1 [153–156]; these methods were first developed by Edwards [157],
Langer [158], Klauder [159], and Matsubara and Toyozawa [160], with im-
portant contributions by Leath and Goodman [161, 162] and Yonezawa and
Matsubara [163–165]. Other diagrammatic methods used to derive the CPA
equations are based upon the expansion of G in powers of the off-diagonal ma-
trix elements of the Hamiltonian. This so-called locator expansion, which is
similar in spirit to the RPE discussed in Appendix F, was used by Leath [166]
and by Matsubara and Kaneyoshi [167]. Contributions to our understanding
of the CPA were made, among others, by Velicky et al. [168,169], Onodera and
Toyozawa [170], Yonezawa [171, 172], Butler [173], and Brouers et al. [174].
In addition to [138,139], we mention also the review article by Yonezawa and
Morigaki [175] and the book edited by Thorpe [93].

7.2.4 The CPA for Classical Waves

Starting in the late 1980s, the question of classical wave propagation in
strongly scattering media, both disordered and periodic, has received in-
creased attention. In the disordered case various versions of the CPA were
employed to interpret novel experimental results. Usually the experiments
were performed in composite materials, quite often consisting of two compo-
nents (one of which could be air). There were two extreme types of topology.
In the so-called cermet topology, there was a high concentration of inclusions
in a host matrix; each inclusion, usually spherical and of the same material as
all the others, was completely surrounded by the host material. In the other
case the two components were topologically equivalent; e.g., each of the two
components formed a continuous connected network (network topology).

The propagation of electromagnetic (em), acoustic (a), elastic (e), and
other types of classical waves in such composite media was examined. For em
waves each material component is characterized by its permittivity, ε(ω) =
εR(ω) + iεI(ω), and possibly by its permeability, µ(ω) = µR(ω) + iµI(ω).
Usually, but not always, µ(ω) ≃ 1, especially at high frequency, and as a re-
sult only ε(ω) is of importance. To have strong scattering we need a large
ratio of ε2(ω)/ε1(ω) of the permittivities of the two components and a wave-
length comparable to the size of the scatterers and to the average distance
between neighboring scatterers. For acoustic waves in a two-component fluid
medium there are two quantities characterizing each component: the density
ϱi (i = 1, 2) and the velocity ci =

√
Bi/ϱi (i = 1, 2), where Bi is the bulk

modulus. For elastic waves in a two-component solid system there are at least
three quantities characterizing each component: the density ϱi (i = 1, 2),
the longitudinal velocity cli =

√
(Bi + 4µi/3) /ϱi, and the transverse velocity

cti =
√

µi/ϱi (i = 1, 2), where µi is the so-called transverse Lamé coefficient.
The simplest system that is mathematically equivalent to the Schrödinger

equation is a composite fluid with a constant density, ϱ, and a position-
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dependent sound velocity, c (r) [or, equivalently, a position-dependent bulk
modulus B (r) = ϱc2 (r)]. [For a two-component system, c (r) = c1 if r is
within component 1 and c (r) = c2 if r is within component 2]. The wave
equation for the pressure, p (r), is

(
ω2

c (r)2
+ ∇2

)
p (r) = 0 (7.70)

or (
ω2

c2
0

+ ∇2

)
p (r) = −ω2

(
1

c2 (r)
− 1

c2
0

)
p (r) , (7.70′)

where 1/c2
0 is the average value of 1/c2 (r). Equations (7.70) and (7.70′) are

to be compared with the Schrödinger equation
[
2m

!2
(E − V (r)) + ∇2

]
ψ (r) = 0 (7.71)

or [
2m

!2
(E − V0) + ∇2

]
ψ (r) =

2m

!2
[V (r) − V0] , (7.71′)

where V0 is the average value of the potential V (r). We see, by comparing
(7.70) and (7.71), that the classical wave case corresponds to the Schrödinger
case but for energy E above the maximum value of the potential V (r) [since
E − V (r) must be positive to be identified with ω2/c2(r)]. Furthermore, the
fluctuating part

(
2m/!2

)
(V (r) − V0) corresponds to −ω2

(
c−2 (r) − c−2

0

)
,

which means that potential wells (with respect to V0) correspond to regions of
velocity, c (r), lower than c0; more important in the classical wave case is that
the fluctuation includes a factor ω2. Thus, for low frequencies we are in the
weak scattering limit, and the scattering cross section, the mean free path,
the relaxation time, and the t-matrix are all proportional to ω4 or to 1/λ4.
This is the so-called Rayleigh scattering for scalar classical waves. Notice
also that at very high frequencies the ray approximation (which corresponds
to the classical trajectories in the Schrödinger case and the geometric optics
in the em case) is adequate. Thus the stronger effects of scattering for classical
waves are expected at intermediate frequencies.

The Green’s function for the unperturbed classical wave case [i.e., the left
side of (7.70′)] is given by (1.40) (1.49), and (1.56) for the 3-, 2-, and 1-d case,
respectively, with

√
λ = ω/c0 = k0, the unperturbed propagation constant.

Employing these expressions for the unperturbed Green’s functions (and their
asymptotic expansions), the definition of the scattering amplitude, f (kf , k0)

p (r) −→
r→∞

exp (ik0 · r) + f (kf , k0)
exp (ik0r)
r(d−1)/2

, (7.72)

and (4.27), we find the following relations between the scattering amplitude
f and the t-matrix (see [21], Sect. 3.4):
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f (kf , k0) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

− Ω

4π

〈
kf

∣∣T +
(
k2
0

) ∣∣ k0

〉
, 3-d , (7.73a)

−eiπ/4

√
1

8πk0
Ω

〈
kf

∣∣ T +
(
k2
0

) ∣∣ k0

〉
, 2-d , (7.73b)

− iΩ
2k0

〈
kf

∣∣T +
(
k2
0

) ∣∣k0

〉
, 1-d , (7.73c)

where k2
f = k2

0 and kf is along the direction of the observation vector r. Ω is
the volume, the area, or the length of the 3-, 2-, 1-d systems, respectively. From
the general equation T = H1 + H1G0T it follows that Ω ⟨kf |T + (k0) |k0⟩
satisfies the following integral equation:

Ω
〈
kf

∣∣ T +
(
k2
0

) ∣∣k0

〉
= Ω ⟨kf | H1 |k0⟩

+
∫

dk

(2π)d
Ω ⟨kf | H1 |k⟩

1
k2
0 − k2 + iε

Ω
〈
k

∣∣T +
(
k2
0

) ∣∣ k0

〉
, (7.74)

where

Ω ⟨kf | H1 |k0⟩ = −ω2

∫
dr

[
1

c2 (r)
− 1

c2
0

]
exp [−i (kf − k0) · r] . (7.75)

In deriving (7.74) we have taken into account that

〈
k

∣∣G+
0

(
k2
0

) ∣∣k′〉 =
δkk′

k2
0 − k2 + iε

. (7.76)

To first order we have that

Ω
〈
kf

∣∣T +
(
k2
0

) ∣∣ k0

〉
≃ Ω ⟨kf | H1 |k0⟩ .

This last equation is always valid for sufficiently low frequencies. For a single
scatterer of simple shape (e.g., spherical, cylindrical, etc.) and for interme-
diate frequencies and large fluctuations of c2 (r), it is much easier to find
first the scattering amplitude f (kf , k0) by taking advantage of the bound-
ary conditions at the surface of the scatterer rather than to solve the integral
equation (7.74). For an infinite number of scatterers, intermediate frequencies,
and large fluctuations of c2 (r), exact analytical solutions are not possible and
one is forced to use an approximation, e.g., the CPA. The CPA in its simplest
version introduces a complex, k0-dependent effective propagation constant,
ke (k0) ≡ ω/ce, which is related to the diagonal, in k-space, matrix of the
average Green’s function

〈
G

(
k; k2

0

)〉
and the self-energy Σ

(
k2
0

)
[as defined by

(7.52)] as follows:

〈
G

(
k; k2

0

)〉
≃ Ge

(
k; k2

0

)
=

1
k2

e − k2
=

1
k2
0 − Σ (k2

0) − k2
. (7.77)
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The next step is to replace locally (within a sphere or a cylinder or any
other simple appropriate shape) the effective propagation constant, ke, by
the actual value, k = ω/c (r), of the propagation constant and calculate the
corresponding t-matrix, which in principle is given by (7.74) and (7.75) with c0

replaced by ce and the integration in (7.75) restricted within the local region
(be it spherical, cylindrical, etc.). The resulting t-matrix, or, equivalently, the
scattering amplitude, f , must be averaged over various realizations of c (r)
within the chosen local shape. This average is set equal to zero

⟨f (kf , ke)⟩ = 0 . (7.78)

The quantity ⟨f⟩ depends not only on ke (and kf = ke) but on the angle θ
between ke and kf as well. Thus it is not in general possible to satisfy (7.78)
for all angles θ. The reasonable choice is to satisfy (7.78) for θ = 0, since,
according to the optical theorem, the Im {f (k, k)} is connected to the total
cross section σ. Actually we have (Problem 4.8)

σ = −Ω

k
Im

{〈
k

∣∣ T +
∣∣k

〉}
. (7.79)

Combining (7.79) (which is valid for systems of any dimensionality) with
(7.73a) (which is valid for 3-d systems) we end up with (4.67).

To be more specific, let us consider a binary system consisting of two
components, one with propagation constant k1 = ω/c1 and the other with
propagation constant k2 = ω/c2. We shall assume that the two components
are topologically symmetric with volume fractions x1 and x2 respectively (x1+
x2 = 1), and we shall choose a spherical region (of radius a) within which the
effective medium (characterized by ke) will be replaced either by medium 1
(with probability x1) or by medium 2 (with probability x2). In this case, (7.78)
will take the form

x1f1 + x2f2 = 0 , (7.80a)

where

fi = − i
ke

∞∑

n=0

(2n + 1)rniPn (cos θi) , i = 1, 2 , (7.80b)

rni = − kejn (kia) j′n (kea) − kijn (kea) j′n (kia)
kejn (kia)h′

n (kea) − kihn (kea) j′n (kia)
, i = 1, 2 , (7.80c)

and the angle θi between ke and ki is set to zero so that Pn(1) = 1; the prime
denotes differentiation with respect to the argument, e.g.,

j′n (kea) =
djn(z)

dz

∣∣∣∣
z=kea

.

In the case of acoustic waves in a two-component fluid where the densities
ϱ1 and ϱ2 are different from each other as well as the velocities c1 and c2,
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formulae (7.80) remain valid if ke is replaced by ke/ϱe and ki by ki/ϱi, while
the arguments kea and kia do not change.

The quantity rni is directly related to the so-called phase shift, δni, or to
the quantity Sni ≡ exp (2iδni) through the relation

rni =
1
2

(Sni − 1) =
1
2

[exp (2iδni) − 1] . (7.81)

Notice that the total cross section, σ, by a sphere of radius a and real prop-
agation constant, ki, embedded in a uniform medium of real propagation
constant, ke, is given by

σ =
4π

ke
Im {fi} = −4π

k2
e

∞∑

n=0

(2n+1)Re{rni} =
4π

k2
e

∞∑

n=0

(2n+1) sin2 δni . (7.82)

If there is absorption inside the sphere (i.e., if ki is complex while ke is real),
the result for the total cross section is

σs =
4π

k2
e

∞∑

n=0

(2n + 1) |rni|2 =
π

k2
e

∞∑

n=0

(2n + 1) |1 − Sni|2 , (7.83a)

σa = −4π

k2
e

∞∑

n=0

(2n + 1)
[
Re {rni} + |rni|2

]

=
π

k2
e

∞∑

n=0

(2n + 1)
(
1 − |Sni|2

)
, (7.83b)

σt = −4π

k2
e

∞∑

n=0

(2n + 1)Re {rni}

=
2π

k2
e

∞∑

n=0

(2n + 1) (1 − Re {Sni}) , (7.83c)

where σs is the scattering-only cross section, σa is the absorption-only cross
section, and σt is the extinction cross section, which is due to both scattering
and absorption: σt = σs + σa. If the external medium possesses a complex
ke (as in the CPA case), more care is required in obtaining the scattering
amplitude (Problem 7.9s). More effort is also required if we are dealing with
vector classical fields such as the electromagnetic field (EM) and the elastic
wave field in solid media. In the case of an EM field, the total cross sections
involve two quantities of the type rni reflecting the fact that the EM field
is transverse with two independent polarizations for each k. These are given
by the following expressions (see the books by Stratton [176], pp. 392–395,
414–420, 563–569, and by Bohren and Huffman [177] pp. 83–104, 181–183;
the expressions for Wt and Qt in Stratton’s book should have a minus sign in
front of them):
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r(EM)
ni =

− µijn (kia) [keajn (kea)]′ − µejn (kea) [kiajn (kia)]′

µijn (kia) [keahn (kea)]′ − µehn (kea) [kiajn (kia)]′
, (7.84a)

r̄(EM)
ni =

− µijn (kea) [kiajn (kia)]′ − µe (ki/ke)
2 jn (kia) [keajn (kea)]′

µihn (kea) [kiajn (kia)]′ − µe (ki/ke)
2 jn (kia) [keahn (kea)]′

,(7.84b)

σs =
2π

k2
e

∞∑

n=1

(2n + 1)
(∣∣∣r(EM)

ni

∣∣∣
2

+
∣∣∣r̄(EM)

ni

∣∣∣
2
)

, (7.85a)

σa = −2π

k2
e

∞∑

n=1

(2n + 1)
{∣∣∣r(EM)

ni

∣∣∣
2
+

∣∣∣r̄(EM)
ni

∣∣∣
2

+ Re
{

r(EM)
ni

}
+ Re

{
r̄(EM)
ni

}}
, (7.85b)

σt = −2π

k2
e

Re

{ ∞∑

n=1

(2n + 1)
[
r(EM)
ni + r̄(EM)

ni

]}
. (7.85c)

In the above expressions, µi and µe are the permeabilities, ke = ω/ce, ki =
ω/ci, ce = c/

√
εeµe, ci = c/

√
εiµi, h(z) is the spherical Hankel function of the

first kind, and the prime denotes differentiation with respect to the argument
z = kia or kea.

For elastic waves in solids there are three components for each k (two
transverse and one longitudinal). The expressions for the scattered waves and
the cross sections are more complicated (see the papers by Kafesaki et al.
[178, 179] and by Penciu et al. [180]).

For the application of the CPA in the case for EM fields in random media
see the papers by Economou and Soukoulis [181], Soukoulis et al. [182], Busch
et al. [183, 184], and Jing et al. [185–187], and the book by Ping Sheng [21],
Sect. 3.9, pp. 85–87. For the CPA applied to acoustic/elastic waves see the
paper by Kafesaki and Economou [188].

7.2.5 Direct Extensions of the CPA

It must be stressed that in our derivation of the ATA and the CPA it was
necessary to have the random part of the Hamiltonian H1 as a sum of local
terms. The simple ATA and CPA we presented can be easily generalized in the
case where each of the additive parts in H1 involves not just one local orbital
but a finite number of them, e.g., if with each site m a finite number of orbitals
|m, ν⟩, ν = 1, 2, . . . , j is associated, the random part of the Hamiltonian may
have the form

H1 =
∑

m

∑

νν′

|m, ν⟩ ε′m,νν′ ⟨ν′, m| . (7.86)
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In this case the effective part of the Hamiltonian will have the form

H1e =
∑

m

∑

νν′

|m, ν⟩Σνν′ ⟨ν′, m| ; (7.87)

the j × j matrix Σ is determined by a matrix equation of the form (7.50) for
the ATA or of the form (7.59a) for the CPA. Care must be exercised regarding
the ordering of the matrices involved in tm. Another example is the special
case of off-diagonal disorder where

Vnm = Vn + Vm ; (7.88)

then H1 is the sum of local terms each of which has the form

|m⟩
∑

n

(ε′mδmn + Vm) ⟨n| ,

where the summation is over the nearest neighbors of m. In the special binary
alloy case, (7.88) implies that VAB = (VAA + VBB)/2. A third, less obvious
example is the case where

ε′m = −
∑

n

Vmn , n nearest neighbor of m ; (7.89)

this is realized in the case of pendula with random spring constants but fixed
uncoupled eigenfrequencies and in the case of lattice vibrations, etc. When
(7.89) is satisfied, H1 can be decomposed in bond contributions of the form

|n⟩Vnm ⟨m| + |m⟩Vmn ⟨n|− |m⟩Vmn ⟨m|− |n⟩Vnm ⟨n| .

In this connection it is worthwhile to mention the so-called homomorphic
CPA developed by Yonezawa and Odagaki [189, 190], where bond additivity
is forced by writing H1 as a sum of terms of the form

|n⟩Vnm ⟨m| + |m⟩Vmn ⟨n| + |m⟩ ε′m
Z

⟨m| + |n⟩ ε′n
Z

⟨n| .

Here Z is the number of nearest neighbors; if {ε′m} are not random, then this
decomposition is reasonable. However, if diagonal disorder is present, then
these terms are not in general statistically independent, and hence the above
decomposition may lead to erroneous results.

These extensions of the simple CPA have been employed to study the elec-
tronic structure, lattice vibrations, and magnetic excitations in real disordered
systems. Thus the case (7.86) was examined by Faulkner [191], Faulkner and
Stocks [192,193], Papaconstantopoulos et al. [194], and Papaconstantopoulos
and Economou [195] to treat electronic excitations. A variation of this case,
developed in the framework of real space representation (instead of the TBM),
is reviewed in [140,141,196,197]; this so-called muffin-tin CPA avoids the dif-
ficulties associated with the off-diagonal randomness in TB CPA. In addition,
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we mention contributions by Stocks et al. [198], Korringa and Mills [199],
Roth [200], and Balanovski [201]. The case (7.88) was examined by Schwartz
et al. [202] for the electronic problem, by Kaplan and Mostoller [203] for lat-
tice vibrations, and by Harris et al. [204] for magnetic excitations. The case
(7.89) has been studied by Tahir–Kheli and coworkers [205–207]; a generaliza-
tion of this method incorporating environmental disorder was treated in [138]
and [208].

According to the aforementioned, the CPA can treat off-diagonal disorder
in the special case (7.88). Shiba [209] noted that the special case VAB =√

VAAVBB can also be reduced to the simple CPA; this becomes apparent if
one uses the locator expansion to derive the CPA. Among the efforts to treat
off-diagonal disorder we mention work by Foo et al. [210] and by Brouers
et al. [174]. Blackman et al. [211] obtained a solution to the problem for
the case of binary distribution by introducing a 2 × 2 matrix version of the
simple CPA, where the diagonal matrix elements refer to the AA, or BB
configurations and the off-diagonal to the AB configuration; their method can
be generalized to the n-component alloy distribution by working with n × n
matrices. Whitelaw [212] succeeded in incorporating environmental disorder
along with off-diagonal disorder; his method is briefly reviewed by Leath [213].

Up to now we have dealt with direct extensions of the CPA that map the
problem back into the simple CPA. As a result, these extensions share with the
simple CPA its desirable features: correct reproduction of the limiting cases,
successful interpolation in between, and proper analytic behavior [214–216],
which assures the nonnegativeness of the DOS. Some of these extensions in-
corporate cluster scattering as well. However, it must be realized that this was
achieved only because of the special form of the random Hamiltonian. The
question that arises is whether a systematic way to include cluster scattering
in the simple CPA can be devised regardless of the form of the LCAO Hamil-
tonian. In the next subsection we review briefly the attempts to answer this
question.

7.2.6 Cluster Generalizations of the CPA

It was already pointed out that the limitations of the simple CPA stem from
its omission of multiple scattering from clusters of neighboring sites. Hence,
it is obviously worthwhile to devise a general scheme for the incorporation of
cluster scattering features in the simple CPA. A conceptual straightforward
way to achieve this purpose is the following: replace the random part of the
Hamiltonian H1 by an effective Hamiltonian H1e characterized by a number of
as yet undetermined parameters Σ1, Σ2, . . . , Σj . Obviously H1e must possess
the same periodicity as ⟨H1⟩+H0. Then determine the self-energies Σ1,. . . ,Σj

by demanding that ⟨tc⟩ = 0, where tc is the t-matrix associated with the fluc-
tuations around the effective Hamiltonian within a chosen cluster c. Butler
and Nickel [217] implemented such a scheme for a cluster of two neighboring
sites. They found that serious nonanalyticities appear in the solutions when
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the degree of disorder is large [218]. Furthermore, Ducastelle [215,216] demon-
strated that this cluster generalization fails to reproduce the strong scattering
limit. The nonanalyticities and the incorrect limiting behavior appeared rou-
tinely in the early schemes for cluster generalizations. Leath [219] attributed
these failures to the fact that a particular site, as a result of the average
periodicity, does not belong to a single fixed cluster but can be assigned to
a number of overlapping, on average equivalent, clusters. According to this
argument, one must break the average periodicity in order to obtain properly
analytic solutions. An artificial way to do this is by introducing an effective
Hamiltonian H1e that possesses a superlattice periodicity; the primitive cell
of this superlattice equals the chosen cluster. This superperiodic H1e is char-
acterized by self-energies Σis connecting sites belonging to the same primitive
cell; no self-energy refers to sites belonging to different primitive cells. Under
these assumptions the problem becomes equivalent to that defined by (7.86)
and (7.87), with the orbitals within the mth supercell corresponding to the
orbitals of the mth site in (7.86). Thus the problem has been mapped to that
of the simple CPA, and consequently the solution is properly analytic. This
has been achieved at the cost of introducing the incorrect superperiodicity on
H1e, which produces small errors to quantities like ⟨G (m, n)⟩ when both m
and n are well inside the supercell; on the other hand, when m and n belong
to different supercells, the error is expected to be substantial.

A better way to break the average periodicity is by embedding an actual
cluster in an effective medium. This means that the cluster is allowed to take
all its possible configurations while the rest of the system is kept at its effective
medium values. Again this method is appropriate for calculating ⟨G (m, n)⟩
only when both m and n belong to the cluster. The scheme can be subdivided
into three categories depending on how the effective medium is determined.
The simplest method is to determine it, say, from the simple CPA without
attempting to make it consistent with the final result [220–222]. The method
is easy to implement and has been very useful in treating real systems. In
this connection one must mention the recursion method reviewed by Haydock
[223] and the continued fraction method reviewed by Cyrot–Lackmann and
Khanna [224]. In the second category there are many effective media, one
for each particular configuration of the cluster [225, 226]; their determination
is achieved by a slightly modified version of the simple CPA. Finally, in the
third category one classifies all cases where an attempt is made to determine
the effective medium so as to be consistent with the final result [174,200,217,
227–234]. There is no guarantee that the self-consistency requirement will not
produce nonanalyticities; there is also no established self-consistency.

In Fig. 7.4 we plot the average density of states per site vs. E for a 1-d
disordered system where the site energies {ε′m} have the binary distribution
shown in (7.35) and (7.36) with x = 0.5, |εA − εB| /B = 2 (B = 2 |V |),
and εA + εB = ε0 = 0. It should be stressed that the 1-d case with a bi-
nary alloy distribution is the most severe test of any approximation. The
reason is that the 1-dimensionality and the binary distribution strongly en-
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Fig. 7.4. Average density of states vs. E for a 1-d disordered system where the
site energies have a binary distribution of the type shown in (7.35) and (7.36) with
x = 0.5 and |εA − εB| /B = 2. Panel d (CSSA) is based on a generalization of the
CPA [226]. In the present case ϱ(E) = ϱ(−E)

hance the probability of occurrence of certain special clusters capable of
trapping electrons within them. Such clusters are responsible for the sharp
peaks shown in Fig. 7.4e, which is based upon the numerical solution of
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the exact equation (obtained by Schmidt [235]) for
∫ E ⟨G (E′)⟩dE′. Fig-

ure 7.4 shows that the ATA is a definite improvement over the VCA and
that the CPA is a better approximation than the ATA. However, all these
approximations fail to produce the fine structure of the exact results be-
cause, as was discussed before, even the CPA does not treat correctly the
multiple scattering events responsible for the fine structure. On the other
hand, the approximation termed CSSA [226] treats exactly clusters of up to
three nearest-neighbor sites and as a result produces most of the fine struc-
ture.

We would like to point out once again that in higher dimensionality and/or
for a smoother probability distribution there is no fine structure, and the CPA
is a good approximation indeed; as a matter of fact, in the case where the
probability distribution has a Lorentzian form, both the ATA and the CPA
reproduce the exact result, because they replace each ε′m by ∓iΓ (for E ± is)
(Sect. 7.2).

Despite the impressive success that embedded cluster CPA has in repro-
ducing fine structure in the DOS (compare Figs. 7.4d and 7.4e), it cannot
be considered as a complete solution to the problem of incorporating cluster
effects because of its inherent inapplicability to the calculation of ⟨G (n, m)⟩
for large |n − m|.

Progress toward a general solution of this problem has been made. One
important advance is the work by Mills and Ratanavararaksa [236], who devel-
oped a systematic diagrammatic way of assuring that a partial summation of
a perturbation expansion is going to produce properly analytic results. Then
they proceeded to sum up all diagrams associated with pair scattering, and
they thus managed to produce the first properly analytic, properly periodic,
fully self-consistent theory incorporating pair scattering.

Another powerful idea is to augment the Hilbert space through a new pa-
rameter that determines the component of the binary alloy occupying any site
(this can be immediately generalized to multicomponent distributions). Then
the process of configurational averaging corresponds to taking the “ground
state quantum” average in this augmented space. This augmented space was
first introduced by Mookerjee [237,238]. Kaplan et al. [239] combined the aug-
mented space idea and the pair-scattering method of [236] to produce a theory
that is applicable not only to diagonal disorder but to off-diagonal and envi-
ronmental disorder as well. Even short-range order can be treated within the
framework of this theory [240]. These important developments are reviewed
by Leath [213] and by Kaplan and Gray [241].

7.3 Summary

In this chapter we examined first a system consisting of two “impurities” em-
bedded in a periodic tight-binding Hamiltonian (TBH). The total t-matrix
associated with the two impurities is not simply the sum of t-matrices of each
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impurity but includes infinitely many terms that correspond physically to mul-
tiple scattering events. A diagrammatic representation of this fact is shown in
Fig. 7.1, where the propagation from site i to site j [described by G(j, i)] is
decomposed to unperturbed propagations [described by G0(n, n′)] and scat-
tering events (described by the t-matrices tℓ and tm) from the impurity sites
ℓ and m.

In the case of two impurities the spectrum consists of a continuum (corre-
sponding to extended scattering eigenstates) and no more than two discrete
levels. The appearance and positions of the discrete levels depend on the mag-
nitude and the sign of the impurity potentials. A typical behavior is shown in
Fig. 7.3 for a 1-d system (a) and 3-d systems (b and c).

If the concentration of impurities is nonzero, we have what is called a ran-
dom or disordered system. For such a system we are interested first in deter-
mining ⟨G⟩, where the symbol ⟨⟩ denotes averaging over the various configu-
rations of impurities corresponding to the given concentration. In general, ⟨G⟩
cannot be determined exactly, and consequently schemes for approximations
are needed. Three such schemes are reviewed briefly in Sect. 7.2. The most
satisfactory one is the so-called coherent potential approximation (CPA) and
its various extensions. The CPA, in its simplest form, determines ⟨G(E)⟩ as
follows:

⟨G(E)⟩ = G0 (E − Σ(E)) , (7.49)

where G0 is the unperturbed periodic Green’s function and the so-called self-
energy Σ obeys the equation

Σ(E) =
〈

ε′m
1 − (ε′m − Σ(E))G0 (m, m; E − Σ(E))

〉
. (7.59a)

The perturbation H1 =
∑

m |m⟩ ε′m ⟨m| with ⟨ε′m⟩ = 0.

Further Reading

An extensive presentation of the CPA is given in the book by Gonis [242]. The
classical wave case is treated in the books by P. Sheng [21,243]. Scattering of
electromagnetic waves is examined in the books by Stratton [176] and Bohren
and Huffman [177].

Useful material can be found in older books and review articles such as
those by Ziman [137], Lifshitz et al. [244], and Elliott et al. [138].

Problems

7.1s. Consider the two consecutive impurities problem,

H1 = |ℓ⟩ ε ⟨ℓ| + |m⟩ ε′ ⟨m| , (m = ℓ + 1) ,
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in an otherwise periodic 1-d Hamiltonian

H0 =
∑

n

|n⟩ ε0 ⟨n| + V
∑′

|n⟩ ⟨m| .

Find the transmission and reflection coefficients for this model. Is there any
resonance?

7.2s. Consider the simple 1-d model described in Problem 5.6. Derive the
Green’s function for this periodic model by employing a matrix notation where
|ℓ⟩ = [|ℓs⟩ , |ℓpx⟩]. Then introduce an impurity at site n that adds to the
Hamiltonian a term H1 such that

⟨n | H1 | ℓ⟩ =
∣∣∣∣
ε′s 0
0 ε′p

∣∣∣∣ δnℓ .

Find the bound states, if any, in the presence of H1 (especially those in the
gap). Notice that a missing atom at n (a vacancy) corresponds in our model
to ε′s → ∞ and ε′p → ∞, since by making ε′s and ε′p infinite site n becomes
inaccessible to the electron.

7.3. Prove (checking carefully each step) that
〈
G±(E)

〉
= G0(E ± iΓ )

if the probability distribution of each ε′n is given by a Lorentzian: p (ε′n) =
Γ/π

(
ε′n

2 + Γ 2
)
.

7.4. Starting from (7.52) prove (7.53). Also, starting from (7.59) prove (7.59a)
and (7.59b).

7.5s. Calculate numerically the average DOS for a binary alloy case with
x = 0.5: p (ε′n) = xδ (ε′n + ε) + (1− x)δ (ε′n − ε). For the unperturbed Green’s
function use the Hubbard one (5.56). Employ the CPA for your calculations
and consider various values of ε/B. Plot your results for the DOS vs. E and
the band edge trajectories vs. ε.

7.6s. Use the CPA to obtain the positions of the band “edges” as well as
the tails in the DOS beyond the band “edges” for the case of a Gaussian
distribution of each ε′n and for a simple cubic lattice. Employ appropriate
approximations to obtain analytical results in various limiting cases.

7.7. Prove (7.73a)–(7.73c).

7.8. Employing the boundary conditions that both p (r) and the normal
derivative, ∂p/∂r, are continuous on the surface separating two media, prove
(7.80b) and (7.80c). If the density of the two media is not the same, the
boundary conditions are: p continuous and ϱ−1∂p/∂r continuous; in this case
find out how (7.80c) is modified.
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7.9s. Consider sound propagation in an infinite, uniform host medium (char-
acterized by density ϱ0 and bulk modulus B0 = B0R− iB0I) in which a sphere
of radius a, bulk modulus B = BR − iBI , and density ϱ has been embedded.
In this case of absorption in both media the various cross sections have to be
calculated by the ratio of energy fluxes not at infinity but through a sphere of
radius r (r → a+). To perform the calculation, introduce a scalar potential,
φ, such that u̇ = ∇φ, where u is the displacement at point r, connected to
the pressure by the relation p (r) = −B∇ ·u. The potential satisfies wave
equation (7.70) and the boundary conditions ϱiφi and ∂φi/∂r continuous at
the interface. The energy flux is given by the expression

j = − ϱ

B + B∗

(
Bφ̇∗∇φ + B∗φ̇∇φ∗

)
.

Calculate the total cross section (both scattering and absorption) by taking
into account that in the host medium φ = φinc. + φscat..

7.10. Express the tensor t-matrix, t (k, k′; ω), for the EM field in a medium
consisting of a dielectric sphere (radius a, εs, µs) in a uniform isotropic
medium of ε0 and µ0. Employ the eigenvectors m(i)

e0nm and n(i)
e0nm (see Strat-

ton’s book) and the coefficients r(EM)
n and r̄(EM)

n , as well as the connection
between the t-matrix and the scattering amplitude.

Hint : See the article by Arya et al. in the book by Ping Sheng [243],
especially the appendix on pp. 398–401.
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Electrical Conductivity and Green’s Functions

Summary. Disorder has a much more pronounced effect on transport properties
than on the DOS. In fact, the DC metallic electrical conductivity is finite and not
infinite (at T = 0), because of the presence of disorder,no matter how weak. As the
disorder increases further, it may produce a metal–insulator transition, i.e., it may
prevent the propagation of the carriers altogether, making the conductivity equal
to zero (at T = 0K). In the last 30 years there have been impressive developments
in our understanding of these phenomena and in elucidating the role of elastic and
inelastic scattering; Green’s functions have played a central role as a theoretical tool.
In this chapter, we shall introduce several transport quantities, such as electrical
conductivity, and present several schemes for their calculation.

8.1 Electrical Conductivity and Related Quantities

The presence of an electric field, E , in a system induces a current density, j.
The conductivity is defined as the coefficient of the linear (in E) part of j:

ja (r, t) =
∫ ∞

0
dτ

∫
dr′σαβ (r, r′; τ) Eβ (r′, t − τ) , (8.1)

where the subscripts α and β denote cartesian coordinates and a summation
is implied over the repeated index β. In what follows we assume that both E
and j are along the x-axis, so that we need to consider only σxx; for simplicity
we drop the subscripts. At the end it is easy to deduce from σxx the form of
the other components of σ. Usually E and j vary slowly over distances of the
order of ℓ0, where ℓ0 is determined by the condition σ ≈ 0 for |r − r′| ≫ ℓ0.
In this case one can perform the integration over r′ and the average over r to
obtain

j(t) =
∫ ∞

0
dτσ(τ)E(t − τ) , (8.2)

where obviously

σ(τ) =
1
Ω

∫
drdr′σ (r, r′; τ) . (8.3)
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Henceforth we shall consider σ(τ) or its Fourier transform

σ(ω) =
∫ ∞

0
dτσ(τ)eiωτ . (8.4)

At the end of the discussion we shall indicate how one can obtain σ (r, r′; τ)
from σ(ω). If E(t) is given by

E(t) = F e−iωt + F ∗eiωt , (8.5)

we have from (8.2) and (8.3) that

j(t) = σ(ω)F e−iωt + σ(−ω)F ∗eiωt . (8.6)

The reality of j requires that σ(−ω) = σ∗(ω), from which it follows that the
real (imaginary) part, σ1(σ2), of σ is an even (odd) function of ω.

Note that as a result of causality, σ(τ) is nonzero only for τ ≥ 0; con-
sequently, as can be seen from (8.4), σ(ω) is analytic for Im {ω} ≥ 0 with
the possible exception of ω = 0 (since the integral converges absolutely and
the differentiation can be performed under the integration sign). Taking into
account this analyticity and that σ(ω) → 0 for ω → ∞ (as we show later), we
can see that the integral

∫ ∞

−∞
dω′ σ(ω′)

ω′ + is − ω

is zero. By taking the limit s → 0+, and using (1.20), we obtain for the real
(σ1) and the imaginary (σ2) parts of σ

σ1(ω) =
1
π

P
∫ ∞

−∞

dω′σ2 (ω′)
ω′ − ω

, (8.7)

σ2(ω) = − 1
π

P
∫ ∞

−∞

dω′σ1 (ω′)
ω′ − ω

+
A

ω
, (8.8)

where iA is the residue (if any) of σ(ω) at ω = 0. Thus knowing σ1(ω) for
ω ̸= 0 one can calculate σ2(ω) and, consequently, σ(ω); the constant A can
be obtained from the behavior of σ(ω) at infinity. Equations (8.7) and (8.8)
are known as the Kramers–Krönig relations.

The conductivity tensor is related to several other quantities: by definition
it is the inverse of the resistivity tensor, ϱαβ (r′′, r; t′′ − t), i.e.,

∑

γ

∫
ϱαγ (r′′, r; t′′ − t)σγβ (r, r′; t − t′) drdt

= δαβδ (r′′ − r′) δ (t′′ − t′) . (8.9)

It is connected to the diffusion function, Dαβ (r, r′′; t), by a generalized Ein-
stein’s relation
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σαβ (r, r′; t) = q2

∫
dr′′Dαβ (r, r′′; t) [δn (r′′) /δµ0 (r′)] , (8.10)

where q is the charge of each of the diffusing particles (−e for electrons), n (r)
is the local concentration of these particles at r, and µ0 (r′) is the chemical
potential at r′ in the absence of an electric field. For a proof see Problem 8.1s.
In (8.10) it has been assumed that the relation between µ and n is nonlocal.
If it is local,

δn (r)
δµ0 (r′)

= δ (r − r′)
∂n

∂µ0
;

then, since as T → 0K, n = 2
∫ µ0 dεϱ(ε) (assuming spin 1/2 particles), we

have that ∂n/∂µ0 = 2ϱF , where ϱF is the DOS per volume per spin at the
Fermi level EF (EF = limµ as T → 0K). For free particles, 2ϱF = 3n/2EF

as T → 0K and ∂n/∂µ0 = 3n/2EF , while ∂n/∂µ0 = n/kBT for T ≫ EF /kB

(because n = 2
∫

dεϱ(ε)f(ε) with f(ε) ≈ exp [(µ − ε)/kBT ]). Thus, we end up
with the familiar Einstein’s relations:

σ =

⎧
⎨

⎩

3
2
q2 (n/EF )D , T ≪ EF /kB , (8.11a)

q2 (n/kBT )D , T ≫ EF /kB . (8.11b)

The DC conductivity, which, as we shall show below, can be written as

σDC =
∫

dEσ(E)
(
− ∂f

∂E

)
, (8.12)

is related to the averaged and the microscopic mobility, µ̄DC and µDC(E),
respectively, as follows [245]:

σDC = |q|nµ̄DC , (8.13)

−dσ(E)
dE

= |q| ϱ(E)µDC(E) , (8.14)

where q is the charge of each carrier (−e for electrons), n is the concentration
of carriers, ϱ(E) is the DOS (including spin) per unit volume, and f(E) is the
occupation number of the single-particle state of energy E.

A very important relation is the one connecting the AC conductivity,
σαβ (r, r′; ω), to the permittivity, εαβ (r, r′; ω):

εαβ (r, r′; ω) = δαβ +
4πi
ω

σαβ (r, r′; ω) . (8.15)

(In the SI system δαβ is multiplied by ε0 and the factor 4π is replaced by 1).
The permittivity is connected to the electric susceptibility, χ(e)

αβ , as follows:

χ(e)
αβ =

1
4π

(εαβ − δαβ) =
i
ω

σαβ . (8.16)
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(In the SI, χ(e)
αβ = iσαβ/ε0ω). Notice that the susceptibility can be obtained

in terms of the atomic (or ionic) polarizabilities.
The permittivity is a very important quantity because it determines the

optical properties of materials, as mentioned in Chap. 7. But besides this, it
gives the differential inelastic cross section, d2σ/dOdεf , of a charged particle
by the solid:

d2σ

dOdεf
∼ −Im

{
ε−1 (k, ω)

}
,

where !ω = εi − εf and k = ki − kf . Furthermore, it determines the Fourier
transform of the screened Coulomb interaction of two charged particles (of
charge q), 4πq2/ε (k, ω)k2, and it allows us to express the total electronic
potential energy in terms of Im

{
ε−1 (k, ω)

}
. Finally, the zeros of ε (k, ω) give

the eigenfrequencies (vs. k) of the collective longitudinal charge oscillations in
a solid, while the infinities of ε (k, ω) give the eigenfrequencies of the collec-
tive transverse oscillations in a solid [within the electrostatic approximation,
c → ∞; if this approximation is not valid, the transverse collective eigenfre-
quencies are given by ε (k, ω) = c2k2/ω2].

8.2 Various Methods of Calculation

8.2.1 Phenomenological Approach

The simplest and crudest way to obtain approximately σ(ω) is by employing
Newton’s equation for the electronic drift velocity, v, in the presence of the
field, F e−iωt, and of a friction force, −mv/τtr, (τtr is the transport relaxation
time):

−iωmv = −mv

τtr
+ qF , (8.17)

where q = −e is the electronic charge.
Since the current is given by j = nqv, where n is the electronic density,

we obtain for σ(ω)

σ(ω) ≈ ne2τtr

m (1 − iωτtr)
. (8.18)

For ω → ∞ the electronic motion is classical, all scattering is negligible, and
only the electronic inertia (as measured by its mass m) matters. Hence, (8.18)
(without the friction term) becomes exact:

σ(ω) −→
ω→∞

i
ne2

mω
. (8.19)

A slight generalization of this approach (capable of treating nonspherical
Fermi surfaces) consists in considering the whole equilibrium distribution
transposed rigidly in k-space by an amount δk = mv/!, where v is again
given by (8.17) [27].
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The only forces we have used in (8.17) are the external one and the fric-
tion force. However, in reality, displacing a bound electron or an ion from its
equilibrium position by x may set up a restoring harmonic force of the form
−miω2

j x, where ωj is a natural frequency of the system. If such a force is
present, instead of (8.18) we shall have

σj(ω) = i
q2
j njω

mj

1
ω2 − ω2

j + iω/τj
, (8.20)

where nj is the concentration of those particles of mass mj , charge qj , and
eigenfrequency ωj. Now we can view phenomenologically the electrons in
a solid as separated into several groups each one of which has its own eigenfre-
quency and its concentration nj . Then the total conductivity from all groups
shall be

σ(ω) =
neffe2τtr

me (1 − iωτtr)
+

ie2ω

me

∑

j

nej

ω2 − ω2
j + iω/τj

+
iq2niω

mi (ω2 − ω2
TA + iω/τi)

, (8.21)

where the first two terms of the rhs are due to electrons and the last one to
ions (assuming one ion per primitive cell), neff is the concentration of the free
electrons, nej is the concentration of bound electrons of the group j, q is the
charge per ion, ni is the concentration of ions, and ωTA = ctk is the transverse
sound velocity.

8.2.2 Boltzmann’s Equation

A more sophisticated approach (but still semiclassical) is the one based on
Boltzmann’s equation, which determines the electron distribution in k-space
in the presence of an applied electric field and scattering mechanism, which
tends to restore equilibrium [246, 247]. The advantage of this approach is
that the phenomenological parameter τtr is related to the scattering potential
V (r) by

1
τtr

=
2π

! ϱF nimp
1
4π

∫
dO

∣∣〈kf

∣∣ T ′+ (EF )
∣∣ k

〉∣∣2 (1 − cos θ) , (8.22)

where ϱF is the DOS per volume per spin direction, nimp is the number
of scatterers per unit volume, the integration is over all directions of kf

(E (kf ) = E (k) = EF ), and T ′+(E) is the t-matrix associated with a single
scatterer times the volume Ω. Equation (8.22) is equivalent to

1
ℓtr

= nimpσtr , (8.23)

where ℓtr = τtrvF and σtr is the cross section due to a single scatterer with
the factor (1 − cos θ) included. Equations (8.22) and (8.23) will be proven in
Appendix G.
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This extra factor, (1 − cos θ), in (8.22) and (8.23) accounts for the fact
that what matters for transport is the momentum change along the direction
of initial propagation. If |f (kj , k)|2 is isotropic (or, more generally, if it does
not contain a p-spherical harmonic), then the cos θ term averages out to zero,
and τtr = τ , where τ is given by (8.22) without the (1− cos θ) factor. From τ
we define the scattering mean free path ℓ = vF τ ; ℓ−1 = nimpσ, where σ is the
total cross section due to a single scatterer [without the factor (1 − cos θ)].

8.2.3 A General, Independent-Particle Formula for Conductivity

We proceed now to obtain a general quantum-mechanical expression for σ1(ω)
within the independent-particle approximation and for ω ̸= 0 [248]. Then σ(ω)
will be calculated by using (8.8) and (8.19). A more general, many-body way
to obtain σ(ω) based on linear response theory will be given in §8.2.4 and
Sect. 11.2 [110,249,250]. Using (8.5) and (8.6) we obtain, for the time average
power P = ΩEj consumed by the system, the expression

P = 2Ω |F |2 σ1(ω) , ω ̸= 0 . (8.24)

The average power P can also be calculated by multiplying the energy

εβα ≡ !ωβα = Eβ − Ea

(absorbed by the system during the field-induced transition |α⟩ → |β⟩) by the
transition rate pαβ and by summing over all possibilities (|α⟩ ̸= |β⟩)

P =
∑

αβ

εβαpαβ =
1
2

∑

αβ

εβα (pαβ − pβa) . (8.25)

The summation includes a spin degeneracy factor equal to 2; the probability
per unit time pαβ is given by

pαβ = fα (1 − fβ)Wαβ , (8.26)

where fν ≡ f(Eν), (ν = α, β), is the Fermi distribution and Wαβ can be
obtained (like Fermi’s golden rule) by substituting into (4.48) the perturbation
H1 instead of the t-matrix, since we are interested in the lowest-order response.
In the present case the perturbation is

H1(t) = exE(t) , (8.27)

where the field is given by (8.5). The result is

Wαβ =
2π

! e2 |F |2 |⟨α |x |β⟩|2 [δ (!ω − εβα) + δ (!ω + εβα)] . (8.28)
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Combining (8.25), (8.26), and (8.28), and comparing with (8.24), we obtain

σ1(ω) =
πe2

Ω

∑

αβ

|⟨a |x |β⟩|2 ωβα (fα − fβ) δ (!ω − !ωβα) . (8.29)

We can recast this expression in terms of the momentum px matrix elements.
Indeed, since

px = m
dx

dt
= im

Hx − xH
! ,

we have
⟨α | px |β⟩ = imωαβ ⟨α |x |β⟩ . (8.30)

Substituting (8.30) into (8.29) we obtain

σ1(ω) =
πe2

Ωm2

∑

αβ

|⟨α | px |β⟩|2
fα − fβ

ωβα
δ(!ω − !ωβα) . (8.31)

Because of the δ function in (8.31) it is trivial to perform the integration in
(8.8); the constant A can be obtained by comparing with (8.19), and thus
σ2(ω) is calculated. Combining the expressions for σ1(ω) and σ2(ω) we have
finally:

σ (ω + is) =

⎛

⎝e2n

m
− e2

Ωm2

∑

αβ

|⟨α | px |β⟩|2
fα − fβ

!ωβα

⎞

⎠ i
ω + is

−i
e2

Ωm2

∑

αβ

|⟨α | px |β⟩|2
fα − fβ

!ωβα

1
ωβα − ω − is

. (8.32)

The term ie2n/mω ≡ σd(ω) is the so-called diamagnetic contribution to σ(ω),
and the rest, σp(ω), is the paramagnetic one, which can be recast as

σp(ω) = −i
e2

Ωm2!ω

∑

αβ

|⟨α | px |β⟩|2
fα − fβ

ωβα − ω − is
. (8.33)

The local conductivity σ(r, r′; ω) can be obtained from (8.32) by replacing
the velocity, px/m, matrix elements by the current operator matrix elements,
i.e.,

|⟨α | px |β⟩|2

Ω
→ λαβ (r)λ∗

αβ (r′) ,

where
λαβ (r) =

−i!
2

[
ψ∗

α (r)
∂ψβ (r)

∂x
− ψβ (r)

∂ψ∗
α (r)
∂x

]
, (8.34)

ψα (r) = ⟨r |α⟩ and ψβ (r) = ⟨r |β⟩. To obtain σµν , one replaces |⟨α | px |β⟩|2
by ⟨α | pµ |β⟩ ⟨β | pν |α⟩ in (8.32).
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For fixed boundary conditions (BCs) the term in parentheses in (8.32)
vanishes identically. This can be proved by noticing that (8.30) implies the
following equality:

|⟨α | px |β⟩|2

ωβα
= −im ⟨α |x |β⟩ ⟨β | px |α⟩ .

Note that for a perfect conductor with periodic boundary conditions, the term
in parentheses in (8.32) is not zero, because then (8.30) fails; in this case the
only term that survives is the diamagnetic one.

Mott and Davis [248] gave an instructive way to obtain (8.18) (for ω = 0)
starting from (8.31). Their main assumption is that for weakly disordered sys-
tems the eigenfunctions have essentially constant amplitude (as in perfectly
ordered systems) but phase coherence among different members of the en-
semble is maintained only over a distance of the order of the transport mean
free path, ℓtr ≡ vF τtr (for ordered systems ℓtr = ∞). If the total volume Ω is
divided into cells, each of volume vi ≈ ℓd

tr, then

⟨α | px |β⟩ =
∑

vi

∫

vi

drψ∗
αpxψβ . (8.35)

Multiplying (8.35) by its complex conjugate and cancelling the cross terms
due to their random phases, one obtains

〈
|⟨α | px |β⟩|2

〉
=

∑

vi

∣∣∣∣
∫

vi

drψ∗
αpxψβ

∣∣∣∣
2

=
Ω

v

∣∣∣∣
∫

vi

ψ∗
αpxψβdr

∣∣∣∣
2

. (8.36)

Within the volume v, ψα and ψβ are assumed to be plane waves so that
the integral can be performed explicitly. Substituting the result in (8.31) one
obtains σ1 ≈ e2nℓtr/2mvF , which coincides with (8.18) apart from a factor
of 2 (for ω = 0), since ℓtr = vF τtr.

Thouless [251] has also obtained (8.18) starting from (8.31) by assuming
that ψα (and ψβ) is a linear combination of plane waves with coefficients
that are uncorrelated Gaussian random variables whose variance is (π/ℓtrk2Ω)
[(k − ka)2 + ℓ2

tr/4].
The general formulae we derived for σ or σ1 are usually referred to in the

literature as the Kubo [252, 253]–Greenwood [254] formulae.

8.2.4 General Linear Response Theory

Consider a system that initially (i.e., for t < t0) is described by the thermo-
dynamic equilibrium density matrix, ϱ0, where

ϱ0 =
exp (−βH0)

Tr {exp (−βH0)}
. (8.37)
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At time t = t0 we apply a perturbation H1(t). We would like to calculate
how a physical quantity corresponding to operator X changes to first order
in H1(t). The answer to this is given by the following general formula (which
we quote here without proof):

⟨X(t)⟩ = ⟨X⟩0 −
i
!

∫ t

t0

dt′Tr {ϱ0 [XI(t),H1,I (t′)]} , (8.38)

where

⟨X⟩0 = Tr {ϱ0X} , (8.38a)
XI(t) = exp (iH0t/!)X exp (−iH0t/!) , (8.38b)

H1,I (t′) = exp (iH0t
′/!)H1 (t′) exp (−iH0t

′/!) , (8.38c)

and the brackets denote the commutator of the two operators.
If the time dependence of H1(t) is of the form e−i(ω+is)t, and we take the

limit t0 → −∞ and s → 0+, we find

⟨X(t)⟩ − ⟨X⟩0

=
e−iωt

!
∑

n,m

(
−ϱ0n

H1,nmXmn

ω + ωmn + is
+ ϱ0n

XnmH1,mn

ω − ωmn + is

)
, (8.39)

where ϱ0n = exp (−βEn) /Z, Z =
∑

n exp (−βEn), H1,nm = ⟨n |H1 |m⟩,
Xmn = ⟨m |X |n⟩, H0 |m⟩ = Em |m⟩, H0 |n⟩ = En |n⟩, and ωmn = (Em −
En) /!. For a proof of (8.39), see Problem 8.6. The imaginary part of δX(ω) ≡
eiωt [⟨X(t)⟩ − ⟨X⟩0] is, according to (8.39),

Im {δX(ω)} =
π

!
∑

n,m

ϱ0n [H1,nmXmnδ (ω + ωmn)

−XnmH1,mnδ (ω − ωmn)] . (8.40)

Taking into account that

δ (ω + ωmn) =
1
2π

∫ ∞

−∞
exp [−it (ω + ωmn)] dt , (8.41)

and that

H1,nm exp (−itωmn) = H1,nm exp [it (En − Em) /!]
= ⟨n | exp (iH0t/!)H1 exp (−iH0t/!) |m⟩
= ⟨n | H1,I(t) |m⟩ (8.42)

[and similarly for the second term in brackets in (8.40)], we find that

Im {δX(ω)} =
1
2!

∫ ∞

−∞
dtTr {ϱ0 [H1,I(t), X(0)]} e−iωt

= − 1
2!

∫ ∞

−∞
dt ⟨[X(0),H1,I(t)]⟩ e−iωt , (8.43)
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where the symbol ⟨A⟩ indicates the average over the equilibrium canonical
ensemble: ⟨A⟩ ≡ Tr {ϱ0A}. The last term on the rhs of (8.40) can be written as

1
Z

exp (−βEn)H1,mnXnmδ (ω − ωmn)

=
1
Z

exp [−β (Em − !ω)]H1,mnXnmδ (ω − ωmn) .

Now we interchange the dummy indices m and n so that the term above
becomes

eβ!ω 1
Z

exp (−βEn)H1,nmXmnδ (ω − ωnm) , Z = Tr {exp (−βH0)} .

Since δ (ω − ωnm) = δ (ω + ωmn), the term above is the same as the first term
on the rhs of (8.40) times the factor eβ!ω. Hence, we end up with the following
expressions for Im {δX(ω)}:

Im {δX(ω)} =
π

!
(
1 − eβ!ω

) ∑

nm

ϱ0nH1,nmXmnδ (ω + ωmn) (8.44)

=
1
2!

(
1 − eβ!ω

) ∫ ∞

−∞
dt ⟨H1,I(t)X(0)⟩ e−iωt , (8.44′)

where (8.44′) was obtained from (8.44) by taking into account (8.41) and
(8.42). Equation (8.44) is a general expression for the so-called fluctuation–
dissipation theorem, which connects Im {δX(ω)}, i.e., the dissipation due to
the departure from equilibrium as a result of the application of H1, with the
average of the quantity H1,I(t)X(0) (which, for the cases of interest here, is
related to the fluctuation in time of the quantity X) in the equilibrium state.

The imaginary part of the electric susceptibility, χ(e)
αβ(ω), can be obtained

directly from (8.44) by setting H1(t) = exaF e−iωt [see (8.5) and (8.27)] and
X = −enxβ , where −e is the charge of the electron and n is the electronic
concentration. We have then

Im
{

χ(e)
αβ

}
=

Pαβ(ω)
F

= −e2n

2!
(
1 − eβ!ω

) ∫ ∞

−∞
dt ⟨xα,I(t)xβ(0)⟩ e−iωt . (8.45)

From (8.16) and (8.45) we obtain Re {σαβ(ω)}

Re {σαβ(ω)} = −e2nω

2!
(
1 − eβ!ω

) ∫ ∞

−∞
dt ⟨xα,I(t)xβ(0)⟩ e−iωt (8.46a)

= −e2nω

2!
(
1 − eβ!ω

) ∫ ∞

−∞
dt ⟨xα(0)xβ,I(t)⟩ eiωt (8.46b)

=
e2nω

2!
(
1 − e−β!ω

) ∫ ∞

−∞
dt ⟨xβ(0)xα,I(t)⟩ e−iωt . (8.46c)
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Equation (8.40) can be written by interchanging the dummy n and m indices
in the second term of the rhs as follows:

Im {δX(ω)} =
π

!
∑

nm

H1,nmXmnδ (ω + ωmn) (ϱ0n − ϱ0m) ,

from which Re {σαβ(ω)} can be recast as

Re {σαβ(ω)} = −πe2nω

!
∑

nm

xα,nmxβ,mnδ (ω + ωmn) (ϱ0n − ϱ0m) . (8.47)

It must be stressed that in all formulae of this section up to now the Hamilto-
nians and their eigenfunctions refer to the whole system. Thus, these formulae
are valid for the most general case where all correlations among particles are
included. If we make the independent-particle approximation, the matrix el-
ements in (8.39), (8.40), (8.44), and (8.47) are between single-particle states,
and the many-body equilibrium density matrix elements must be replaced by
the Fermi distribution, f (εn) [divided by N in order to be normalized to 1,∑

n f (εn) /N = 1, as the full density matrix
∑

n ϱ0n = 1]. Thus, in the case
of independent particles, (8.47) becomes (for α = β)

Re {σαα(ω)} =
πe2

Ω

∑

nm

|⟨m |xα |n⟩|2 δ (!ω − !ωnm)ωnm (fm − fn) , (8.48)

which coincides with (8.29). To arrive at (8.48) we have used the relations
n/N = 1/Ω, δ (!ω − !ωnm) = δ (ω + ωmn) /!, and ω = ωnm (because of the
δ-function).

8.3 Conductivity in Terms of Green’s Functions

Now we recast the general expression for σ1(ω) or σ(ω) in an invariant form
involving Green’s functions. Among the various slightly different versions, we
discuss here two. In the first used by Abrikosov et al. [113] and by Doniach and
Sondheimer [135], σ(ω) is expressed in terms of the causal Green’s function
g(E), which is of central importance in many-body theory (Part III). For the
present purposes (where electrons are assumed to move independently of each
other), g(E) can be defined as G−(E) for E < EF and G+(E) for E > EF , i.e.,

g(E) ≡ [E + isε̄ (E − EF ) −H]−1 , (8.49)

from which it follows that

⟨α | g(E) |β⟩ = δαβ [E + isε̄ (E − EF ) − Eα]−1 .

At T = 0 one has
fα − fβ

εβα − !ω − is
=

−1
2πi

∫ ∞

−∞
dE ⟨α | g(E) |α⟩ ⟨β | g(E + !ω) |β⟩ . (8.50)
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To prove (8.50) close the integration path on its rhs by a semicircle either in
the upper or in the lower half-plane and use residue theory.

Substituting (8.50) into (8.33), and performing the summation over inter-
mediate states by employing (1.4′), one obtains

σ(ω) =
ie2n

mω
+

e2

Ωm2ω

∫
dE

2π
Tr {pxg(E)pxg(E + !ω)} , (8.51)

where the Tr operation includes a factor of 2 due to spin summation. By
using standard many-body techniques (see, e.g., Part III of this book), one
can generalize (8.51) to nonzero temperatures. Abrikosov et al. [113], as well
as Doniach and Sondheimer [135], starting from (8.51) expand the two gs
in a perturbation series and after a lengthy calculation obtain the ensemble
average of σ(ω) (over all configurations of the scatterers), which agrees with
(8.18) and (8.22).

It is probably simpler and more convenient to express σ1(ω) in terms of
G̃ = G+ − G−. For that purpose one notices first that

fα − fβ

ωβα
δ(!ω − εβα)

=
∫

dEδ (E − Eα) δ (E − Eβ + !ω)
f(E) − f(E + !ω)

ω
. (8.52)

Substituting (8.52) into (8.31) we have

σ1(ω) =
πe2!
Ωm2

∫ ∞

−∞
dE

f(E) − f(E + !ω)
!ω

Tr {pxδ(E + !ω −H)pxδ(E −H)}

=
e2!

πΩm2

∫ ∞

−∞
dE

f(E) − f(E + !ω)
!ω

× Tr
{
pxIm

{
G+(E + !ω)

}
pxIm

{
G+(E)

}}
, (8.53)

where the Tr operation includes a factor of 2 due to spin summation. One
can express σ1(ω) in terms of G± by noticing that Im {G+} = i(G− − G+)/2
and substituting it into (8.53).

It is important to remember that in all expressions [(8.30), (8.31), (8.32),
(8.33), (8.51), (8.53)] for σ1(ω) or σ(ω) an appropriate ensemble average over
all possible configurations of the scatterers has to be taken. One usually takes
the arithmetic mean. However, explicit results in 1-d systems demonstrate
[255–258] that it is the probability distribution of lnσ(0), and not that of
σ(0) itself, that is sharply peaked; thus the geometric, and not the arithmetic,
mean of σ(0) is representative of the ensemble. This anomalous behavior seems
to be related to the exponential decrease of σ(0) as one increases the linear
dimension of 1-d systems.

8.3.1 Conductivity Without Vertex Corrections

To calculate the arithmetic mean of σ1(ω), one has to average the product
of two Gs, which in general is different from the product of the averages. We
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shall return to this important question later, but for the time being let us
replace each G in (8.53) by its average value ⟨G⟩, which can be calculated
with the use of the CPA. Working in the k-representation, where both p and
⟨G⟩ are diagonal, we obtain from (8.53) in the limit ω → 0

σ(0)(0) =
2e2!
πΩ

∫
dE

(
− ∂f

∂E

) ∑

k

|⟨k | px/m |k⟩|2
∣∣Im

{
G+ (E, k)

}∣∣2 .

(8.54)
Taking into account that

〈
k

∣∣∣
px

m

∣∣∣ k
〉

=
∂E (k)
!∂kx

≡ vx (k) ,

that G+(E, k) = [E − Σ(E) − E(k)]−1, where Σ = Σ1 − iΣ2 is the self-
energy, and that (−∂f/∂E) → δ(E − EF ) as T → 0, we obtain for the zero
temperature conductivity

σ(0)(0) =
2e2!
πΩ

∑

k

v2
x (k)

Σ2
2{

[EF − Σ1 − E(k)]2 + Σ2
2

}2 . (8.55)

The summation over k is facilitated if one introduces an integration over
δ (E′ − E(k)) dE′, so that

σ(0)(0) =
2e2!

π

∫
dE′

[
1
Ω

∑

k

v2
x (k) δ (E′ − E (k))

]

× Σ2
2{

[EF − Σ1 − E′]2 + Σ2
2

}2 . (8.56)

The quantity in the brackets depends only on the form of E(k). For lattices of
cubic symmetry v2

x can be replaced by |v|2 /d, where d is the dimensionality.
Furthermore, the k summation can be replaced by an integration over the
surface of constant energy E′, so that

1
Ωd

∑

k

|v (k)|2 δ (E′ − E (k)) =
1

(2π)dd

∫
dSk

1
! |v (k)| |v(k)|2

=
1

(2π)dd!S (E′) v (E′) ,

where S is the area of the surface of energy E′ and v (E′) is the average of the
magnitude of the velocity over this surface. Equation (8.56) can be simplified
considerably in the weak scattering limit, where Σ2 is small, and Sv can be
taken as a constant equal to its value at EF −Σ1 ≈ EF . Then the integration
over E′ can be performed explicitly, giving for σ

σ(0)(0) =
e2vF

|Σ2|
SF

(2π)dd
. (8.57)
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If we compare (8.57) with (2) of Problem 8.7, we see that we should identify
2 |Σ2| /! with 1/τtr. However, (7.51) suggests that

|Σ2| = πϱm

〈
ε′2m

〉
= πϱa3

〈
ε′2m

〉
= πϱa3

∣∣V (0)2
∣∣

a6
= πϱnimp |V (q)|2 ,

since, in this case, V (q) = εa3δq,0 and nimp = a−3. Hence 2 |Σ2| /! equals
1/τ and not 1/τtr. Thus our calculation reproduces the standard result apart
from the (1 − cos θ) factor, which is not present in |Σ2|. The reason for this
omission is our neglect of the difference px ⟨GpxG⟩ − px ⟨G⟩ px ⟨G⟩, which is
usually called a vertex correction. In the next subsection we present a CPA-
like scheme for obtaining the vertex corrections. In the weak scattering limit,
this scheme reduces to the standard theory for conductivity [113, 135] and
reproduces the cos θ correction.

One can rewrite (8.57) (with the cos θ correction) in terms of τtr or ℓtr =
vF τtr as follows (Problem 8.7):

σ(0)(0) =
2

(2π)dd

e2

! vF τtrSF =
2

(2π)dd

e2

! ℓtrSF . (8.58)

(For d=2, SF is the length of the Fermi line, and for d=1, SF = 2.)
To summarize: Starting from the general equation (8.53) and utilizing the

CPA to obtain both ⟨G⟩ and the vertex corrections produces a very satis-
factory approximate result for σ1(ω). In the weak scattering limit this result
reduces to the standard expression for σ1(ω) [113,135,157,259]. Furthermore,
the vertex corrections in the weak scattering limit are responsible for the
appearance of the cos θ term in 1/τtr.

Note that in the simple TBM the scattering is isotropic in k-space (in fact,
it is k-independent), and as a result the cos θ term gives zero contribution to
1/τtr. This means that the CPA vertex corrections for the conductivity and
for the simple TBM are zero. In the next subsection we shall see that this is
actually the case.

8.3.2 CPA for Vertex Corrections

As was mentioned before, transport properties depend on combinations of the
form

⟨AG(z)BG (z′)⟩ ,

where A and B are nonrandom operators. Following Velicky [260], we define
the operator Γ̃ by the relation

⟨G(z)⟩ Γ̃ ⟨G (z′)⟩ = ⟨G(z)BG (z′)⟩ − ⟨G(z)⟩B ⟨G (z′)⟩ . (8.59)

Within the CPA ⟨G(z)⟩ = Ge(z). Furthermore, according to (7.54), we can
express G in terms of Ge and the t-matrix, T ′, which is given by (7.30), i.e.,
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T ′ =
∑

m

Q′
m =

∑

m

Q̃′
m . (8.60)

The operators Q′
m and Q̃′

m satisfy the following equations:

Q′
m = T ′

m

⎛

⎝1 + Ge

∑

n ̸=m

Q′
n

⎞

⎠ , (8.61)

Q̃′
m =

⎛

⎝1 +
∑

n̸=m

Q̃′
nGe

⎞

⎠ T ′
m , (8.62)

where T ′
m = |m⟩ t′m ⟨m|. Substituting the above relations into (8.59) we have

Γ̃ =
∑

mn

Γ̃mn , (8.63)

Γ̃mn =

〈
T ′

m

⎛

⎝1 + Ge

∑

ℓ̸=m

Q′
ℓ

⎞

⎠GeBGe

⎛

⎝1 +
∑

s̸=n

Q̃′
sGe

⎞

⎠ T ′
n

〉
. (8.63′)

The CPA for the vertex part Γ̃mn consists again in replacing the average of
the product by a product of averages as follows:

Γ̃mn ≈
〈

T ′
m

〈⎛

⎝1 + Ge

∑

ℓ ̸=m

Q′
ℓ

⎞

⎠GeBGe

⎛

⎝1 +
∑

s̸=n

Q̃′
sGe

⎞

⎠
〉

T ′
n

〉
. (8.64)

Taking into account that the t′m are independent random variables with zero
mean (due to the CPA condition) we see that the rhs of (8.64) is nonzero only
when m = n, i.e.,

Γ̃mn = δmnΓ̃n = δmn |n⟩ γ̃n ⟨n| . (8.65)

Of the four terms inside the inner average sign in (8.64), two are propor-
tional to ⟨Q′

ℓ⟩ or ⟨Q′
s⟩ and hence are zero within the CPA; the third is

GeBGe, and the fourth is
∑

ℓ,s ̸=n Ge

〈
Q′

ℓGeBGeQ̃′
s

〉
Ge, which in view of

(8.61), (8.62), (8.63′), (8.64), and (8.65) equals Ge
∑

ℓ ̸=n Γ̃ℓGe. Hence we can
rewrite (8.64) as

Γ̃n =

〈
T ′

nGe

⎛

⎝B +
∑

ℓ̸=n

Γ̃ℓ

⎞

⎠GeT
′
n

〉
. (8.66)

System (8.66) for the unknown quantities Γ̃n is a closed one, and consequently
the problem has been solved formally. To be more explicit, we take matrix
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elements in the local basis; we also write
∑

ℓ ̸=n Γ̃ℓ =
∑

ℓ Γ̃ℓ − Γ̃n. Then (8.66)
becomes

γ̃n [1 + ⟨t′nt′n⟩Ge (nn)Ge (nn)]

=
∑

ℓm

⟨t′nt′n⟩Ge (n, ℓ) [Bℓm + γ̃ℓδℓm] Ge (m, n) . (8.67)

To display the energy dependencies explicitly and to make the expression more
compact we introduce the quantity u(z, z′) defined by

u(z, z′) ≡ ⟨t′n(z)t′n (z′)⟩
× [1 + ⟨t′n(z)t′n (z′)⟩Ge (n, n; z)G (n, n; z′)]−1

. (8.68)

Then γ̃n(z, z′) becomes

γ̃n(z, z′) =
∑

ℓm

u(z, z′)Ge (n, ℓ; z) [Bℓm + γ̃ℓ(z, z′)δℓm] Ge (m, n; z′) .

(8.69)
Then γ̃n can be factorized by defining the new quantity γnm through the
following relation:

γ̃n =
∑

mℓs

γnmGe (mℓ)BℓsGe (sm) . (8.70)

Substituting (8.70) into (8.69) we find that γnm obeys the B-independent
equation

γnm = uδnm +
∑

ℓ

uGe (n, ℓ)Ge (ℓ, n) γℓm , (8.71)

where the energy dependencies are not shown explicitly. The quantity γnm

corresponds more closely than γ̃n to what is called the vertex part in many-
body theory (Part III). Equation (8.71) can be solved immediately in k-space

γ (q; z, z′) = u (z, z′) [1 − u (z, z′)A (q; z, z′)]−1
, (8.72)

where

A (q; z, z′) =
∑

m

e−iq ·mGe (0, m; z)Ge (m,0; z′)

=
1
N

∑

k

Ge (k; z)Ge (k − q; z′) (8.73)

and
γnm (z, z′) =

1
N

∑

q

eiq · (n−m)γ (q; z, z′) . (8.74)

The basic equation, (8.71), the series that results by iterating it, (8.70), and
the vertex correction to Tr {A ⟨G(z)BG(z′)⟩} are shown graphically in Fig. 8.1
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Fig. 8.1. Diagrammatic representation of the CPA for the vertex corrections in the
local representation. Directed solid lines from n to ℓ correspond to Ge(ℓ, n); the
upper ones have an energy argument z′, and the lower ones have z. The wavy lines,
which always connect identical sites, correspond to u [see (8.68)]. The shaded square
is γnm , the shaded semicircle is eγn , and the shaded circle is the vertex correction
for the quantity Tr {A ⟨G(z)BG(z′)⟩}; the dashed lines correspond to Bmℓ and the
dashed-dot lines to Aℓ′m′ . Summation over all internal points is implied in a and b,
while in c and d the summation is over m, ℓ, and s and ℓ′, m′, s, s′, ℓ, m, respectively.
Case a is equivalent to (8.71) and b to its iteration; c is equivalent to (8.70)

for the local basis representation. The same diagrams, with slightly different
correspondence rules, can also be used for the k-representation.

Let us comment on the CPA results. In the weak scattering limit, as follows
from (8.68), u →

〈
ε′2n

〉
. Then the terms summed in Fig. 8.1b are exactly the

same as those used in the standard approach for the conductivity. Hence, in
the weak scattering limit the CPA for the vertex corrections reduces to the
standard result.

If we are interested in the vertex corrections to the conductivity tensor, we
must take A = B = p. Now the momentum operator p in the k representation
is given by m∂E(k)/!∂k and is an odd function of k due to time reversal
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symmetry. This implies that pℓs is an odd function of ℓ − s, which means
that γ̃n for this case is zero [see (8.70)]. As was mentioned before, the vanishing
of the vertex corrections for σ is a consequence of the isotropy of the scattering
potential in our model. The vertex corrections for other quantities do not
vanish. We shall see in the next chapter that a quantity of importance is
⟨G (m,0; z′)G (0, m; z)⟩, which corresponds to A = |0⟩ ⟨0| and B = |m⟩ ⟨m|.
Combining (8.72), (8.70), and (8.59) we obtain

⟨G (m,0; z′)G (0, m; z)⟩ =
1
N

∑

k

eik ·m A (k; z; z′)
1 − u (z, z′)A (k; z, z′)

. (8.75)

The CPA does not, of course, keep all the terms that contribute to Γ̃ , but the
ones kept are very important, at least in the case where z = E+is and z′ = E−
is: they are positive definite so that no possibility of self-cancellations exists,
in contrast to other terms, which involve unpaired Ge(ℓ, m)s with |ℓ − m|
larger than the phase coherence length. As we shall see in the next section,
the CPA terms can give a very large contribution, and, last but not least,
they can be summed explicitly to produce a closed expression [see (8.72)].
Note also that the CPA preserves an exact relation between the self-energy
and the vertex part Γ̃ for B = 1. By observing that

G(z)G(z′) =
G(z′) − G(z)

z − z′
,

and by taking into account (8.59), one obtains (for B = 1)

Γ̃ (z, z′) = −Σ(z)− Σ (z′)
z − z′

, (8.76)

where the exact self-energy, Σ(z), satisfies by definition the relation

⟨G(z)⟩ = [z − Σ(z) −H0]−1 .

The CPA Γ̃ and Σ’s satisfy (8.76).
Equation (8.76) shows that, in the limit z′ → z from opposite sides of

the real axis (i.e., under the condition Im{z} Im {z′} < 0), the vertex part
(for B = 1) blows up [since Σ(z) is discontinuous across the real axis, i.e.,
Σ+(E) = −Σ−(E)]. This blowing up of the vertex part is indicative of its
importance in the case where Im {z} Im {z′} < 0. We shall return to this point
in §8.3.4.

8.3.3 Vertex Corrections Beyond the CPA

We now discuss a subgroup of terms contributing to the vertex corrections
but omitted within the CPA. These terms have a structure quite similar to
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the CPA terms and, as a result, may be equally important. They are shown
diagrammatically in Fig. 8.2, from which one has

Tr {A ⟨G(z)BG(z′)⟩}− Tr {A ⟨G(z)⟩B ⟨G(z′)⟩}
≈

∑
AℓsGe (s, m; z) γ′

mn(z, z′)Ge (n, i; z)

× BijGe (j, m; z′)Ge (n, ℓ; z′) . (8.77)

The quantity γ′
mn(z, z′) can be calculated explicitly by working in k-space,

and the result is similar to that of γnm(z, z′), except that A is now replaced
by A′, where

A′ (q) =
∑

m

e−iq ·mGe (0, m)Ge (0, m) =
1
N

∑

k

Ge (k)Ge (q − k) , (8.78)

and the first term of the series (in Fig. 8.2b) is u2A′(q) and not u (since the
term u is already counted in the CPA vertex corrections). Thus

γ′ (q) = u2A′(q) [1 − uA′(q)]−1
, (8.79)

γ′
mn =

1
N

∑

q

eiq · (m−n)γ′ (q) . (8.80)
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=
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=
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Fig. 8.2. a The shaded circle represents additional (beyond the CPA shown in
Fig. 8.1) vertex corrections for the quantity Tr {A ⟨G(z)BG(z′)⟩}. In the present
case, the vertex part (shaded square) is given by the diagrams shown in b and called
maximally crossed diagrams; they can be redrawn (without changing their values)
as in c. The rules are as in Fig. 8.1
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It must be pointed out that time reversal symmetry of the Hamiltonian implies
that Ge (0, m) equals Ge (m,0), which in turn means that A(q) = A′(q).
Recall that the presence of an external magnetic field destroys time reversal
and, hence, the previous equality.

The post-CPA terms shown in Fig. 8.2b (or c) and known as maximally
crossed diagrams, produce results for the vertex part γ′

nm, which are essen-
tially equivalent to the CPA for γnm. The main difference between the two
cases is the way the vertex part is connected to the Gs [compare Fig. 8.1d
with Fig. 8.2a: in Fig. 8.1d the two Gs that connect to A (or B) start and
end at the same site of the vertex part, while in Fig. 8.2 a the sites are differ-
ent]. As a result of this difference, the vertex corrections to the conductivity,
and for our simple model Hamiltonian, are identically zero for the CPA terms
(because of the oddness of pℓm with respect to the indices), while it is not
zero for the post-CPA terms shown in Fig. 8.2. In fact, these terms make an
extremely important contribution to the conductivity, which will be discussed
in some detail below and in the next chapter in connection with the problem
of localization.

8.3.4 Post-CPA Corrections to Conductivity

As was mentioned before, the vertex part (at least for the case B = 1) blows
up in the limit z, z′ approaching each other from opposite sides of the real
axis. When B = 1, γ̃n (z, z′) can be expressed as follows (Problem 8.12):

γ̃n (z, z′) =
u (z, z′)A (0; z, z′)

1 − u (z, z′)A (0; z, z′)
. (8.81)

Comparing (8.81) with (8.76) we see immediately that u (z, z′)A (0; z, z′) ap-
proaches 1 as z → z′ from opposite sides of the real axis. Under these con-
ditions, γ (q; z, z′) has a singularity when q → 0. Since γ (q; z, z′) is part of
the integrand for the vertex corrections both within the CPA and beyond the
CPA (if A′ = A), it follows that the vertex corrections may become singular.
This depends on the behavior of the integrand around the singularity, i.e., on
the behavior of uA for small values of z − z′ and q

u (z, z′)A (q; z, z′) ≈ 1 + a1 (z − z′) − a2q
2 , (8.82)

with Im {z} Im {z′} < 0. To be specific, we take Im {z} > 0. The constant a1

can be found by comparing (8.81) with (8.76). The result is

a1 =
i

2 |Σ2|
. (8.83)

To find a2 requires some algebra. We start with (8.73) and we expand
Ge(k − q; z′) in powers of q. The coefficient of the first power is

1
N

∑

k

Ge (k)∇kGe (k) ,
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which is zero, because Ge(k) is an even function of k. The next term is

q2

2d

1
N

∑

k

Ge (k)∇2
kGe (k) = − q2

2d

1
N

∑

k

∇kGe (k) ·∇kGe (k) , (8.84)

where cubic symmetry is assumed and d is the dimensionality. Taking into
account that

Ge(k; z) = [z − Σ − E(k)]−1

we see that
∇kGe (k; z) = G2

e ·∇kE (k) ;

hence the coefficient of q2 is proportional to σ(0)/Σ2
2 , where σ(0) is the con-

ductivity without vertex corrections (8.55). [Remember that the second Ge on
the rhs of (8.84) depends on z′ and in the limit z′ → z with Im {z} Im {z′} < 0
Ge (k, z′) = G∗

e (k; z).] To find a2 we also need

u(E+, E−) = A−1(0; E+, E−) =

[
1
N

∑

k

G+
e (k; E)G−

e (k; E)

]−1

=

[
(Σ− − Σ+)−1 1

N

∑

k

(G−
e − G+

e )

]−1

= 2i |Σ2| [2iπϱ′(E)]−1 =
|Σ2|
πϱ′

,

where ϱ′(E) is the DOS per unit cell per spin. The coefficient a2 can be
expressed in a more compact way in terms of the diffusion coefficient, D(0) =
σ(0)/2e2ϱ [see (8.10) and text thereafter]:

a2 =
!D(0)

2 |Σ2|
. (8.85)

To find the vertex corrections to the conductivity, we start with expression
(8.53) for the real part of the conductivity, which becomes at T = 0

σ1(ω) =
e2!
πΩ

〈
Tr

{
vxIm

{
G+ (EF + !ω)

}
vxIm

{
G+(EF )

}}〉
. (8.86)

But
Im

{
G+ (EF + !ω)

}
=

G+ (EF + !ω) − G− (EF + !ω)
2i

with a similar expression for Im {G+ (EF )}. Of the four terms resulting from
the multiplication of the two Im {G}s, two have their arguments on the same
side of the real axis and, consequently, they are negligible in comparison with
the other two, which give a divergent contribution to γ (q; z, z′) as ω → 0.
Thus the vertex correction to (8.86) becomes

δσ1(ω) = φ1 (EF , ω) + φ1 (EF + !ω,−ω) , (8.87)
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where
φ1 (EF , ω) =

e2!
4πΩ

δ
〈
Tr {vxG+(E + !ω)vxG−(E)

〉
. (8.88)

We consider here the post-CPA corrections shown in Fig. 8.2, since the CPA
corrections vanish. From Fig. 8.2a, and transforming everything to the k-
representation, we have

φ1(EF , ω) =
2e2!
πΩ

1
4d

1
N

×
∑

q

∑
k

[
vk ·vq−kG+(k; E + !ω)G+(q − k; E + !ω)

×G−(k; E)G−(q − k; E)γ′(q; E+ + !ω+, E−)
]

. (8.89)

Because the integral (for d = 2, 1) is dominated by the region of the singularity
at q = 0, we can take q = 0 in the vq−k and Gs and thus separate the k-
integration from the q-integration. The former gives a result (as ω → 0) that
is proportional to −σ(0)/Σ2

2 or −D(0)/Σ2
2 . To perform the q-integration, we

need γ′, which we obtain from (8.79) and (8.82) (A′ = A) as ω → 0:

γ′ (q, E+ + !ω+, E−)
=

u

1 − uA
=

|Σ2|
πϱ′

1
− i!ω

2|Σ2| + !D(0)

2|Σ2| q
2

=
2 |Σ2|2

πϱ′!D(0)

1
q2 − i ω

D(0)

. (8.90)

Substituting in (8.89) we obtain for φ1 (EF , ω)

φ1 (EF , ω) = − e2

π!
1

(2π)d

∫
dq

1
q2 − i(ω/D(0))

, (8.91)

which, combined with

φ1 (EF + !ω,−ω) ≈ φ1 (EF ,−ω) ,

gives the final result for δσ1:

δσ1 = − e2

π!
2

(2π)d

∫
dq

q2

q4 + (ω2/D(0)2)
. (8.92)

For d = 1 no upper cutoff is needed; for d = 2, 3 we take as an upper cutoff
L−1

m , where Lm is of the order of the elastic mean free path. By introducing
the length Lω =

√
D(0)/ω we obtain from (8.92)

δσ1 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

− e2

√
2π!

Lω , 1-d , (8.93a)

− e2

π2! ln
(

Lω

Lm

)
, 2-d , (8.93b)

e2

2
√

2π2!
1

Lω
− e2

π3!
1

Lm
, 3-d . (8.93c)
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Notice that in the limit ω → 0, Lω → ∞. Hence, the corrections due to
the post-CPA vertex inclusion lead to a divergent and negative result for
the DC conductivity in 1-d and 2-d. Clearly, this is physically unacceptable.
However, this unphysical divergence may be indicative of a transition to a new
state of the system that could not be properly described by the CPA and
post-CPA vertex corrections. To this important open question we shall return
in the next chapter. At this point, having in mind the physical analysis in
Sect. 9.1 of the following chapter, we shall assume that (8.93a) and (8.93b) are
satisfactory as long as Lω is comparable to ℓtr, which implies that |δσ1| ≪ σ0.
The 3-d result in the limit ω → 0 may be considered reasonable as long as
e2/π3!Lm is smaller than σ0 =

(
e2/12π3!

)
SF ℓtr. This inequality is satisfied

when SF ℓtrLm > 12 or assuming that Lm ≃ ℓtr when SF ℓ2
tr ≥ 12.

8.4 Summary

In this chapter, the theory of electrical conductivity was developed. In Sect. 8.1
we defined the conductivity and connected it to other relevant quantities such
as the permittivity, etc. Various methods for calculating σ were presented;
among them the so-called Kubo–Greenwood formula was expressed in terms
of Green’s functions as follows:

σµν(ω) =
ie2n

mω
+

e2

Ωm2ω

∫ ∞

−∞

dE

2π
Tr {pµg(E)pνg(E + !ω)} , (8.51)

σ1µν(ω) =
e2!

πΩm2

∫ ∞

−∞
dE

f(E) − f(E + !ω)
!ω

× Tr
{
pµIm

{
G+(E + !ω)

}
pνIm

{
G+(E)

}}
. (8.53)

In the above expressions σ1 = Re {σ}; the Tr operation includes a factor
of 2 due to spin summation; pν is a cartesian component of the momentum
operator. Equation (8.51) is valid at T = 0 and

g(E) ≡
{

G−(E) , E < EF ,
G+(E) , E < EF . (8.49)

To obtain the ensemble average of σ(ω), we needed the average of the product
of two Gs, which is in general different from the product of the averages.
A first approximation for σ(ω) was obtained by ignoring this difference and
then utilizing the CPA for ⟨G⟩. The result in the weak scattering limit was
(for ω = 0)

σ(0) =
2

(2π)dd

e2

! ℓSF , (8.58)

where ℓ = vτ is the mean free path, v is the average magnitude of the velocity
over the Fermi surface SF (which in the simplest case is 4πk2

F ), d is the
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dimensionality, and τ is the relaxation time given [in lowest order in V (q)] by

1
τ

=
2π

! ϱF nimp
1
4π

∫
dOV 2 (q) . (8.94)

In (8.94) ϱF is the DOS per volume per spin at EF and nimp is the concen-
tration of the scatterers, each one of which is associated with a scattering
potential whose Fourier transform is V (q). The integration is over all direc-
tions of the vector q [E(q) = EF ].

Next we considered an extension of the CPA that allows the approximate
evaluation of the difference between the average of the product of Gs and the
product of the average Gs. The effect of this difference on σ (which is called
vertex correction), according to the CPA, in the weak scattering limit, was to
introduce a factor (1 − cos θ) in (8.94) where θ is the angle of q with respect
to the direction of propagation. This factor by definition changes τ to τtr

(transport relaxation time) and ℓ to ℓtr. Equation (8.58), with ℓ replaced by
ℓtr = vτtr, is the semiclassical weak scattering result for σ, obtained usually
by employing Boltzmann’s equation. For strong scattering see (8.22).

In addition to the CPA contribution (Fig. 8.1) to the vertex corrections,
another contribution (Fig. 8.2) was obtained. This post-CPA contribution to
σ is of the form

δσ ∼ −
∫ 1/Lm

1/LM

dq

q2
, (8.95)

where the upper cutoff length LM is dominated by the shortest of several
lengths and Lm is of the order of ℓtr. The contribution (8.95) is extremely
important for 2-d systems, where δσ diverges as − ln(LM ), and for 1-d sys-
tems, where δσ diverges as −LM , in the limit LM → ∞. It was found that
the CPA contribution to σ, if combined with electron–electron interaction pro-
cesses, yields a form similar to (8.95) with a different prefactor and somewhat
different LM (especially in the presence of external magnetic fields). These
theoretical results have found impressive experimental confirmation in 2-d
films or interfaces; in thin wires and in 3-d systems the agreement between
theory and experiment is of qualitative or semiqualitative nature.

The physical interpretation of the divergence of δσ as LM → ∞ in 1-d
and 2-d, as we shall see in the next chapter, is that all eigenstates are lo-
calized (i.e., they decay to zero for large distances) no matter how weak the
disorder. As δσ increases (in absolute value) with increasing LM , it eventu-
ally becomes comparable to σ(0), and finally the total σ = σ(0) + δσ must
approach zero as LM → ∞. Equation (8.95) is appropriate for describing δσ
only when |δσ| /σ(0) is considerably smaller than 1. Thus, according to the
above reasoning, 1-d and 2-d noninteracting systems are never truly metallic.

This nonmetallic nature is revealed when LM becomes comparable to or
larger than the localization length of the eigenfunctions. The fact that, for
d = 3, (8.95) gives a δσ ∼ 1/LM is interpreted as meaning that for weak
disorder, the eigenstates in 3-d systems are extended with (more or less) uni-
form amplitude, at least for length scales exceeding a characteristic length ξ′.
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When the disorder increases beyond a critical value, the eigenstates become
localized.

Various approaches to this fundamental problem of disorder-induced lo-
calization are reviewed in the next chapter, and an extensive list of references
to the literature is given.

Further Reading

The book by Doniach and Sondheimer [135] treats the question of electrical
conductivity on pp. 96–122. The connection of electrical conductivity to the
diffusion coefficient is presented in Janssen’s book [261] (pp. 39–77).

Problems

8.1s. Prove (8.10), (8.11a), and (8.11b).

8.2. Solve Boltzmann’s equation in the presence of both magnetic and electric
fields (G.14) and calculate the magnetoconductivity. [See (G.17).]

Hint : Show first that the solution of

G0

τtr
+ ωc

∂G0

∂φ
= δ (φ − φ′)

is
G0 (φ − φ′) = θ (φ − φ′)

exp [(φ′ − φ) /ωcτ ]
ωc

.

8.3. Prove (8.33) starting from (8.32).

8.4. Prove that the term in parentheses in (8.32) is identically equal to zero
for fixed boundary conditions; for a perfect conductor with periodic boundary
conditions show that the conductivity is equal to its diamagnetic contribution.

8.5. Starting from (8.31) and following the suggestions given by (8.35) and
(8.36) show that

σ1 ≃ e2nℓtr

2mvF
.

8.6. Prove (8.39) starting from (8.38), inserting a complete set of the eigen-
functions of H0, where appropriate, and remembering that, by definition,
Tr {A} =

∑
n ⟨n |A |n⟩, where the set {|n⟩} is complete.

8.7. Using the expression for the current density j,

j = 2q

∫
d3k

(2π)3
vkf1 (k) , (1)
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where f1 (k) is given by (G.9), prove that the 3-d DC conductivity at T = 0 K
is given by

σ =
1

12π3

e2

! SF ℓtr , (2)

where SF is the area of the Fermi surface in k-space,

ℓtr = vF τtr ,

SF vF =
∫

d2k∥vk ,

and τtr is given by (G.12). For finite temperatures we have for the DC con-
ductivity

σ =
1

12π3

e2

!

∫
dεk

(
− ∂f0

∂εk

)
S (εk) ℓtr (εk) , (3)

where
S (εk) ℓtr (εk) = τtr (εk)

∫
d2k∥v(k) . (4)

For ε(k) = !2k2/2m, (2) reduces to σ = e2nτtr/m.

8.8. Starting from (8.69) and (8.70), prove (8.71).

8.9. Prove (8.72) and (8.73) using (8.71) and (8.74).

8.10. Prove (8.75).
Hint : Take into account that

A (q; z, z′) = A (−q; z, z′) ,

uA

1 − uA
= −1 +

1
1 − uA

,

and
1
N

∑

q

e−iq ·m
∑

ℓ

eiq · ℓG (0, ℓ)G (ℓ, 0) = G (0, m)G (m, 0)

=
1
N

∑

q

e±iq ·mA(q).

8.11. Prove (8.81).

8.12. Prove that
A (0; z, z′) → πϱ(ε)

|Σ2(ε)|
in the limit z → ε + is, z′ → ε − is, and s → 0+.

Hint : Take into account that in the above limits

G (k; z)G (k; z′) =
1

Σ(z) − Σ (z′)
[G (k; z) − G (k; z′)] .

8.13. Prove (8.46b), (8.46c), and (8.47).
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Localization, Transport, and Green’s Functions

9.1 An Overview

In Chap. 8 we obtained the basic formula for the metallic conductivity

σ0 =
2

d(2π)d

e2

! SF ℓtr , d = 1, 2, 3 , (9.1)

where the transport mean path, ℓtr, is a length given by ℓtr = vτtr [see (8.22)
and (8.23)] and closely related to the scattering mean free path, ℓ = (nimpσ)−1,
where σ is the scattering cross section from one of the scatterers whose con-
centration is nimp; the mean free path, ℓ, as was shown by (7.64), (7.66), and
(7.68), is related to the randomization of the phase among different members
of the ensemble over which the average is taken. It is this randomization of
the phase of the eigenfunctions that is responsible for the finite conductiv-
ity given by (9.1), as was shown in [248] and [251]. In deriving (9.1) it is
implicitly assumed that the randomness and the resulting multiple scatter-
ing does not affect the average amplitude, |ψ (r)|, of the eigenfunctions. This
assumption is actually a good approximation when the disorder is weak. As
the disorder becomes stronger, multiple scattering events lead to construc-
tive and destructive interference and hence to amplitude, |ψ (r)|, fluctuations.
These amplitude fluctuations are responsible for the post-CPA corrections to
σ0 obtained in Chap. 8:

δσ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

− e2

√
2π!

LM , 1-d (9.2a)

− e2

π2! ln
LM

Lm
, 2-d (9.2b)

e2

2
√

2π2!
1

LM
− e2

π3!
1

Lm
, 3-d (9.2c)

where LM is an upper cutoff length (identified as Lω in Chap. 8) and Lm is
assumed to be of the order of ℓ or ℓtr. Examples of upper cutoff lengths LM ,
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besides Lω and the geometrical dimension L, are: the diffusion length during
the inelastic phase incoherence time, τφ, to be discussed in Sect. 9.2

Lφ =
√

Dτφ , (9.3)

and the cyclotron radius introduced by the presence of an external magnetic
field B,

LB =
√

!c

eB
; (9.4)

(LB must be multiplied by eγ/2 ≈ 1.33 in order to reproduce more detailed
calculations in 2-d systems). Kaveh [262] has pointed out that in the presence
of more than one upper cutoff length a possible choice for LM is

L−2
M ≈ c1L

−2 + c2L
−2
φ + L−2

ω + c4L
−2
B + · · · , (9.5)

where the weights ci are positive constants close to 1.
We have already shown that (9.2a) and (9.2b) lead to nonphysical results

for LM very large; even (9.2c) fails when LM becomes very large and Lm

sufficiently small so that |δσ| ≥ σ0. Thus the need arises for treating the
disorder-induced amplitude variations in a more realistic way. In response
to this need a new field has emerged establishing a firm connection with
experimental data. In this chapter we present the basic ideas and results as
well as some applications (far from complete) of this far-reaching field.

In principle, there are reasons to expect that disorder, if strong enough,
may affect not only the phase but the amplitude as well. For this purpose
consider the elementary example of two coupled pendula. The transfer of the
motion from one to the other is facilitated by a strong mutual coupling and
is opposed by a large frequency mismatch. If we have an array of pendula of
random individual eigenfrequencies and then we couple them, it is not difficult
to imagine that a wave propagating in such a medium may find regions of large
frequency mismatch; such regions will be almost inaccessible to it. In fact, one
may even think of the possibility of the wave surrounded by such regions so
that it cannot escape to infinity; in other words, the wave may be confined
to a finite region of space decaying to zero (usually in an exponential way)
as one moves away from this region. These decaying eigenstates are termed
localized. The ordinary propagating eigenstates are usually called extended.

In previous chapters we examined localized eigenstates associated with one
or two isolated impurities; these states belonged to the discrete part of the
spectrum. The continuous part of the spectrum was associated with extended
eigenstates. Now imagine that a disordered system is created by allowing
the number of impurities to become infinite. Then one expects the discrete
spectrum associated with localized eigenstates to be smeared out to form
a continuum that usually joins the main band as a tail. Obviously, the question
arises as to whether or not the eigenstates (at least those in the tails where
they started as localized) will become extended or remain localized.
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The answer to this question can be sought within the framework of the
random TBM introduced in Chap. 7 [see (7.35)]. This by now familiar model
(also known as the Anderson model) is the simplest one that incorporates the
essential competition between the transfer strength |V | and the energy (or
frequency) mismatch, which is characterized by the width δε (δε = |εA − εB|,
Γ , W for the binary, Lorentzian, and rectangular distributions, respectively)
of the probability distribution of the random variable ε′n. Thus the important
parameter for localization is the dimensionless ratio

Q ≡ |V/δε| . (9.6)

As we shall see, another equally important parameter is the dimensionality d.
Other aspects of the TBM, such as the shape of the probability distribution
and the type of lattice, are of secondary importance and are believed not to
influence the alleged universal features of the problem.

Before we proceed with our presentation, we shall state here the main
results in the field. These results have not yet been rigorously proven but are
accepted on the basis of considerable theoretical and experimental evidence
in their support:

(i) There is a critical dimensionality d = 2 for the localization problem. For
d ≤ 2 all eigenstates are localized (in the absence of magnetic interac-
tions), no matter how weak the disorder. For d > 2, and for weak disor-
der, the tails of the band consist of localized eigenstates, while the interior
corresponds to extended states. The localized regions are separated from
the extended ones by critical energies termed mobility edges, Ec. As the
disorder increases, the mobility edges move eventually toward the center
of the band; they may merge together, eliminating the region of extended
states. This behavior is shown in Fig. 9.1, where the mobility-edge trajec-
tories (as the disorder W varies) separate the E–W plane into regions of
localized and extended states.

(ii) For weak disorder the vertex corrections to the conductivity are given
by (9.2a), (9.2b), and (9.2c), which are known as weak localization equa-
tions. We repeat once more that the corrections (9.2a) and (9.2b) do not
disappear as the upper cutoff length LM becomes very large. On the con-
trary, they increase indefinitely with LM , suggesting that eventually, for
LM → ∞, σ → 0. Thus a truly metallic behavior is not possible for d ≤ 2
(in the absence of magnetic field and many-body interactions). This is,
of course, consistent with the statement that all eigenstates are localized
for d ≤ 2. The nonmetallic nature of the conduction for d ≤ 2 is usually
masked by the fact that at high enough temperatures Lφ (and hence LM )
becomes quite short. We shall see in Sect. 9.2 that when LM ≈ Lm, δσ ≃ 0.

(iii) The vertex corrections (9.2) come from the post-CPA terms shown in
Fig. 8.2. The CPA terms, although quite similar to the post-CPA ones,
produce no correction to the conductivity in the simple TBM because of
the exact mutual cancellation of the terms shown in Fig. 8.1d. The pres-
ence of electron–electron interactions eliminates this cancellation. Indeed,
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Fig. 9.1. Mobility-edge (dashed line) and band-edge trajectories (heavy solid line is
based on the CPA; light solid line is exact) for a diamond lattice with a rectangular
distribution of site energies centered at ε0 and of total width W [263]

if the electron between points ℓ′ and s (Fig. 8.1d) interacts with the elec-
tron between s′ and ℓ, then the terms resulting from the exchange ℓ " m
(or ℓ′ # m′) are no longer opposite to each other and hence the CPA
vertex corrections, in the presence of electron–electron interaction, do not
vanish. In fact, they produce a result like (9.2) with a similar, but not iden-
tical, proportionality factor. The cutoff LM depends on the frequency ω
or the temperature T , whichever is larger, more or less as in (9.5):

L−2
M ≈ kBT

!D(0)
+

ω

D(0)
. (9.7)

The main difference is that LM in the present case, and in contrast to
the previous case, does not depend significantly on the external magnetic
field B. The reason is that the CPA terms involve G+

nmG−
mn, which re-

mains unaffected by B, while the post-CPA terms of Fig. 8.2 involve
G+

nmG−
nm, which acquires an extra phase factor in the presence of B.

(iv) The theoretical results presented in (ii) and (iii) are in impressive agree-
ment with experimental data, especially for the 2-d case.

(v) Equation (9.2c) combined with (9.4) predicts a negative magnetoresis-
tance proportional to

√
B. Such a behavior has been observed in impurity

bands of heavily doped semiconductors at low temperatures (≈ 1K) and
remained a puzzle until the advance of the present explanation.
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9.2 Disorder, Diffusion, and Interference

In order to see the physical origin of the corrections δσ to the conductivity,
formula (9.1), we consider a particle of charge q (q = −e for electrons) located
initially at the lattice site n. The probability amplitude of finding it again
at n after time t is denoted by cn(t). According to Feynman’s path integral
formulation, cn(t) is given by

cn(t) =
∑

ν

Aν(t) , (9.8)

where the Aν(t)s are the contributions from all directed paths starting at t = 0
from site n and ending at time t again at n. Aν(t) is given by

Aν(t) = exp
[

i
!

∫ t

0
L [rν (t′)] dt′

]
, (9.9)

where rν (t′) denotes the particular directed path ν and L (rν (t′)) is the
Lagrangian of the particle. The probability of finding the particle at n after
time t is given by

|cn(t)|2 =
∑

νν′

Aν(t)A∗
ν′ (t) =

∑

ν

|Aν(t)|2 +
∑

ν ̸=ν′

Aν(t)A∗
ν′ (t) . (9.10)

The omission of interference effects, which led to (9.1) with ℓ−1
tr = nimpσtr, is

the analog of omitting the last term (the interference term) on the rhs of (9.10).
The usual justification for this omission is that the phases of the various path
integrals, Aν(t), are uncorrelated and widely varying so that the sum of ν ̸= ν′

averages out to zero. However, there is a flaw in this argument. To see why,
let us define for each closed path a forward and backward direction. Paths run
in the forward direction will be denoted by greek letters α, β, etc., and those
run in the backward direction by ᾱ, β̄, etc. (α and ᾱ refer to the same closed
path run in opposite directions). With this notation, (9.10) can be written as
follows:

∑

νν′

Aν(t)A∗
ν′ (t) =

∑

α=β

[Aα(t) + Aᾱ(t)] [A∗
α(t) + A∗

ᾱ(t)] +

+
∑

α̸=β

[Aα(t) + Aᾱ(t)]
[
A∗

β(t) + A∗
β̄(t)

]

=
∑

α

Aα(t)A∗
α(t) +

∑

α

Aᾱ(t)A∗
ᾱ(t)

+
∑

α

Aᾱ(t)A∗
α(t) +

∑

α

Aα(t)A∗
ᾱ(t)

+
∑

α̸=β

[Aα(t) + Aᾱ(t)]
[
A∗

β(t) + A∗
β̄(t)

]
. (9.10′)
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The first two sums on the last rhs of (9.10′) are identical to the first sum
on the rhs of (9.10). For the last sum on the rhs of (9.10′), one can argue
that it is probably zero, since no phase correlations are expected to occur
among the pairs of paths (α, β), (α, β̄), (ᾱ, β), (ᾱ, β̄) with α ̸= β. However,
the third and fourth sum on the last rhs of (9.10′) [which, together with the
last, correspond to

∑
ν ̸=ν′ Aν(t)Aν′ (t) in (9.10)] are not necessarily zero. On

the contrary, if time reversal symmetry is obeyed by the Lagrangian of the
system, Aα(t) = Aᾱ(t) and

∑

α

AᾱA∗
α +

∑

α

AαA∗
ᾱ =

∑

α

AαA∗
α + AᾱA∗

ᾱ .

Thus interference effects double the “classical” probability of finding the par-
ticle at the same site after time t and hence reduce the diffusion coefficient
and the conductivity in agreement with (9.2a), (9.2b), and (9.2c).

Actually, this probability is less than double the “classical” one even if time
reversal is obeyed. The reason is the presence of inelastic scattering events
(due, e.g., to phonons) that introduce an uncertainty, δEin, in the energy of
the particle; this uncertainty introduces a phase randomness, δφα and δφᾱ

with δφα ̸= δφᾱ, and, as a result, destroys the perfect phase equality of Aα

and Aᾱ. The longer the path, the more severe the random phase difference,
δφα − δφᾱ, between Aα and Aᾱ, so that for very long paths (L > Lφ)

∑

α

AᾱA∗
α +

∑

α

AαA∗
ᾱ ≃ 0 .

The characteristic length, Lφ, over which coherence is lost is related to a char-
acteristic time, τφ, through the diffusion relation L2

φ = Dτφ, where the inelas-
tic phase incoherence time τφ is of the order !/δEin. It must be pointed out
that this inelastic phase incoherence length, Lφ, is physically unrelated to
the elastic scattering and transport mean free paths: the latter refer to phase
randomness among different configurations/realizations of the ensemble that
represent the random Hamiltonian. In other words, phase randomization ap-
pears only when we take the average of eiφ over all members of the ensemble.
Elastic scattering does not randomize the phase in each single member of the
ensemble. In contrast, the phase incoherence length, Lφ, refers to the phase
randomization in each single member of the ensemble as a result of repeated
inelastic scattering.

To estimate the increase in |cn(t)|2, due to wave interference, we recall
that the dominant contribution to |cn(t)|2 comes from closed paths adjacent
to the classical one, i.e., from those inside a tube of cross section λ2 (or λd−1

for a d-dimensional system, where λ is the wavelength) around the classical
trajectory. Take also into account that the probability of returning after time t
to the original site is proportional to the probability of self-intersection of this
orbital tube. Now, within time dt, the wave would move by vdt and would
sweep a volume

dΩ = λd−1vdt .
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The total volume, Ω(t), swept by the wave during the entire time interval
from zero to t is of the order of Ld

D = (Dt)d/2. Hence the probability of
self-intersection during the time dt after elapsed time t is of the order of the
ratio

dΩ

Ω(t)
=

λd−1v

(Dt)d/2
dt .

It follows that the probability, p, of self-intersection during the time interval
from t = 0 to t = τφ is of the order

p ≃
∫ τφ

τtr

dt
vλd−1

(Dt)d/2
. (9.11)

The lower limit in the integral was set equal to τtr (the transport elastic
relaxation time), since for t ≤ τtr the motion of the wave is ballistic and the
probability of returning is zero. The upper limit was taken as τφ (the inelastic
phase incoherence time), because for t ≥ τφ phase coherence between a path α
and its opposite, ᾱ, is lost and, as a result, there is no quantum increase in
|cn(t)|2. Notice that at high temperatures, τφ ≃ τtr, and consequently there
are no quantum corrections to the classical result for the conductivity. On
the other hand, for very low temperatures we have that τφ ≫ τtr, and, hence,
the increase, p, in the probability of returning to the original site and the
correction, δσ, to the classical conductivity σ0 are appreciable.

Taking into account that

LD =
√

Dτtr =
ℓtr√

d
,

where ℓtr = vτtr, we have by performing the integration in (9.11)

δσ ∼ −p ≃

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

2
(

1 −
√

τφ

τtr

)
= 2

(
1 − Lφ

LD

)
, d = 1 , (9.12a)

−λ
√

2
LD

ln
(

τφ

τtr

)
= −2λ

√
2

LD
ln

(
Lφ

LD

)
, d = 2 , (9.12b)

−
√

3λ2

L2
D

(
1 −

√
τtr

τφ

)
= −λ2

√
3

L2
D

(
1 − LD

Lφ

)
, d = 3 . (9.12c)

Notice that the dependence on Lφ in (9.12) is the same as the dependence
on Lω in (8.91) or the dependence on LM in (9.2). This suggests that Lφ in
(9.12) is the upper cutoff length LM discussed in Sect. 9.1.

Note that the lengths Lφ, Lω, LB, etc. tend to infinity in some appropriate
limits: Lω → ∞ as ω → 0, Lφ → ∞ as T → 0K because τφ is proportional
to T−α (with α = 2/3 for 1-d systems and α = 1 for 2-d systems), LB → ∞
as B → 0. Thus (9.2) are valid only in the case of relatively weak disorder
(known in the field as weak localization) such that δσ is considerably less
than σ0.
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We shall conclude this section by examining the role of the magnetic field
in δσ. The presence of a magnetic field, B, adds a term in the Lagrangian
of the form (q/c)A ·v, where q is the electric charge of the particle, v is its
velocity, and A is the vector potential: B = ∇ × A. Obviously, the term
(q/c)A ·v breaks the time invariance of the Lagrangian [since v(t) = −v(−t)]
and, as a result, the derivations of both (8.91) and (9.12) (which were based
on time invariance) need to be reconsidered. The basic equation (9.9) in the
presence of B becomes

Aα(t) = Aα0(t) exp (iφα) , (9.13)

where Aα0(t) is the contribution of the path α in the absence of magnetic field
and

iφα =
i
!

q

c

∫ t

0
A ·vdt′ =

iq
!c

∫
A · drα

=
iq
!c

∫
(∇× A) · dSα =

iq
!c

∫
B ·dSα =

iqΦα

!c
. (9.14)

In deriving (9.14) we have changed the closed-path integral
∫

A ·drα to a sur-
face integral over a surface terminated at the closed path and we have used
the definition of the magnetic flux, Φα =

∫
B · dSα. For an electron q = −e,

and the extra phase φα becomes

φα = −π
Φα

Φ0
, (9.15)

where Φ0 is the quantum of magnetic flux defined as Φ0 ≡ hc/2e. For ᾱ, i.e.,
the same closed path run in the opposite direction, we have

Aᾱ(t) = Aα0(t) exp (−iφα) . (9.16)

Substituting (9.13) and (9.16) into the third and fourth sum of the rhs of
(9.10′) and taking into account (9.15) we obtain

∑

α

|Aα0|2 [exp (−2iφα) + exp (2iφα)] = 2
∑

α

|Aα0|2 cos(2φα) , (9.17)

so that
|cn(t)|2 = 2

∑

α

|Aα0|2 [1 + cos(2φα)] . (9.18)

Thus, the presence of the magnetic field, by breaking the time reversal in-
variance, reduces the probability of returning to the original site and, hence,
tends to restore the “classical” formula (9.1) for the conductivity. If we define
the average flux Φ(t) from the relation

2
∑

α

|Aα0|2 [1 + cos(2φα)] ≡ 2
[
1 + cos

(
2πΦ(t)

Φ0

)] ∑

α

|Aa0|2 ,
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then the change ∆σ(B) ≡ δσ(B) − δσ(0) is proportional to

∆σ(B) ∼ vλd−1

Dd/2
0

∫ τφ

τ

dt

td/2

[
1 − cos

(
2πΦ(t)

Φ0

)]
. (9.19)

In the 2-d case, the quantity ∆σ(B) has been calculated explicitly
[264–270], and the rigorous result in the limit LB ≫ ℓ was found to be

∆σ(B) =
e2

2π2!

[
ψ(x) − 2 ln

(
LB

2Lφ

)]
, (9.20)

where x = 1
2 + (LB/2Lφ)2 and ψ is the digamma function [1], ψ(x) ≡

Γ ′(x)/Γ (x), where Γ (x) is the gamma function.
For special geometries such that φα ≡ −πΦα/Φ0 is the same for all paths

that count, the factor [1 − cos (2πΦ/Φ0)] can be taken out of the integral in
(9.19). In such a case, the conductivity will exhibit a sinusoidal periodic vari-
ation with the magnetic flux with the period Φ0 = hc/2e. This is the so-called
hc/2e Aharonov–Bohm effect and has been observed in cylindrical tubes with
very thin walls so that the flux Φα is an integer multiple of BS , where S is
the cross section of the tube. If S is of the same order of magnitude as πL2

φ,
then the only paths that count are those that go around the circumference of
the tube only once; for all such paths Φ = BS .

Another case where (9.18) produces impressive results is the one shown in
Fig. 9.2. In this case, the probability amplitude, A, for a particle to go from
point 1 to point 2 is

A =
∑

ν

Aν +
∑

ν′

Aν′ =
∑

ν

Aν0 exp (iφν) +
∑

ν′

Aν′0 exp (iφν′) , (9.21)

ν

ν′

I I

1 2

Fig. 9.2. The current I flowing from point 1 to point 2 follows the two paths (ν
and ν′) of a very thin ring-shaped wire
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where

φν = − e

!c

∫ 2

1
Adrν , (9.22a)

φν′ = − e

!c

∫ 2

1
Adrν′ . (9.22b)

Denoting by A′ each of the sums
∑

ν Aν0 and
∑

ν′ Aν′0 (they are equal by
symmetry) we have

A = A′ [exp (iφν) + exp (iφν′)] . (9.23)

The probability |A|2 is then

|A|2 = |A′|2 [2 + 2 cos (φν − φν′ )] = 2 |A′|2
[
1 + cos

(
e

!c

∮
A · dr

)]

= 2 |A′|2
[
1 + cos

(
2πΦ

ch/e

)]
, (9.24)

where Φ is the magnetic flux through the ring. In this case, the conductivity
would be a periodic sinusoidal function of Φ with period ch/e. This is the
so-called ch/e Aharonov–Bohm effect.

9.3 Localization

There is a simple way to improve upon (9.2) by returning to (8.92). In obtain-
ing (8.91) we started from (8.53) for the real part of σ. It would have been
simpler to have chosen as our starting point (8.51); in this case, by a quite
similar procedure, we would have obtained the vertex corrections for both the
real and the imaginary part of σ, i.e.,

δσ = − e2

π!
2

(2π)d

∫
dq

1
q2 − iω/D(0)

, (9.25)

the real part of which coincides with (8.91), as it should. One can rewrite the
lhs of (9.25) in terms of the diffusion coefficient,

δσ = σ − σ0 = 2e2ϱ (D − D0) ;

furthermore, (9.25) can be improved if one replaces the D(0) inside the integral
by the corrected D = D(0) + δD. We have then

D(ω) = D(0) − 1
(2π)dπ!ϱ

∫
dq

1
q2 − iω/D(ω)

. (9.26)

Equation (9.26) was obtained by Vollhardt and Wölfle [271]. Self-consistent
equations for D(ω) were also obtained by Götze [272, 273] and by Kawabata
[274, 275].
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Equation (9.26) avoids the nonphysical behavior of (9.25) as ω approaches
zero. Indeed, as ω becomes smaller and smaller, the last term of the rhs
of (9.26) becomes larger and larger (at least for d ≤ 2) and, hence, D(ω)
becomes smaller and smaller until it finally approaches zero (in the limit of
Lφ = LB = ∞). When D(ω) = 0, the last term on the rhs of (9.26) must
be finite and equal to D(0). For this to happen when d ≤ 2 we must have
ω/D(ω) → const. as ω → 0, or, equivalently, D(ω) → −iξ2ω as ω → 0, with
the constant, iξ2, being imaginary to ensure that the integral is equal to the
real quantity (2π)dπ!ϱD(0). The same is true for d = 3 if D(0) is very small.
Thus, the self-consistent equation (9.26) leads to the absence of static diffu-
sion [D(ω) → 0 as ω → 0 and LM = ∞] for d ≤ 2 (no matter how weak
the disorder) and for d = 3 (if the disorder is strong enough to produce suffi-
ciently small values of D(0)). The vanishing of the static diffusion coefficient
or, equivalently, the vanishing of the DC conductivity implies localized states.
Indeed, for localized states, the electric susceptibility, χ(e), is finite as ω → 0.
Hence the conductivity, σ(ω) = −iωχ(e) [see (8.16)], and the diffusion coef-
ficient, D(ω), approach zero linearly in ω. As a result, −iω/D(ω) → ξ−2 as
ω → 0. The constant ξ, which has dimensions of length and is defined only in
the localized regime, is given by

π!ϱD(0) =
π

2
!
e2

σ0 =
α1

(2π)d

∫
dq

1
q2 + ξ−2

, (9.27)

where the numerical constant α1 is introduced to account for the fact that
the q2 dependence is valid only for small q.

It must be pointed out that δσ(ω) as given by (9.25) is, apart from a con-
stant factor, the same as the unperturbed Green’s function G0 (r, r; z) with
z = iω/D(0) [see (1.38)]. Thus the divergence of δσ as ω → 0 for d ≤ 2 (which
leads to a finite ξ2 no matter how weak the disorder is and hence can be in-
terpreted as implying the localization of all eigenfunctions) is directly related
to the divergence of the unperturbed Green’s function at the band edge z = 0
for d ≤ 2. Recall that it is precisely this divergence that always allows a local
potential fluctuation to trap a particle (for d ≤ 2). Hence, a mathematical
connection was established between the problem of localization in a disor-
dered system and that of a bound level in a single potential well [276, 277].
This connection can be further quantified in terms of the localization length.
Indeed, for the shallow potential well problem, one can rewrite the basic equa-
tion (6.9) in terms of the effective mass m∗, defined by E(k) = !2k2/2m∗, and
the localization length λp connected to the binding energy Eb by the relation
Eb = !2/2m∗λ2

p:
!2

2m∗ad |ε| =
α2

(2π)d

∫
dq

1
q2 + λ−2

p
, (9.28)

where α2 is introduced for the same reasons as in (9.27) and the integration is
confined within the first Brillouin zone, i.e., for q ≤ π/a, where a is the lattice
constant. In (9.27) the integration is confined within a sphere of radius L−1

m ,
where it was assumed that Lm is proportional to ℓtr or ℓ.
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Thus, according to the self-consistent equation (9.27), the problem of de-
termining the characteristic features of the eigenstates in a disordered system
(for a given energy E and degree of disorder) is mathematically equivalent
to finding the basic properties of the ground state in an equivalent potential
well1 whose linear extent, aeff, is proportional to the mean free path at E and
whose dimensionless depth, εeff/ |Veff|, is inversely proportional to σ0ℓ

d−2
tr or,

equivalently, inversely proportional to SF ℓd−1
tr :

aeff = c1ℓtr , (9.29)
εeff

!2/2m∗a2
eff

=
c2

cd−2
1

2
π

e2

!
1

σ0ℓ
d−2
tr

=
c2d(2π)d

cd−2
1 π

1
SF ℓd−1

tr

, (9.30)

where c1 and c2 are numerical factors dependent on the dimensionality;
their values can be determined by fitting numerical data to the localization
length, ξ, to the value of λp for a single site potential well of dimensionless
depth εeff/ |Veff| in a TBM of lattice spacing aeff.

Employing the CPA we can calculate the average DOS, the mean free
path ℓ or ℓtr, the conductivity σ0, and the renormalized Fermi surface, SF ;
using the post-CPA corrections to σ0 we obtain the conductivity in the weak
localization regime; finally, with the help of the potential well analogy, we can
obtain the localization length ξ as well as the conductivity (in the presence of
a finite LM ) in the so-called strong localization regime [278].

We conclude this section by summarizing results obtained through the
procedure just outlined.

9.3.1 Three-Dimensional Systems

In Fig. 9.3 the effects of the disorder in a simple TBM are shown: (i) The
Van Hove singularities associated with the perfect periodic system (Fig. 9.3a)
are smoothened out as the disorder is introduced. (ii) The approximate band
edges, ±EB, are moving away from the band center leading to a widening of
the band by an amount proportional to w2/ |V | (the proportionality factor is
equal to 0.5 for the present case and for not so large values of w2/V 2). (iii) The
band edges ±EB are not strictly defined because, beyond them, tails in the
DOS appear that, over a considerable energy range and for not so large w, are
of exponential form: ϱ(E) ∼ exp (− |E| /E0), where E0 ≃ c2w2/ |V | (c2 ≃ 0.12
in the present case). These tails are important because they produce the so-
called Urbach tails in the optical absorption in the semiconductors (as a result
of electronic transitions from the valence to the conduction band involving
the tails of either one). (iv) Two mobility edges, ±Ec, appear such that the
states corresponding to |E| > Ec are localized, while those with |E| < Ec are
extended. For low disorder, the mobility edges, ±Ec, are very close to the band

1 If the potential well is defined within the framework of an effective TBM, then
aeff is the lattice spacing and εeff/

`
!2/2m∗a2

eff

´
must be interpreted as εeff/ |Veff|.
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E/ |V |

E/ |V |

E/ |V |

E/ |V |
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0 6−6
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0.1

0.1
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(a) w = 0

(b) w = 1.73 |V |

EB0

(d) w = 6.5 |V |

(c) w = 4.62 |V |

−EB −EC EC

Fig. 9.3. The density of states vs. dimensionless energy for a simple cubic TBM
whose diagonal matrix elements are independent random variables with a Gaussian
probability distribution of standard deviation w; V is the common value for the off-
diagonal matrix elements. The regions of localized states (black areas), the mobility
edges (±Ec), and the approximate band edges (±EB) are also shown
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edges, ±EB, respectively (EB −Ec ∼ w4/V 3), moving initially outward with
increasing disorder; for higher disorder they change direction and move inward
toward the center of the band and eventually merge together, transforming all
states to localized; this is known as the Anderson transition (in the present
case it occurs when w ≃ 6.2 |V |). Thus the trajectory of the mobility edges
in the w–E plane is qualitatively similar to the one shown in Fig. 9.1. (v) As
one approaches a mobility edge from the extended side, fluctuations in the
amplitude, |ψ (r)|, of the eigenstates appear of multifractal nature [279,280] up
to a maximum length ξ′. For E → Ec or −Ec, ξ′ blows up: ξ′ ∼ (|Ec|− |E|)−γ ,
where the exponent γ, according to the potential well analogy and the CPA,
is equal to 1; however, detailed numerical analysis shows that γ ≃ 1.54 (in the
absence of a magnetic field) and γ ≃ 1.43 (in the presence of a magnetic field).
The quantity ξ′ is important because it is connected to the conductivity σ(E)
for E belonging to the extended part of the spectrum

σ(E) ≃ e2

!

(
0.066

ξ′
+

A1

LM

)
, (9.31)

where the value of A1 is of the order 0.05.
The quantity ξ′ near the mobility edge can be obtained by extending the

application of the effective potential well: if this potential well does not sustain
a bound state, it means that the corresponding eigenstates of the disordered
system are extended. However, as we saw in Chap. 6, as a2

eff |εeff| approaches
the critical value (for the appearance of a bound state) from below, a resonance
state shows up at a resonance energy Er; the latter is connected to ξ′ through
the relation Er = !2/2m∗ξ′2.

In the localized regime the eigenstates exhibit multiple scale fluctuations
and an exponential envelope of the form e−r/ξ, where ξ is the localization
length, which blows up in a power law, ξ ∼ (|E|− |Ec|)−γ , with the same
exponent γ as the quantity ξ′. As |E| moves away from a mobility edge, ξ
soon becomes very small (comparable to the lattice spacing in the present
case; this implies very strong localization in the vicinity of a single site).

9.3.2 Two-Dimensional Systems

Two-dimensional electronic systems can be realized approximately in very thin
metallic films or rigorously at the interface of Si/SiO2 or GaAs/AlxGa1−xAs.
The theory and arguments presented in this chapter as well as other ap-
proaches, together with extensive numerical work, converge at the conclusion
that all eigenstates in a static disordered 2-d system (in the absence of mag-
netic forces and within the independent electron approximation) are localized
(pathological exceptions do exist) no matter how weak the disorder.

In the presence of magnetic forces, and as the disorder is gradually turned
on, a very narrow region of extended states at the center of the band remains
until a critical value of the disorder where an Anderson-type transition takes
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place (as in the 3-d case) and all eigenstates become localized. This picture is
essential for the interpretation of the impressive Integral Quantum Hall Effect
(IQHE) to be briefly discussed in Sect. 9.8.

The d = 2 is the critical dimensionality separating the d < 2 regime
(where all states become localized even with a minute amount of disorder)
from the d > 2 regime (where a critical value of disorder is needed to localize
the eigenstates); as was mentioned earlier, the d = 2 case (in the absence
of magnetic forces) belongs to the first regime but being in the borderline
exhibits huge localization lengths (for not so strong disorder) given by the
approximate formula

ξ ≃ 2.7ℓtr exp
[
S(E)ℓtr(E)

4

]
, (9.32)

where S(E) is the renormalized length of the line in the 2-d k-space defined
by the equation E − Re {Σ(E)} = E (k).

An approximate interpolation formula for the conductivity can be derived
by employing the CPA and the potential well analogy (PWA) [278]:

σ = σ0
ln (LM/Lm)

K2
0 (Lm/ξ)

∫ LM

Lm

dr
1

K2
0 (r/ξ)r

, (9.33)

where K0 is the modified Bessel function of second kind and zero order [1].
In the weak localization case (weak disorder), LM ≪ ξ, this expression

for σ reduces to (9.2b), while in the opposite limit ξ ≪ LM we find

σ ≃ 2σ0

(
LM

ξ

)
exp

(
−2LM

ξ

)
.

Taking into account (9.5) in the case where Lφ ≪ L, Lω, i.e., when

1
L2

M

=
1

(1.33LB)2
+

c2

L2
φ

≡ eB

1.78!c
+

c2

L2
φ

,

we have, according to (9.2b) [see also (9.20)], that the magnetic-field-induced
relative change of the resistance, ∆R/R ≃ −∆σ(B)/σ(0), is equal to

∆R

R
≃ − e2

2π2!σ(0)
ln

(
1 +

L2
φ

c2L2
B

)
= − e2

2π2!σ(0)
ln

(
1 +

L2
φeB

c21.78!c

)
,

(9.34)
i.e., the presence of a magnetic field reduces the resistance, or, in other words,
a negative magnetoresistance is exhibited as a result of weak localization ef-
fects.

It must be pointed out that various interactions such as electron–electron,
electron–phonon, etc. may produce effects similar to those of localization the-
ory [see point (iii) in Sect. 9.1] or may significantly modify results of local-
ization theory. For example, recent experiments in very clean interfaces of



214 9 Localization, Transport, and Green’s Functions

GaAs/AlxGa1−xAs or Si/SiO2 have shown that σ(T ) ceases to decrease with
decreasing temperature and instead starts increasing in clear violation of the
formula δσ ∼ − ln (Lφ/Lm) with Lφ → ∞ as T → 0 K [281].

9.3.3 One-Dimensional and Quasi-One-Dimensional Systems

Even during the early studies of 1-d disordered systems there were sugges-
tions that the eigenstates may become localized [282]. Mott and Twose [283]
were the first to propose that all eigenstates in a 1-d random system are lo-
calized. One may visualize this proposal by assuming that each backscattered
wave at every elementary scattering event is lost, as far as the propagation
is concerned, due to destructive interference; this picture suggests that the
localization length ξ, defined by the relation

a

ξ
= − lim

m→∞

⟨ln |ψm|⟩
m

, (9.35)

is of the same order of magnitude as the mean tree path ℓ; ψm is the amplitude
of the eigenfunction at site m and a is the lattice constant.

Borland [284–287] showed that for a random δ-function array the solutions
of the differential equation (with fixed values of the function and its deriva-
tive at one end) grow exponentially on average with distance. This exponential
growth was shown to be a direct result of the phase incoherence. The picture
that emerged on the basis of Borland’s proof is that at every energy there are
two independent solutions of the Schrödinger equation, one increasing and the
other decreasing exponentially (on the average) with increasing x. At a set of
particular energies (the eigenenergies) the left decreasing solution matches at
some point the right decreasing solution to form the eigenfunction that decays
to zero as |x| → ∞. According to this picture (which was not proven rigor-
ously) the localization length is the same as the inverse of the average rate of
growth of the solution of the differential equation. Wegner [288] demonstrated
the localization of eigenfunctions through a different method. Borland’s
method is discussed very clearly in a review article by Halperin [289]. Relevant
material can be found in books by Hori [290] and by Lieb and Mattis [291].

The exponential (on average) growth of the solutions of the differential
equation can be shown rigorously [292] by employing the transfer matrix
technique (Appendix H). The transfer matrix is a 2 × 2 matrix that con-
nects, e.g., ψ, dψ/dx at x with ψ, dψ/dx at x′. The existence of such a 2× 2
matrix is a direct consequence of the uniqueness of the path connecting x
and x′ in 1-d. The concept of the transfer matrix transforms the propagation
of the wave in 1-d to a product of random 2 × 2 matrices. There are exact
theorems [293] that state that under quite general conditions the product of n
random matrices is a 2 × 2 matrix whose two eigenvalues, β1 and β̄1, depend
exponentially on n (as n → ∞): β1 ∼ eϱn and β̄1 ∼ e−ϱn, where ϱ is a positive
number called the Lyapunov exponent. Thus, there is exponential growth of
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the solution and exponential decay of the eigenfunction with a localization
length ξ = a/ϱ, where a is the lattice spacing.

The transfer matrix technique can be used for the calculation of the trans-
mission (|t|2) or reflection (|r|2) coefficient associated with a disordered seg-
ment of total length L. Using Furstenberg’s theorem [292, 293], it is easy to
prove that

1
L

〈
ln |t|2

〉
= −2

ξ
, (9.36)

where 1/ξ is the average rate of exponential growth of the solution.
Note that the probability distribution of |t|2 possesses long tails that are

responsible for a rather peculiar behavior of various averages [250, 251, 255–
258,294–297].

Abrikosov [258] found that, while
〈
ln |t|2

〉
is given by (9.36), other averages

give different results:
〈
|t|−2

〉
=

1
2

(
1 + e4L/ξ

)
, (9.37)

〈
|t|−4

〉
=

1
3

+
1
2
e4L/ξ +

1
6
e12L/ξ , (9.38)

〈
|t|2n

〉
−→

L→∞
Cn

(
ξ

2L

)3/2

e−L/2ξ , (9.39)

where the constant Cn depends only on n. The standard deviation of ln
(
|t|2

)

is proportional to
√

L/ξ for large values of L/ξ. Hence, in the strong disorder
limit, ln

(
|t|2

)
becomes sharply distributed, with a probability distribution

that seems to be Gaussian. The interested reader may find additional material
in [257, 298–300] and in review articles by Abrikosov and Ryzhkin [301] and
Erdös and Herndon [302]. Note that a special case [295–297, 303, 304] exists
such that 1/ξ = 0. The vanishing of 1/ξ does not necessarily imply extended
states. Indeed, in the case examined in [295–297], ln

(
|t|2

)
∼ −

√
L as L → ∞;

on the other hand, the special case examined by Tong [305] shows the existence
of a nondecaying wave at a particular energy.

The transfer matrix technique allows us to generalize the study to disor-
dered quasi-one-dimensional systems consisting of M coupled 1-d channels.
Then the transfer matrix is a 2M × 2M matrix and the product of n such
random matrices (as n → ∞) is a 2M × 2M matrix, whose 2M eigenvalues,
β1, β2, . . . , βM , β̄1, β̄2, . . . , β̄M , are given by

βi = exp (ϱin) β̄i = exp (−ϱin) , i = 1, . . . , M , (9.40)

where the M positive Lyapunov exponents ϱi define M localization lengths
ξi = a/ϱi. The decay of the eigenfunction is determined by the longest local-
ization length ξi or the smallest positive Lyapunov exponent, ϱi.
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Returning to the strictly 1-d systems, we find from the potential well
analogy (PWA) that ξ = cℓtr, where c = 4 for the weak localization regime.
In a subsequent section we shall present rigorous formulae for the evaluation
of ξ in 1-d systems. Furthermore, the geometric average of the conductivity
according to the PWA turns out to be equal to [278]

σ =
e2L

π!
1

e2L/ξ − 1
. (9.41)

In the weak localization regime, LM ≪ ξ, we find that

σ =
e2ξ

2π! − e2L

2π! =
2e2ℓtr

π! − e2L

2π! . (9.42)

In (9.42), the first term on the rhs coincides with σ0 as given by (9.1) for
d = 1, while the second term coincides with (9.2a) [by choosing c1 = 2 in
(9.5)].

9.4 Conductance and Transmission

By combining (9.41) and (9.36) we find the following important relation:

Gs ≡ σ

L
=

e2

π!

[
1
T

− 1
]−1

=
e2

π!
T

R
, (9.43)

where T is the geometric average of the transmission coefficient,

T ≡ exp
〈
ln |t|2

〉
, (9.44)

R = 1 − T , and Gs = σ/L is by definition the geometric average of the
conductance of the disordered 1-d system. Equation (9.43), connecting the
conductance to the transmission coefficient, was obtained and championed by
Landauer [306]. The universal coefficient e2/π! is written by many authors as
2e2/h to stress the point that e2/h is the conductance per channel and spin
when T/R = 1. It is worthwhile to point out [307] that

(
R

T

)

total

=
N∑

i=1

Ri

Ti

if we have N 1-d segments in series, each with a transmission coefficient Ti

and reflection Ri = 1− Ti. To obtain this additive feature of Ri/Ti, one must
assume that the transmission and reflection probabilities (and not the am-
plitudes as in quantum mechanics) undergo multiple scatterings [307]. The
additivity of Ri/Ti implies that the resistance grows linearly with L in agree-
ment with the first term on the rhs of (9.42). This is valid as long as L ≪ ξ.
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For large L (L ≫ ξ) one must take into account the wave nature of elec-
tronic propagation and do the multiple scatterings in terms of transmission
and reflection amplitudes (not probabilities); this implies localization and,
consequently, exponential growth of the resistance with L [as in (9.41)].

Economou and Soukoulis [255], employing the Kubo–Greenwood formal-
ism, found that the conductance of a 1-d segment fed by a current source is
given by

G =
2e2

h
T , (9.45)

in apparent disagreement with (9.43). Equation (9.45), which has been gen-
eralized by Fisher and Lee [308] to the quasi-1-d case of M coupled parallel
channels:

G =
2e2

h
Tr {t̂t̂†} =

2e2

h
MT , (9.46)

where the matrix element, t̂ij , of the M × M matrix t̂ gives the transmission
current amplitude from the left jth channel to the ith right channel (Ap-
pendix H); T is an average transmission coefficient per channel defined by
T ≡ Tr {t̂t̂†}/M .

Both the disagreement of (9.45) with (9.43) and the apparently paradoxical
result of finite resistance h/2e2 per channel for a perfect conductor led to some
initial efforts to provide a physical explanation and possible reconciliation of
the two results [309–315]. This controversial subject was clarified when a more
careful analysis of the physical situation took place (Imry [316]).

Actually, the quasi-1-d system (with M channels) is connected (through
leads or directly) to two macroscopic contacts, each one in internal thermal
equilibrium with electrochemical potential µi = µ0 − |e|Vi, i = 1, 2. The
macroscopic nature of the contacts means that they consist of a huge number
of channels, Mci (Mci → ∞).

When a current enters a contact of Mci channels from our quasi-1-d con-
ductor with M channels (M ≪ Mci) it encounters a contact resistance. If
there is no reflection as the current enters the contacts, one can show (see
Datta [307], pp. 52–53) that this total contact resistance is given by

Rc = G−1
c =

(
2e2

h
M

)−1

. (9.47)

The total resistance of the system taking into account contacts is defined as
the ratio (µ1 − µ2) / |e| I, where I is the current through our quasi-1-d system;
hence, the total resistance is the sum of the contact resistance, Rc, and the
resistance

Rs = G−1
s =

[
2e2TM

h(1 − T )

]−1

of the quasi-1-d system per se:

G−1 = G−1
c + G−1

s =
h

2e2M

(
1 +

1 − T

T

)
=

h

2e2M

1
T

. (9.48)
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Thus, the total conductance, G = (2e2/h)MT , is identical to that given by
(9.46). One may conclude that G, as given by (9.46), measures the ratio

− |e| I
µ1 − µ2

≡ I

∆V
,

while Gs, as given by (2e2/h)MT/(1−T ), measures the ratio I/∆V ′ of Fig. 9.4.
Actually, the latter is not always true because the presence of leads L′

1 and L′
2

in general modifies the corresponding voltages ∆V0 and ∆V ′
0 existing under

the same current (I0 = I) but without leads L′
1 and L′

2. To face this problem,
Büttiker [317,318] treated all external contacts (be they either current sources
or sinks of voltage probes) on equal footing and generalized the equation
I = G(µ1 − µ2)/(− |e|), with G = (2e2/h)Tr {t̂t̂†}, to

Ip =
∑

q

Gpq [Vp − Vq] , (9.49)

where
Gpq =

2e2

h
Tr {t̂pq t̂

†
pq} ≡ 2e2

h
T̄pq , (9.50)

where t̂pq is a transmission current amplitude M×M ′ matrix whose matrix el-
ements, t̂pqij , give the transmission current amplitude from the jth channel of
the q lead to the ith channel of the p lead, and T̄pq is the average transmission
probability per channel times the number MM ′ of channels. Furthermore,

Vp =
µp

− |e| (9.51)

∆V ≡ µ1−µ2

−|e|

quasi 1-d conductor
c1

L1
I L2

c2

I = 0L′
2I = 0L′

1

c3 c4

∆V ′

Fig. 9.4. Four-probe arrangement for measuring conductances of quasi-1-d con-
ductor, which through leads L1 and L2 is connected to the contacts c1 and c2 of
electrochemical potentials µ1 and µ2, respectively. Two leads L′

1 and L′
2 (through

which no current flows) connect the quasi-1-d conductor to voltage probes, c3 and c4
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is the voltage at the contact p, and Ip is the total current entering from the
contact p. Strictly speaking, (9.49) is valid at zero temperature where only
channels at the Fermi level are involved; for finite temperatures the general-
ization is straightforward:

Ip =
∫

ip(E)dE , (9.52a)

where
ip(E) = −2 |e|

h

∑

q

T̄pq(E) [fp(E) − fq(E)] (9.52b)

and

fp(E) =
[
exp

(
E − µp

kBT

)
+ 1

]−1

.

If the chemical potential difference µp − µq is small compared with variations
of T̄pq(E) vs. E, then (9.52b) can be linearized by writing

fp(E) − fq(E) = − ∂f

∂E
(µp − µq) = |e| ∂f

∂E
(Vp − Vq) ,

and (9.52a) will be brought to the form of (9.49) with

Gpq =
2e2

h

∫
T̄pq(E)

(
− ∂f

∂E

)
dE . (9.53)

The smoothness of T̄pq(E) as a function of E is increased with increasing
temperature and with increasing inelastic scatterings, which introduces an in-
elastic scattering energy scale δEin. Thus the validity of linear equation (9.49)
with Gpq , given by (9.53), is guaranteed if

|µp − µq| ≪ δEin + αkBT , (9.54)

where α is larger than 1.

9.5 Scaling Approach

In this section we present a work that played a decisive role in shaping our
ideas in the field of localization. The basis of this work is the assumption
that there is just one parameter Q (equal to the ratio of transfer strength |V |
over an average energy mismatch δε) that completely characterizes the an-
swer to the localization question for each dimensionality d. The existence of
just one parameter Q is obvious in the simple TBM we have examined in
Chaps. 5–8. What is not obvious is that a single parameter Q can still charac-
terize more complicated models, where there are many energies per site and
more than one transfer matrix element. Such complicated Hamiltonians may
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arise even from the simple TBM if, e.g., one enlarges the unit cell of the lattice
by a factor x so that the new “unit” cell has linear dimension L1 = ax and
contains n1 = xd original sites (a is the lattice spacing). If each new “unit”
cell is considered as an effective “site,” there must be (according to our initial
assumption) a quantity Q(L1) that characterizes the localization properties
of the reformulated problem. By repeating the procedure of unit cell aug-
mentation one produces a sequence, Q(L2), Q(L3), . . . , Q(Lm), . . ., where the
“unit” cell after the mth step has linear dimension Lm equal to axm and
contains nm = xmd sites. Abrahams et al. [319] realized that the derivative
of Q(L) with respect to L, or for that matter the logarithmic derivative β,
where

β =
d ln[Q(L)]

d lnL
, (9.55)

is an extremely important quantity for localization. Indeed, if β is larger than
a positive number, no matter how small, the successive transformations will
monotonically increase Q toward infinity as L → ∞, which means that the
initial problem is mapped into one, where the effective energy mismatch is
zero and, hence, the eigenstates are extended. If β is less than a negative
number, Q monotonically decreases toward zero; this means that the initial
problem has been mapped into one where the effective transfer matrix element
is zero, and consequently the eigenstates are localized. Hence the quantity β
completely characterizes the localization problem. The assumption that there
is just one parameter Q that determines localization forces the conclusion
that β is a function of Q:

β = f(Q) . (9.56)

To proceed further with these ideas, one needs to identify what Q is in the
general case. Thouless and coworkers [251,320] argued that in the general case,
where the “unit” cell has linear dimension L, the role of |V | in (9.6) is played
by δE (where δE is a measure of how much the eigenenergies of an isolated
“unit” cell change upon changing the boundary conditions from periodic to
antiperiodic) and the role of δε is played by the level spacing, which is just
the inverse of the total DOS. In other words

Q = ϱLd δE . (9.57)

It was further argued [320] that δE = !/τ , where τ is the time it takes
a particle to diffuse from the center to the boundary of the “unit” cell:
τ = (L/2)2/D, where D is the diffusion coefficient. Taking into account (9.27)
we obtain that δE = 4!D/L2 equals 2!σ/e2ϱL2. Substituting in (9.57) we
obtain that Q = 2!σLd−2/e2. But σLd−2 is the DC conductance G of the unit
cell,

G = σLd−2 . (9.58)
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Thus we reached the very important conclusion that the quantity Q is nothing
else than the dimensionless DC conductance, i.e.,

Q =
!
e2

G . (9.59)

[In (9.59) we redefined Q as to eliminate a factor of 2].
In view of the fact that higher values of both Q and β favor extended

states, it is not unreasonable to assume, as Abrahams et al. [319] did, that β
is a monotonically increasing function of Q or of lnQ. We are now in a posi-
tion to find the qualitative features of β vs. lnQ. In the weak scattering limit,
when the conductance Q is very large, one is almost in the metallic regime,
where σ is independent of L and Q ∼ Ld−2. In this limit, β = d lnQ/d lnL
approaches d−2. In the other extreme of very strong disorder, the localization
length is much less than L, and the conductance decays exponentially with L.
Hence β = ln Q in this limit. This asymptotic behavior, together with the as-
sumption of monotonicity, leads to a β vs. lnQ relation, as shown in Fig. 9.5.
For d = 1, 2, β is always negative; hence by increasing the length L we de-
crease ln Q, which in turn further decreases β. Thus, as we increase L, we slide
down the curves, as shown in Fig. 9.5, and, at sufficiently large lengths L, we
approach the regime of exponential localization, independently of what our
starting point was. Hence all eigenstates are localized and a truly metallic be-
havior is not possible (at least for independent electrons). Only a quasimetal-

1

−1

−2

21−1−2−3−4−5

0

ln Q

β

d =
3

d =
2

d =
1

Qc

Fig. 9.5. Plot of β vs. ln Q for d = 1-, 2-, and 3-d disordered systems assuming
monotonicity. Q is the dimensionless conductance of a d-dimensional cube of length
L and β = d ln Q/d ln L. As L increases, one moves along the curves in the direction
indicated by the arrows
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lic behavior can be observed when L is much larger than the total mean free
path and much smaller than the localization length. In 1-d systems, in the
presence of only elastic scattering, the mean free path ℓ is comparable to the
localization length and, consequently, even a quasimetallic behavior is not pos-
sible. However, inelastic scattering changes this conclusion drastically, mainly
because it allows electrons to jump from one localized state to another (of
different energy), and hence it delocalizes them. This delocalization appears
only after an electron has travelled a distance comparable to the inelastic
diffusion length Lφ (9.3). As a result of this complication, localization effects
become important only when Lφ becomes comparable to or larger than any
characteristic localization length.

In the 3-d case there is a critical value, Qc, of the conductance Q. For
Q < Qc, β is negative, and hence, by the same arguments as in d = 1, 2, the
states are localized. On the other hand, for Q > Qc, β is positive; as a result,
by increasing the length, one increases Q and, hence, β itself. Thus one climbs
up the β curve toward the flat metallic regime, associated with extended states
of more or less uniform amplitude. It must be pointed out that the present
analysis implies that the conductivity approaches zero continuously near the
critical point. Indeed, for every length L, no matter how large, one can find
a disorder such that Q is just above Qc. Then the conductivity σ ≈ Qc/L can
become arbitrarily small by increasing the length L. There is considerable
interest in finding how σ as a function of the energy or as a function of the
disorder approaches zero. One assumes a power-law behavior, and then the
question of finding the exponents arises [319,321–336]. For a recent review see
the article by Kawabata [337].

Let us now return to the weak scattering regime (ln Q ≫ 1), and let us
assume that the classical limit d − 2 is approached as 1/Q, i.e.,

β ≈ d − 2 − Ad

Q
+ · · · ; Q → ∞ . (9.60)

One can then integrate (9.60) to find the first correction to the classical result
for the conductance G or for the DC conductivity σ. The final results are

σ ≈

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

σ0 −
e2A1

! L , d=1 , (9.61)

σ0 −
e2A2

! lnL , d=2 , (9.62)

σ0 − σ1 +
e2A3

! L−1 , d=3 , (9.63)

where σ0 is the DC conductivity if vertex corrections were ignored. Equations
(9.61)–(9.63) are of the same form as (9.2a)–(9.2c). Thus (9.60) can be justified
by the post-CPA vertex corrections. The latter, of course, gives explicit value
for the constant A2: A2 = 1/π2. The constants A1 and A3 depend on the
relation between L and Lω, i.e., on the constant

√
c1 in (9.5). If we make the
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choice √
c1 = 2

√
2 for d = 3, then A3 = 1/π2, which is the usual value quoted

in the literature. For the 1-d case (9.42) gives A1 = 1/2π, which coincides
with (9.2a) if we make the choice

√
c1 =

√
2.

As was pointed out earlier, the theoretical results (9.61)–(9.63) have been
checked extensively experimentally in quasi-1- and 2-d systems and even in
3-d systems. For 2-d systems (thin films and interfaces) the experimental
data [338–347] are in very good agreement with the theoretical results. For
thin wires (quasi-1-d systems) the agreement is less impressive [348–353]. The
situation is less clear for 3-d systems, where the theory is not well founded
and the experimental data are limited to only impurity bands in semicon-
ductors [328, 329, 333, 354]. Overall one can say that the scaling approach of
Thouless [251] and of Abrahams et al. [319] has played a significant role in the
field, and it has received strong experimental evidence in its support. Further
support was given to it by various independent approximate theoretical and
numerical treatments. Thus, although it is not a rigorous theory, it seems to
be well accepted as a tool for studying the role of disorder in transport prop-
erties. However, there are already indications [265, 345–347, 355] suggesting
that some of the basic assumptions of the method may not be generally true:
e.g., spin-orbit scattering seems to change the sign of A2 in (9.62) and to re-
duce its magnitude by two [265,345–347,355]. Thus the monotonicity of β vs.
lnQ is not valid in the presence of an external magnetic field (which breaks
the time reversal) or in the presence of spin-orbit interactions. As was men-
tioned before, in those cases, extended states at the center of a band of 2-d
systems seem to survive up to a critical value of the disorder. The other basic
assumption of the scaling approach, i.e., the one-parameter scaling, although
accurate enough, does not seem to be exact. For a recent numerical study of
this assumption see the article by Ohtsuki and Slevin [336].

Note that a full knowledge of β vs. lnQ would allow us to know both the
critical value of Q in 3-d as well as the critical exponent, s, for the vanishing
of the conductivity at a mobility edge:

σ(E) ∼ (|Ec|− |E|)s , |E| → |Ec|− . (9.64)

The critical exponent, s, which in the framework of the one-parameter scaling
theory is equal to γ [where −γ is the critical exponent of ξ′; see also (9.31)]
is given by

s =
1

Qc (dβ/dQ)c

, (9.65)

where Qc is the critical value of Q such that β (Qc) = 0. An approximate
formula for β vs. Q for d = 3, which reproduces the correct behavior for the
two limiting values, Q ≪ 1 and Q ≫ 1, and interpolates in between, is

β ≃ 2 −
(

1 +
π2Q

2

)
ln

(
1 +

2
π2Q

)
. (9.66)

Based on (9.66) we get lnQc ≃ −2.96 and s ≃ 1.68; accurate numerical
estimates give s ≃ 1.54 ± 0.03 [335, 336].
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9.6 Other Calculational Techniques

The question of localization has been studied extensively by various numerical
techniques. In this subsection no attempt will be made to cover this diverse
subject. The interested reader is referred to some of the original literature.
Most of the authors supplemented their theoretical analysis with numerical
computations that are consistent with the picture we already described. For
higher-dimensional systems the initial numerical results can hardly be called
conclusive because of the relatively small sizes of the samples; nevertheless,
they were not inconsistent with the prevailing ideas in the field.

Yoshino and Okazaki [356] and Yonezawa [357] have found eigenenergies
and corresponding eigenfunctions of finite 2-d (100 × 100) TBMs by direct
diagonalization of the matrix equation; they took advantage of the fact that
most of the matrix elements are zero. Licciardello and Thouless [320] exam-
ined numerically the sensitivity of the eigenenergies to changing boundary
conditions. Stein and Krey [358, 359] implemented numerically the recursion
method [223], according to which higher-dimensional disordered systems are
mapped to 1-d systems with a much more complicated disorder; the 1-d sys-
tems are usually treated through the iteration (or continued fractions) to be
presented in Sect. 9.7. Weaire and Srivastava [360] examined numerically the
time evolution of a random trial function and used their results to draw conclu-
sions about localization. Prelovšek [361,362] employed a diffusion simulation
technique. Lee [363, 364] and Sarker and Domany [321] implemented numer-
ically the scaling ideas presented in §9.6.1; their results showed that d = 2
seems to be a borderline dimensionality but were nevertheless inconclusive
regarding what is happening for d = 2.

There has also been considerable activity in trying to find the connection
between the localization question and other extensively studied problems,
where the borderline dimensionality is d = 2. As in the previous paragraph,
we do not attempt to cover this diverse subject here; we only refer the in-
terested reader to some of the original literature. Allen [365] connected the
localization problem to the random-walk problem, in particular to S(N)/N ,
where S(N) is the mean number of distinct sites visited during a random
walk of N steps. Then S(N)/N goes to zero as N → ∞ for d ≤ 2, while
it remains finite for d > 2. Kaveh and Mott [262, 322, 366, 367] obtained the
vertex corrections to the conductivity (9.61)–(9.63) by mapping the prob-
lem to the classical diffusion process. Wegner [323–325], Hikami [332], Efetov
et al. [327], and Houghton et al. [326] have demonstrated that the localiza-
tion problem is analogous to the nonlinear σ-model; then they employed so-
phisticated field-theoretical techniques to reach conclusions that are in agree-
ment with the scaling approach. Schuster [368] pursued an analogy with the
XY model; such an analogy, although in agreement with the conclusions
of Pichard and Sarma [369, 370], is inconsistent with the numerical results
of MacKinnon and Kramer [371] and of Soukoulis et al. [372], as well as
with the conclusions of the scaling approach. The recursion method, which
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maps the problem to a 1-d one, produces results [373–375] that are con-
sistent with the prevailing ideas in the field. We mention also the work of
Götze [272, 273].

9.6.1 Quasi-One-Dimensional Systems and Scaling

The most reliable numerical method for checking the scaling assumption and
for producing results for various quantities of interest (such as critical disorder,
mobility-edge trajectories, critical exponents, etc.) is the one proposed and
applied by Pichard and Sarma [369, 370] and MacKinnon and Kramer [371]
and reviewed by Kramer and Mackinnon [376]. Several other authors have
used and extended this approach: Soukoulis et al. [372], Economou et al. [277,
377,378], Zambetaki et al. [379], Q. Li et al. [380], Römer and Schreiber [335],
Ohtsuki and Slevin [336], Kawabata [337], and many others (see references in
a recent book edited by Brandes and Kettermann [381]).

The method determines numerically the longest localization length, λM ,
of a quasi-1-d system consisting of either M coupled channels arranged in
a planar strip or M × M coupled channels forming a wire of a Ma × Ma
square cross section (a is the lattice spacing). The probability distribution
of the diagonal matrix elements is rectangular of total width W . For the
wire case (which becomes 3-d as M → ∞) the behavior depends on whether
or not the disorder exceeds a critical value. For W < Wc, λM (M) behaves
as M2a2/4.82ξ′ (up to the largest M examined), and hence it seems to ap-
proach infinity parabolically as M → ∞; the characteristic length ξ′ (which
depends on the disorder) can tentatively be given a physical interpretation
as being the largest length beyond which the eigenfunctions look uniform in
amplitude. Since a uniform amplitude implies a classical metallic behavior,
the quantity ξ′ can also be interpreted as the length (for a given disorder)
at which β is almost 1. For W > Wc, λM (M) increases with M slower than
linearly, and it seems to saturate to a value λ(∞), which is the localization
length ξ. For the strip case (which becomes 2-d as M → ∞) λM (M) increases
with M slower than linearly and it seems to saturate to a finite value at
least to disorders down to W/ |V | = 4 [371]. Around W/ |V | ≈ 6 (which early
work identified as a critical point), the localization length seems to change
very fast (e.g., λ ≈ 40 for W/ |V | = 6, while λ ≈ 500 for W/ |V | = 4).
Such large localization lengths make conclusive numerical work rather diffi-
cult. For a recent review, including various references, the reader is referred
to [335, 376].

9.6.2 Level Spacing Statistics

This numerical method is based on the following basic difference between
extended and localized eigenstates. Consider two localized eigenstates ψi and
ψi+1 belonging to consecutive eigenenergies; since the states are localized, we
expect, with a probability that approaches 1 as the system becomes infinite,
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that these two states will not overlap. On the contrary, if the states were
extended, their overlap would be substantial. Thus

⟨ψi | H1 |ψi+1⟩ ≃ 0 , if ψi, ψi+1 localized ,

while
⟨ψi | H1 |ψi+1⟩ ≃ ⟨ψi | H1 |ψi⟩ ̸= 0 , if ψi, ψi+1 extended ,

where H1 is any perturbation. As a result of this basic difference, there is no
level repulsion for localized states, in contrast to the case of extended states.
This means that the probability distribution of consecutive level spacing is
quite different for localized states (where very small values of level spacing
are probable) and extended states (where very small values of level spacing
are quite improbable), as shown in Fig. 9.6. This probability distribution can
be obtained by diagonalizing an appropriately large number of realizations of
the Hamiltonian of a finite segment of the random system under study. Note
that, while the maximum possible size of this segment is adequate to show
the difference in the probability distribution of level spacing, it is too small,
in general, to determine directly by the calculation of the eigenstates whether
the latter are localized or extended.

9.7 Localization and Green’s Functions

Green’s function techniques are heavily involved in the calculation of transport
properties in general and in the localization problem in particular. Besides the
examples we have already considered in Chaps. 8 and 9, Green’s functions are
used to obtain the longest localization length, ξ, in quasi-1-d systems

1
ξ

= − lim
L→∞

1
L

〈
ln

∣∣G+
1L(E)

∣∣〉 , (9.67)

where the calculation of the Green’s function is obtained either from the
equation of motion or by techniques analogous to those used in the transfer
matrix approach.

P
(S

)

S

P
(S

)

S

Fig. 9.6. The probability distribution of consecutive level spacing is quite different
for localized (left) and extended (right) eigenstates
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In this section we shall examine some examples where Green’s functions
are used to calculate transport and localization quantities of physical interest.

9.7.1 Green’s Function and Localization in One Dimension

In this subsection we shall employ the renormalized perturbation expansion
(RPE) (Appendix F) to obtain the 1-d Green’s function. According to (F.6)
we have

G(ℓ, m) = G(ℓ, ℓ)V G(ℓ + 1, ℓ + 1[ℓ])V · · ·G(m, m[m − 1]) . (9.68)

In writing (9.68) we have taken into account that there is only one self-avoiding
path connecting ℓ to m in one dimension, and that G(n, n[n − 1]) does not
depend on εn−2, εn−3, . . .. From (F.12) and (F.13) we have in the present case
(where K = 1)

G(ℓ + 1, ℓ + 1[ℓ]) =
1

E − ε′ℓ+1 − V 2G(ℓ + 2, ℓ + 2[ℓ + 1])
. (9.69)

Equation (9.69) allows us to express the probability distribution of x ≡ G(ℓ+1,
ℓ + 1[ℓ]), fℓ+1(x; E), in terms of the probability distribution of ε′ℓ+1, p

(
ε′ℓ+1

)

and the probability distribution of x′ ≡ G(ℓ+2, ℓ+2[ℓ+1]), fℓ+2(x′; E). The
result is (in units where |V | = 1)

fℓ+1(x; E) =
1
x2

∫
p

(
E − x′ − 1

x

)
fℓ+2 (x′) dx′ . (9.70)

Because each site is equivalent on average, fℓ+1 = fℓ+2 = f . Thus (9.70) is
an integral equation for f . From (9.67) and (9.68) we have (taking the lattice
spacing a = 1)

ξ−1 = −⟨ln |G(ℓ + 1, ℓ + 1[ℓ])|⟩ = −
∫ ∞

−∞
f(x; E) ln |x| dx . (9.71)

Substituting in (9.71) from (9.70) and changing variables, we can recast the
expression for the inverse localization length, ξ−1, in the following form:

ξ−1 =
1
2

∫ ∞

−∞
dε

∫ ∞

−∞
dx p(E + ε)f(x) ln

∣∣∣1 +
ε

x

∣∣∣ , (9.72)

which is more convenient in the weak disorder regime. An alternative but
equivalent expression for ξ−1 can be obtained by observing that the product
in (9.68) can be expressed in terms of the eigenenergies of H and those of H
with the sites ℓ, ℓ+1, . . . , m removed [see (F.18)]. When the states are localized
and |ℓ − m| → ∞, the eigenenergies of H can be separated into three groups:
those associated with the semi-infinite segment to the left of ℓ, those associated
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with the segment to the right of m, and those associated with the segment
ℓ, ℓ + 1, . . . , m. Only the latter do not cancel in (F.18). Hence

ξ−1 = lim
|ℓ−m|→∞

1
|ℓ − m|

〈
∑

j

ln |E − Ej |
〉

= lim
|ℓ−m|→∞

∫ ∞

−∞
dE′

〈∑
j δ (|E′ − Ej |)
|ℓ − m|

〉
ln |E − E′|

=
∫ ∞

−∞
⟨ϱ (E′)⟩ ln |E − E′| dE′ . (9.73)

Equation (9.73) was first obtained by Thouless [382]. We point out that the
average DOS per site,

⟨ϱ (E′)⟩ = −Im
{
⟨G+ (ℓ, ℓ; E′)⟩

π

}
,

can be expressed in terms of f(x) since ∆(ℓ; E′) in (F.10) is

∆(ℓ; E′) = V 2G(ℓ + 1, ℓ + 1[ℓ]) + V 2G(ℓ − 1, ℓ − 1[ℓ]) . (9.74)

Hence (in units where |V | = 1)

⟨ϱ (E′)⟩ = ⟨δ (E′ − εℓ − ∆ (ℓ; E′))⟩

=
∫

dεℓdxdx′ p (εℓ) f (x; E′) f (x′; E′) δ (E′ − εℓ − x − x′)

=
∫ ∞

−∞
dy f (y; E′) f (1/y; E′) . (9.75)

The last step follows by integrating over εℓ, taking (9.70) into account, and
changing the remaining integration variable from x to y = 1/x.

As an application of (9.72) we shall calculate ξ−1 to order σ2 (where
σ2 =

〈
ε2

〉
) at E = 0. To this order f(x) in (9.72) can be replaced by f0(x),

where f0(x) is the limit of f(x) as σ → 0. From (9.70) we find that

f0(x) =
1
x2

f0(−1/x) , (9.76)

the solution of which is
f0(x) =

C√
1 + x4

; (9.77)

the normalization constant C = [2K(
√

1/2)]−1 ≈ 0.27. Substituting (9.77) in
(9.72) and performing the integration we find (to order σ2)

ξ−1 =
2E

(√
1/2

)
−K

(√
1/2

)

4K
(√

1/2
) σ2 ≈ 0.1142σ2 . (9.78)
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For the rectangular distribution, where σ2 = W 2/12, (9.78) becomes ξ =
105.045/W 2. This result was first obtained through different methods by Kap-
pus and Wegner [383] and by Sarker [384].

Economou and coworkers [385–387] obtained with a similar technique an
integral equation for the joint probability distribution of

x = lim
s→0+

Re {G(ℓ + 1, ℓ + 1[ℓ]; E + is)}

and
y = − lim

s→0+
Im

{
G(ℓ + 1, ℓ + 1[ℓ]; E + is)

s

}
.

This allowed them to obtain averages of transport quantities like sG+(ℓ, m; E+
is)×G−(m, ℓ; E− is) [see (9.92) below]; on the basis of their results they con-
cluded that in the weak disorder limit the eigenfunctions are concentrated
in a very small fraction of length ξ. To be more specific, let us introduce

Le ≡
(∑

m |ψm|4
)−1

as a measure of the number of sites participating in the
eigenfunction |ψ⟩ =

∑
m ψm |m⟩. Economou and coworkers [385–387] found

that while ξ ∼ W−2 as W → 0, the quantity Le seems to behave like W−ν

with ν very close to 1.
Finally, we comment on the connection between the localization length ξ

and the scattering mean free path ℓ. The latter is defined as

ℓ = vτ =
!v

2 |Σ2|
,

where v is the velocity at energy E. The so defined mean free path ℓ determines
the exponential decay of the average of G(m, n; E) or of ψmψn, i.e.,

⟨G(m, n; E)⟩ ∼ ⟨ψmψn⟩ ∼ e−|m−n|a/2ℓ , |m − n| → ∞ . (9.79)

We remind the reader that the transport mean free path ℓtr = vτtr is in
general different from ℓ because of the (1 − cos θ) term in (8.22). However,
for the simple model we consider here ℓtr = ℓ. In 1-d, where θ takes only two
values (θ = 0, forward scattering, and θ = π, backward scattering), ℓ−1 can
be decomposed into two terms, ℓ−1

f and ℓ−1
b , corresponding to forward and

backward scattering:

ℓ−1 = ℓ−1
f + ℓ−1

b , (9.80)

ℓ−1
tr = 2ℓ−1

b . (9.81)

For our simple model, ℓf = ℓb = 2ℓ = 2ℓtr. In the weak scattering limit, using
second-order perturbation expansion [see (7.51)], and taking into account that

!v/a = |G0(m, m)|−1 =
√

(2V )2 − E2 ,
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we find

ℓ ≈
a

[
(2V )2 − E2

]

2σ2
, (9.82)

where a is the lattice spacing and σ2 =
〈
ε′2n

〉
. For a rectangular distribution

of width W and at the center of the band (E = 0) we have (setting a = 1,
|V | = 1)

ℓ ≈ 24/W 2 . (9.83)

Second-order perturbation theory gives

⟨ϱ (E′)⟩ = −Im
{

G+
0 (m, m; E − Σ)

π

}
,

with Σ = σ2G0(m, m; E) [see (7.51)]. Substituting in (9.73) and integrating
by parts one obtains

ξ ≈ − 2a

σ2G2
0 (m, m; E)

=
2a

(
4V 2 − E2

)

σ2
, (9.84)

which is four times the mean free path ℓ. In the rectangular case and at the
center of the band, one obtains ξ = 96/W 2 [251], to be compared with ξ =
105.045/W 2, which is the exact result to second order in W . An explanation
of this discrepancy is given in [383].

It must be pointed out that the decay shown in (9.79) is partly due to the
exponential decay of the amplitude (localization) and partly due to the phase
incoherence among different members of the ensemble over which the average
of G(m, n) is taken [see (9.79)]. The latter is present even when there is no
localization, and hence the exponential decay of ⟨G(m, n; E)⟩ as |m − n| → ∞
cannot be used to deduce the existence of localization. To see the extent to
which the decay shown in (9.79) is due to localization, one may consider the
average

⟨|G(m, n; E)|⟩ ∼ ⟨|ψmψn|⟩ ∼ e−|m−n|/λ′
. (9.85)

To calculate λ′ one may approximately assume that ln |G(m, n; E)| has
a Gaussian probability distribution with mean equal to − |m − n| /ξ and stan-
dard deviation equal to

√
|m − n| /ξ. Then λ′ = 2ξ, which to second order

in W 2 and at the center of the band yields λ′ = 210.09/W 2, to be compared
with λ′ = 212.59/W 2 obtained in [383].

9.7.2 Renormalized Perturbation Expansion (RPE)
and Localization

Green’s functions behave differently depending on whether the eigenstates
are localized or extended. An example of such difference has already been en-
countered in 1-d, where for exponentially localized eigenstates ⟨ln |G(ℓ, m)|⟩ ∼
− |ℓ − m| /λ′, while for extended states ln |G(ℓ, m)| is independent of |m − ℓ|,
(5.31).
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Before we proceed, let us further clarify the concepts of extended and
localized eigenstates. We call extended those eigenstates that do not decay
to zero at infinity; furthermore, we assume that these extended states look
more or less uniform in amplitude at least beyond a characteristic length
scale ξ′. On the other hand, we define localized states as those that decay
to zero “sufficiently fast.” There is no rigorous examination of what decay
law qualifies for this characterization. It seems that exponential decay is
“fast enough”; it is even possible that all normalizable eigenfunctions are
localized in the above sense. These definitions leave in principle the possi-
bility of having eigenstates that are neither extended nor localized in the
above sense. A decaying but not normalizable eigenstate is an example of
such an intermediate situation. It is usually assumed that the eigenstates
will be either exponentially localized or extended. In 1-d this assumption
is true in almost all cases. For higher dimensionalities there is no rigorous
proof.

Let us consider here a finite system consisting of N unit cells. The diagonal
matrix element of G(E; N) in a Wannier representation can be written as

G(m, m; z; N) =
∑

ν

fν

z − Eν
, (9.86)

where
fν = ⟨m|ν) (ν|m⟩ , (9.87)

and |ν) is an eigenfunction of the Hamiltonian H with eigenvalue Eν ; we have
dropped the index m from fν for simplicity. Note that the symbol

∑
ν in

(9.86) denotes a genuine summation since we are dealing with a finite system
that possesses a discrete spectrum.

We consider now the limit N → ∞, i.e., we allow the system to become
infinite. A localized eigenstate |ν) tends to a well-defined limit as N → ∞;
hence, if |ν) is localized, fν → f∞

ν as N → ∞, where f∞
ν is in general a positive

quantity. The magnitude of f∞
ν (for localized eigenstates) depends strongly on

how far away from site m the localized state |ν) is. If we assume exponential
decay of the localized eigenfunctions, then fν ∼ exp(−2rmν/ξν) as rmν → ∞,
where rmν is the distance between site m and the center of the localized
state |ν) and ξν is its localization length; thus, the new f ′

νs that appear as
N → ∞ are extremely small since the distance rmν of the new states |ν) is
proportional to N1/da, where a is the linear dimension of the unit cell. On the
other hand, for extended or propagating eigenstates |ν) (in the limit N → ∞)
the quantity fν behaves as 1/N in the limit N → ∞; this behavior stems
from the normalization factor 1/

√
N contained in every extended eigenstate

|ν). This basic difference in the behavior of fν as N → ∞ produces the
following characteristic properties.

Consider the quantity cm(t), which is the probability amplitude for finding
a particle in state |m⟩ at time t if initially (t = 0) the particle was in |m⟩.
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This quantity was evaluated before and is given by (6.34). Substituting (9.86)
into (6.34) we obtain

cm(t) =
∑

ν

fν exp (−iEνt/!) . (9.88)

The probability |cm(t)|2 is

|cm(t)|2 =
∑

νν′

fνfν′ exp [−i (Eν − Eν′) t/!] . (9.89)

Defining

|cm|2 = lim
t→∞

1
t

∫ t

0
|cm(t′)|2 dt′ , (9.90)

we obtain

|cm|2 =
∑

Eν

gν∑

i=1

gν∑

i′=1

fEν,ifEν,i′ , (9.91)

where gν is the degeneracy of the eigenenergy Eν .
Using (9.86) it is easy to show that

|cm|2 =
s

π

∫ ∞

−∞
dE G (m, m; E + is)G (m, m; E − is) . (9.92)

Equation (9.91) shows that the localized eigenstates make a nonzero con-
tribution to the probability |cm|2, while the extended eigenstates make no
contribution to |cm|2 as N → ∞. Indeed, if all states were extended and
nondegenerate, then all fν ∼ 1/N , and consequently

∑

ν

f2
ν ∼

∑

ν

1
N2

∼ 1
N

(there are N terms in the summation). If the degeneracy, gν , is proportional
to N (d−1)/d (which is probably its largest value), then the contribution of
the extended states to |cm|2 still goes to zero for N → ∞ (as N−1/d); d is
the dimensionality. On the other hand, for localized eigenstates each fν tends
to a definite limit and series (9.91) converges since f∞

ν becomes quite small
for eigenstates |ν) appearing for large N . Equation (9.92), which is valid in
the limit s → 0+ independently of whether or not the limit N → ∞ has
already been taken, shows that a branch cut in G(E) makes no contribution
to |cm|2 and, hence, corresponds to states that are not localized. It is probably
true, although no rigorous proof has been given, that a branch cut in G(E)
indicates a decay slower than r−d/4. Under rather general conditions, it is true
that extended states produce a branch cut in G(E) (Problem 3.1s); this can
be shown also by taking the limit N → ∞ in (9.86); one must keep in mind
that the average spacing of the levels goes as 1/N and fν (for extended states)
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behaves as 1/N for N → ∞. On the other hand, for localized eigenstates, the
quantities fν approach a finite limit as N → ∞, which means that in the limit
of N → ∞, we will have a dense distribution of poles whose residues remain
finite; thus a line of singularity results that is not a branch cut and that is
known as a natural boundary because the side limits limG(E ± is) do not
exist as s → 0+.

Another way to distinguish between extended and localized eigenstates
is to consider the convergence of G(E) as N → ∞. Note first that each
term fν/(z − Eν) in (9.86) is important as z → E (where E belongs to the
continuous spectrum), only if |E − Eν | ≤ Afν , i.e., if E ∈ Pν , where Pν is
the interval [Eν − Afν , Eν + Afν ] with A ≫ 1. Then the contribution of all
the terms with ν > ν0 is important only if E belongs to the union

∑
0 of

Pνs with ν > ν0. Assume now that the terms in (9.86) have been arranged in
order of decreasing fν . For localized eigenstates the extent of the interval Pν

decreases at least as r−d−ε
mν (because the states are normalizable) with ε > 0

as ν → ∞. Hence the extent of the union
∑

0 approaches N−ε/d, i.e., zero
as ν0 → ∞. Consequently, the probability of E belonging to

∑
0 approaches

zero as ν0 → ∞; hence series (9.86) converges as N → ∞ with probability 1.
It has been assumed that this last statement is equivalent to saying that for
localized states the probability distribution of G(E) converges as N → ∞. For
extended eigenstates the union

∑
0 approaches a nonzero value as ν0 → ∞;

this implies that for extended eigenstates G(E) diverges with probability 1 as
N → ∞.

On the basis of the above discussion one can state certain criteria to decide
about the nature of the eigenstates at E. These statements, although very
plausible, cannot be considered as rigorously proven.

(i) Consider the quantity

lim ⟨sG (m, m; E + is)G (m, m; E − is)⟩ , as s → 0+

or, more generally,

lim ⟨sG (m, n; E + is)G (n, m; E − is)⟩ , as s → 0+ .

If the above quantities are nonzero, the eigenstates at E are localized;
if they approach zero linearly with s, the eigenstates are extended (or
possibly very slowly decaying as r−ν with ν ≤ d/4); if they approach
zero more slowly than linearly with s, they probably decay as r−ν with
d/4 ≤ ν ≤ d/2 (with logarithmic factors in s appearing when ν = d/2 or
d/4).

(ii) Consider the probability distribution of G(E; N). If it converges as N →
∞, the eigenstates at E are localized. If it diverges, the states are extended
(or possibly slowly decaying but not normalizable).

(iii) Consider G(m, m; E, N). If this quantity converges with probability 1
as N → ∞, the states at E are localized. If it diverges, the states are
extended (or possibly slowly decaying but not normalizable).
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The first criterion has been employed in 1-d by Economou and coworkers
[385–387]. We shall examine it in Problem 9.10s. The second criterion has been
used in 1-d systems (§9.7.1). The third criterion was first used in conjunction
with the renormalized perturbation expansion (RPE) by Anderson [388] in his
paper that marked the birth of the field of localization. Anderson’s work has
been further developed by Ziman [389], Kikuchi [390], Herbert and Jones [391],
Thouless [392], and Economou and coworkers [393, 394]. In all this work the
RPE (presented in Appendix F) plays a key role; the reason is that the RPE
is a closed expression for a finite system. Hence, its convergence or divergence
as N → ∞ is equivalent to the convergence or divergence of G(m, m; E, N)
as N → ∞; the latter, according to (iii), is connected directly with the nature
of the eigenstates.

According to (F.9), the RPE for the quantity ∆(ℓ) has the structure

∆(ℓ) =
∑

j

tj , (9.93)

=
∞∑

N=1

∑

j

′
t(N)
j , (9.94)

where the summation in (9.93) is over all terms corresponding to self-avoiding
paths starting from and ending at site ℓ. In (9.94) we have rearranged the
series so as to perform first the summation over all paths of N + 1 steps and
then sum from N = 1 to ∞. We remind the reader that

t(N)
j = V N+1G(n1, n1[ℓ])G(n2, n2 [ℓ, n1]) · · · , (9.95)

where sites ℓ, n1, n2, . . . , ℓ belong to the self-avoiding path j of N + 1 steps.
The expansion (9.94) may diverge through two distinct mechanisms: one is the
divergence of the series shown in (9.94); even if this series terminates (as in the
1-d case), the RPE may diverge as a result of the implicit iteration built in the
RPE (Appendix F). Usually the assumption is made that the convergence of
the series controls the convergence of the RPE; Abou-Chacra et al. [395] made
the opposite assumption by terminating the series at N = 1 and explicitly
taking into account the iteration procedure. To study the convergence of the
series, one introduces the localization function, L(E), defined by

L(E) = lim
N→∞

∣∣∣∣∣∣

∑

j

t(N)
j

∣∣∣∣∣∣

1/N

. (9.96)

If L(E) is less (more) than 1 with probability 1, then the series converges
(diverges) in probability. Here it must be pointed out that there is the pos-
sibility of convergence (not absolute convergence) even when L(E) is larger
than 1. This possibility has been disregarded. To evaluate (9.96) one must
make several approximations. First we set

L(E) ≈ L̃(E) , (9.97)
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where

L̃(E) = lim
N→∞

⎛

⎝
∑

j

∣∣∣t(N)
j

∣∣∣

⎞

⎠
1/N

. (9.98)

Equation (9.97) means that the sign fluctuations of the t(N)
j s are omitted. The

second approximation is to replace each of the various Gs in (9.95) by the first
one

t(N)
j ≈ V N+1GN (n1, n1[ℓ]) . (9.99)

The third approximation replaces the G(n1, n1[ℓ]) by its CPA average. Thus
L(E) was calculated for various 3-d and 2-d lattices and various probability
distributions of {ε′n}. By setting L(E) = 1 one can obtain the trajectory of the
mobility edge, i.e., the critical energy Ec separating extended from localized
states as a function of the disorder or, equivalently, the critical disorder as
a function of the energy (Fig. 9.1). The results were consistent with numerical
data and with various limiting cases. The main drawback of the final result
for L(E) is that it failed to predict any qualitative difference between d = 2
and d = 3. To check the origin of this failure, Soukoulis and Economou [396]
reexamined the three approximations mentioned above. In the process they
prove (F.19), which allowed them to relax approximation (9.99); they worked
in the limit of zero disorder so that no average was needed; and finally they
calculated both L(E) and L̃(E). At the ends of the spectrum they found
that L̃(E) = L(E) ≈ 1 (with less than 1% error), which indicates that their
calculations are quite accurate. For d = 3, they found that (9.97) is well
satisfied and that L̃(E) is well above 1 within the band, which shows that
a finite amount of disorder is required to make L(E) < 1 and localize the
eigenstates. In contrast, for a 2-d lattice, it was found that, while L̃(E) is
well above 1 within the band, L(E) is (within numerical uncertainties) equal
to 1. This is a strong indication that any amount of disorder, no matter how
small, is enough to localize the states in 2-d. It was suggested [396] that the
equation L̃(E) ≈ 1 indicates a crossover region where the localization length
varies very fast.

9.7.3 Green’s Functions and Transmissions
in Quasi-One-Dimensional Systems

In this subsection we expand further the topic presented in Sect. 9.4 and con-
nect the quantity t̂pqij with the Green’s function associated with a multilead,
multichannel-per-lead system as shown schematically in Fig. 9.7.

The S-matrix as we defined it here [see (H.21)] connects the outgoing
current amplitudes D̂pi = √

vpiDpi to the incoming current amplitudes Ĉpj =√
vqjCqj

D̂pi =
∑

q

∑

j

ŝpqijĈqj . (9.100)
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Op

Oq xq

xp

lead p
lead q

CONDUCTOR

Fig. 9.7. The eigenfunctions associated with each lead p are either incoming of
the form Cpiχpi exp (ikixp) /

√
L0 or outgoing of the form Dpiχpi exp (−ikixp) /

√
L0.

The normalized wave functions χpi depend in general on the cartesian coordinates
yp and zp, normal to the propagation direction. The eigenenergy εpiki of the two
states |p, i,±ki⟩ is of the form εpiki = εpi0 + εpi (ki); usually εpi (ki) = !2k2

i /2mi

The quantities ŝppij represent reflection current amplitudes, ŝppij = r̂pij , while
ŝpqij for p ̸= q represent transmission current amplitudes, ŝpqij = t̂pqij , from
the j channel of the q lead to the i channel of the p lead.

We examine first the idealized case where each lead is strictly 1-d and
as such sustains only one channel (or mode); thus index i drops out. Taking
matrix elements of (4.17),2 G = G0 + G0TG0, and remembering that3

⟨p, xp |G0 | q, xq⟩ =
(
− i

!vp

)
δpq exp (ik |xp + xq|) ,

we obtain

⟨p, xp |G | q, xq⟩ = δpq
−i
!vp

exp (ikp |xp + xq|)

+
−i
!vp

−i
!vq

×
∫

dx′
pdx′

q exp
(
ikp

∣∣xp − x′
p

∣∣) exp
(
ikq

∣∣xq − x′
q

∣∣) ⟨xp |T |xq⟩ . (9.101)

With the choice of coordinate systems shown in Fig. 9.7 we have xp < 0,
xq < 0, xq < x′

q, and xp < x′
p. Thus

⟨p, xp |G | q, xq⟩ =
−i
!vq

exp [−i (kpxp + kqxq)]

×
[

δpq +
−i
!vp

∫
dx′

pdx′
q exp

(
ikpx

′
p

)
exp

(
ikqx

′
q

) 〈
x′

p

∣∣ T
∣∣x′

q

〉]
. (9.102)

The integral over dx′
pdx′

q can be written as follows:

L0

∫
dx′

pdx′
q

〈
−kp

∣∣x′
p

〉 〈
x′

p

∣∣ T
∣∣x′

q

〉 〈
x′

q

∣∣ kq

〉
= ⟨−kp |T ′ | kq⟩ , (9.103)

2 Everywhere G, G0, and T stand for G+, G+
0 , T+.

3 When p = q, the origins Op and Oq of the coordinate systems coincide and
xq = −x′′

p .
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where T ′ = L0T . Thus the quantity in brackets on the rhs of (9.102) equals,
according to (H.26), the transmission amplitude4

tpq = δpq +
−i
!vp

⟨−kp |T ′ | kq⟩ . (9.104)

For the reflection amplitude, rpp, we have

rpp =
−i
!vp

⟨−kp |T ′ | kp⟩ . (9.105)

Combining (9.102)–(9.104) we end up with

t̂pq =
√

vp

vq
tpq = i!√vpvq exp [i (kpxp + kqxq)] Gpq (xp, xq) , (9.106a)

r̂pp = rpp = −δpq + i!vp exp
(
ikp

∣∣xp − x′′
p

∣∣) Gpq

(
xp − x′′

p

)
, (9.106b)

p = q, but xp is, in general, different from xq,

where Gpq (xp, xq) = ⟨p, xp |G | q, xq⟩. Since tpq is independent of xp, xq, and
x′′

p , we can set xp = xq = x′′
p = 0 in (9.106a) and (9.106b).

For the multichannel case, (9.106a) and (9.106b) are generalized as follows:

t̂pqij =
√

vpi

vqj
tpqij = i!√vpivqj exp [i (kpixp + kqjxq)]

×
∫

dϱpdϱqχ
∗
pi (ϱp)G+

pq (rp, rq)χqj (ϱq) , (9.107)

where rℓ = xℓ, ϱℓ, ℓ = p, q.
For r̂ppij we have to set p = q and xq = −x′′

p and add −δij to the rhs of
(9.107). Using (9.107) and setting xp = xq = 0, the quantity T̄pq = Tr

{
t̂pq t̂†pq

}

becomes

T̄pq =
∑

i

∑

j

t̂pqij

(
t̂†pq

)
ji

=
∑

ij

∫
dϱpdϱqdϱ′

pdϱ′
qχqj (ϱq) !vqjχ

∗
qj

(
ϱ′

q

)
G−

qp

(
ϱ′

qϱ
′
p

)

× χpi

(
ϱ′

p

)
!vpiχ

∗
pi (ϱp)G+

pq (ϱpϱq) . (9.108)

We define

Γq

(
ϱq, ϱ

′
q

)
=

∑

j

χqj (ϱq) !vqjχ
∗
qj

(
ϱ′

q

)
, (9.109a)

Γp

(
ϱ′

p, ϱp

)
=

∑

i

χpi

(
ϱ′

p

)
!vpiχ

∗
pi (ϱp) , (9.109b)

4 The bra ⟨−kp| appears instead of the ⟨kp| of (H.26) because of the opposite
direction of the xp-axis (Fig. 9.7).
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and then we have

T̄pq = Tr
{
ΓqG

−
qpΓpG

+
pq

}
= Tr

{
ΓpG

+
pqΓqG

−
qp

}
, (9.110)

where Tr means integrations over ϱ′
p, ϱp, ϱq, and ϱ′

q. In the case of a discrete
system described by a TBM, (9.108)–(9.110) remain valid with the replace-
ments

ϱℓ → νℓaℓ ,

ϱ′
ℓ → ν ′

ℓaℓ ,

!vℓi → !vℓi/aℓ ,

νℓ = (νℓ2 , νℓ3) , ν′
ℓ =

(
ν′

ℓ2 , ν
′
ℓ3

)
, ℓ = p, q ;

aℓ is the lattice spacing in the lead ℓ; νℓ2 , νℓ3 , ν′
ℓ2

, and ν′
ℓ3

are integers deter-
mining the position of the atoms in the directions normal to x; the eigenfunc-
tions χ and the Green’s functions Gpq are those corresponding to the TBH;
finally, the trace operation in (9.110) means additions over the integers νℓ2 ,
νℓ3 , ν′

ℓ2
, and ν′

ℓ3
(ℓ = p, q). For a 2-d TB system we have

Γℓ

(
νℓ2 , ν

′
ℓ2

)
=

∑

i

χℓi (νℓ2)
!vℓi

aℓ
χ∗

ℓi

(
ν′

ℓ2

)
, ℓ = p, q , (9.111)

T̄pq =
∑

νp2

∑

ν′
p2

∑

νq2

∑

ν′
q2

Γp

(
ν′

p2
, νp2

)
G+

pq (νp2 , νq2)

× Γq

(
νq2 , ν

′
q2

)
G−

qp

(
ν′

q2
, ν′

p2

)
. (9.112)

9.8 Applications

We have already mentioned that the localization theory has found the most
direct applications in the transport properties of thin wires, films, and inter-
faces. There are, however, classes of materials (such as quasi-1-d organic con-
ductors [397], polymers [397,398], amorphous semiconductors [399,400], amor-
phous metals, etc. [400,401]) of high physical and/or technological importance
that are, to some extent, disordered. The ideas and theoretical techniques pre-
sented in this chapter are indispensable tools in studying these materials. How-
ever, due to their complexity, our understanding has not yet reached a quan-
titative stage of development comparable to that of crystalline materials.

Band structure techniques and localization theory have also been applied
to electromagnetic waves and other classical waves in strongly scattering peri-
odic and disordered media [21,243,402–409]. The motivation for such studies
is the fact that the classical waves are free from several complications that
plague electronic waves in solids, such as inability to control their energy,
finite temperature effects, electron–electron interactions, and other types of
many-body effects. On the other hand, as was pointed out in the comments
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following equations (7.70)–(7.71′), it is more difficult to localize classical waves
than electronic waves. Furthermore, classical waves are subject to absorption,
which contributes to the gradual extinction of an incoming beam; as a result,
localization is not easily distinguished from the combined effect of diffusion
and absorption.

Actually, the interpretation of the experiments of Wiersma et al. [404],
where the transmission of electromagnetic waves through a highly disordered
powder of GaAs was measured in three regimes identified by the authors as
the extended, critical, and localized regimes (on the basis of different length
dependence), was questioned by Scheffold et al. [409], who have argued that
the results can be interpreted also on the basis of classical diffusion combined
with absorption. One way to distinguish between localization on the one hand
and diffusion/absorption on the other is to measure fluctuations as a function
of the temperature T .

The basic equations (9.46) and (9.50) can be used to provide an easy
interpretation of the impressive integral quantum Hall effect (IQHE). When
a current, I, flows in a 2-d striplike conductor in the presence of a strong
magnetic field, B, normal to the strip, a so-called Hall voltage, VH , develops
between the two sides of the strip (i.e., perpendicular to the current flow). The
Hall conductance, GH ≡ I/VH , turns out to be quantized in units of e2/h.
This is what one should expect on the basis of (9.46), if the two directions of
spin have been strongly separated in energy by the applied magnetic field, and
if the 2-d conductor behaves as a perfect conductor with transmission T = 1.
This last if seems unrealizable, since the conductor includes imperfections and
the temperature is not zero. Actually, what makes this imperfect conductor
behave perfectly is the presence of the strong magnetic field, which separates
spatially the states with positive k (along the direction of the current) from
those with negative k (opposite the direction of the current). The positive k
states are highly localized along one edge of the strip and the negative k states
along the other edge. Thus the scattering processes, k → −k, or −k → k,
cannot take place (since there is no spatial overlap of the |k⟩ and |−k⟩ states),
and the imperfect conductor behaves as a perfect one. For more details the
reader is referred to the book by Datta [307].

Another system where (9.46) finds application is transport through double-
barrier devices. The two barriers may trap the electron between them for
a long time thereby creating approximate bound states at discrete energies,
En, each with a width δEn ≃ !/τn, where τn is their lifetime. When the
energy of the electron transported through the double-barrier device coin-
cides with one of the approximate levels, En, the transmission (and hence
the conductance) exhibits a sharp peak of width δEn. This resonance tunnel-
ing becomes even more interesting in very small devices, called quantum dots
(QDs), where both electron–electron interactions and the discrete nature of
electrons are important.

In these quantum dots, a critical voltage of the order |e| /C, where C is
the capacitance of each barrier, is required in order to have conduction. This
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phenomenon, called Coulomb blockade, is due to the fact that for very small
voltages the charging energy of the quantum dot is positive and hence cannot
take place until the critical voltage is reached and the charging energy becomes
zero or negative. For more information the reader is referred to the books by
Taylor and Heinonen [133], pp. 337–339, Datta [307], pp. 246–273, and, for
more recent developments, the book edited by Brandes and Kettemann [381],
pp. 157, 259, and 289.

Finally, we mention that the formalism presented in §9.7.3 finds appli-
cation, among other situations, in transport through carbon and other nan-
otubes. These nanotubes are graphitelike strips that have been folded so as to
create tubes of typical dimensions of the order of a nanometer. These tubes
are connected to contacts and are studied as candidates for the next gener-
ation of nanoelectronics [410–413]. It is obvious that their conductance [and
hence T̄pq as given by (9.110)] is of central importance for their device per-
formance. To calculate T̄pq, one treats the coupling to each contact through
a self-energy, Σp, which allows the calculation of both Γp = i

[
Σ+

p − Σ−
p

]
and

G = (E −Hc − Σ)−1, where Hc is the Hamiltonian of the isolated nanotube
and Σ =

∑
p Σp. For details the reader is referred to the book by Datta [307]

and the original literature (see, e.g., Andriotis and Menon [414–416]). A very
idealized version of this approach is given in Problem 9.9.

We conclude this section by pointing out that the technology tendency
toward miniaturization, which has already touched the nanoregime, requires
conceptional and calculational tools such as the ones presented in Chaps. 8
and 9, where the quantum character of the transport and other phenomena
becomes quite explicit.

9.9 Summary

In this chapter we have shown that quantum interference effects in disordered
systems lead to eigenfunction amplitude fluctuations of increasing extent and
size as the strength of the disorder increases; as a result, the static diffusion
coefficient is reduced and eventually may become zero (for an infinite sys-
tem and in the absence of inelastic scattering events and external magnetic
fields). This is the phenomenon of Anderson localization whose physical man-
ifestations depend on the relative size of various lengths such as the mean
free path, ℓ, the minimum of several upper cutoff lengths, LM , and the lo-
calization length, ξ; LM may be of the order of the geometrical length of the
specimen, L, or the diffusion length, Lφ =

√
Dτφ, during the inelastic phase

incoherence time τφ, or the cyclotron radius LD =
√

!c/eB, or the diffusion
length, Lc =

√
D/ω, in the presence of an AC electric field of angular fre-

quency ω, whichever is smaller [see (9.5)]. If ℓ ≪ LM ≪ ξ, then we are in the
so-called weak localization regime, where the quantum interference corrections
to the conductivity are given by
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δσ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

− e2

√
2π!

LM , 1-d , (9.2a)

− e2

π2! ln
LM

Lm
, 2-d , (9.2b)

e2

2
√

2π2!
1

LM
− e2

π3!
1

Lm
, 3-d , (9.2c)

and Lm is of the order of the mean free path ℓ. Notice that the presence
of a magnetic field, B, reduces the value of LM from LM = Lφ/

√
c2 (when

B = 0) to

LM = Lφ

/√

c2 +
L2

φ

1.78L2
B

.

Thus a negative magnetoresistance is exhibited that, in the 2-d case, is given
by

∆R

R
≃ − ∆σ

σ(0)
, (9.113)

where
∆σ = σ(B) − σ(0) ≃ e2

2π2!

[
ψ(x) − 2 ln

(
LB

2Lφ

)]
, (9.20)

x = 0.5+(LB/2Lφ)2, and ψ(x) is the digamma function, ψ(x) ≡ Γ ′(x)/Γ (x).
In special geometries such as cylindrical tubes with very thin walls and

magnetic field parallel to the axis of the tube, the conductivity exhibits a si-
nusoidal periodic variation with the magnetic flux, Φ = BS, with a period
Φ0 = hc/2e, provided that the area S is of the same order of magnitude as
πL2

φ. This is the so-called !c/2e Aharonov–Bohm effect. Similarly, in con-
figurations such as those shown in Fig. 9.2, the conductivity would exhibit
a periodic sinusoidal dependence on the magnetic flux, Φ, through the ring
with the period of 2Φ0 = hc/e; this is the hc/e Aharonov–Bohm effect.

If the localization length, ξ, is much smaller than LM , an exponential
dependence of the conductivity of the form

σ ∼ exp
(
−2LM

ξ

)
(9.114)

is expected. An approximate implicit expression for ξ is the following:

π

2
!
e2

σ0 =
α1

(2π)d

∫
dq

1
q2 + ξ−2

, (9.27)

where σ0 is the classical value of the conductivity.
The value of ξ as determined by (9.27) is the same as the value of the

decay length of the lowest bound level in a potential well of linear extent

aeff = c1ℓtr (9.29)
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and depth εeff given by

εeff

!2/2m∗a2
eff

=
c2

cd−2
1

2e2

π!
1

σ0ℓ
d−2
tr

. (9.30)

It follows from (9.27)–(9.30) that d = 2 is the critical dimensionality; for
d < 2 any amount of disorder, no matter how weak, is enough to localize the
electron, while for d > 2 a critical amount of disorder is needed to produce
localization.

For quasi-1-d systems consisting of a finite number of parallel running
coupled 1-d channels the conductance, G, is related to the transmission, T ,
per channel according to the formula

G =
2e2

h
MT , (9.46)

where M is the number of channels and the factor 2 accounts for the two spin
orientations. In the case where the quasi-1-d system is connected to several
current or voltage leads, Büttiker generalized (9.46) to the following:

Ip =
∑

q

Gpq (Vp − Vq) , (9.49)

where
Gpq =

2e2

h
T̄pq , (9.50)

T̄pq = Tr
{
t̂pq t̂

†
pq

}
; (9.50′)

t̂pq is the transmission current amplitude Mp × Mq matrix whose matrix ele-
ments, t̂pqij , give the transmission current amplitude from the jth channel of
the q lead to the ith channel of the p lead; Ip is the total current entering from
contact p, Vp = µp/(− |e|), and µp is the chemical potential of contact p. The
matrix elements t̂pqij are connected to the Green’s function through (9.107),
and the transmission coefficient, T̄pq, is given by

T̄pq = Tr
[
ΓqG

−
qpΓpG

+
pq

]
, (9.110)

where
Γp

(
νp2 , ν

′
p2

)
=

∑

i

χpi (νp2)
!vpi

ap
χ∗

pi

(
ν′

p2

)
, (9.111)

G = (E −Hc − Σ)−1 , (9.115)

Σ =
∑

p

Σp , (9.116)

and
Γp = i

[
Σ+

p − Σ−
p

]
; (9.117)
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Hc is the Hamiltonian of the isolated quasi-1-d conductor and Σp is the self-
energy describing its coupling to contact p through lead p.

In Sect. 9.3 we presented the main results of the Anderson localization
theory, in Sect. 9.5 we introduced the scaling approach to the localization
problem, and in Sect. 9.6 we summarized several other theoretical techniques
developed for this problem. Finally, in Sect. 9.7 the connection of the Green’s
function techniques to quantities related to the Anderson localization question
and transport properties were presented.

Further Reading

Among the many books and review articles dealing with localization, quantum
transport properties, and their calculation with the employment of Green’s
functions we mention the following:

• The book by Datta [307] provides an excellent introduction to the subject.
• Imry’s book [250] gives a clear, physical insight to the subject and an

extensive list of references to the original literature.
• The books by Sheng [21,243], as well as the book edited by Soukoulis [402],

deal with classical waves in ordered and disordered media.
• A short account of the Coulomb blockade is given in the book by Taylor

and Heinonen [133].
• The subject of quantum transport properties is treated in detail in the

book by Ferry and Goodnick [417]. A shorter account is given in the book
by Janssen [261]. Among the many excellent review articles we mention
the one by Abrahams et al. [281] and the older one by Kramer and MacK-
innon [376]. Some recent developments can be found in the book edited
by Brandes and Kettermann [381].

Problems

9.1s. Prove (9.31), where

ξ′ ≃ 24.56ℓtr

Sℓ2
tr − 12c′1

.

Hint : Take into account (9.42) and (9.2c) and that the localization length,
λA, of a quasi-1-d wire of cross section A in the extended regime is given by

λA =
A

4.82ξ′

(see §9.6.1); c′1 ≃ 0.75 in order to reproduce the numerically determined criti-
cal value of Sℓ2

tr ≃ 9, at which ξ′ blows up, indicating the transition from ex-
tended to localized eigenstates. Notice that the present approximate approach
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predicts a critical exponent γ = 1 in disagreement with accurate numerical
data that give γ ≃ 1.54.

9.2. Using the potential well analogy with c2 = 1 show that the 2-d localiza-
tion length is proportional to ℓtr exp [Sℓtr/4].

9.3. Prove (9.34).

9.4. For a position-dependent conductivity, σ(x), in a 1-d system, the local
electric field is E(x) = j/σ(x), where j is the current that is position inde-
pendent since there is charge conservation. Hence the voltage drop, V , over
a length L equals

V = j

∫ L

0

dx

σ(x)
.

Then the conductance G is

j

V
=

[∫ L

0
dxσ−1(x)

]−1

,

and the effective conductivity, σε, is given by

σε ≡ LG =
L

∫ L
0 dxσ−1(x)

.

Assume that variations of σ(x) with x are due to the fluctuations of the
eigenfunctions

σ(x) = σ0
|ψ(x)|2

|ψmax|2
,

where ψ(x) ∼ e−x/ξ for x outside an effective 1 − d potential well. Following
the above reasoning prove (9.41).

9.5s. Consider the T -shaped 1-d TBM shown in Fig. 9.8, where the off-
diagonal matrix elements between all nearest neighbors are equal to V except
the ⟨0 |H | 1d⟩, which is equal to V ′; the diagonal matrix elements are taken
as zero.

Calculate the 3 × 3 S-matrix for this model.

9.6s. Prove (9.65).
Hint : Q is a function of L/ξ′: Q = f (L/ξ′); ξ′ blows up at the critical

value Qc with a power law: ξ′ ∼ (Q − Qc)−s.

9.7s. Prove (9.78).

9.8. For a binary diagonal disorder

p (εm) =
1
2

δ (εm − ε) +
1
2

δ (εp + ε)
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0 1r1ℓ

1d

Fig. 9.8. A T−shaped TB system

of a TBM with off-diagonal matrix elements V , calculate the average DOS for
ε/B = 0, 4, ε/B = 0, 7, ε/B = 1. Determine the positions of the mobility edges
by setting L̃(E) = K |V2 ⟨G (n, n[ℓ])⟩| = 1, where K = Z − 1 = 5. Employ
the CPA for the calculation of the averages. Use the Bethe lattice periodic
Green’s functions. Plot the band-edge and the mobility-edge trajectories.

9.9. Consider the coupling, Hcℓ, of a 2-d conductor to a lead as shown in
Fig. 9.9. Let Hc be the Hamiltonian of the isolated conductor and Hℓ that
of the isolated semi-infinite ordered lead; the only nonzero matrix elements of
the Hamiltonian Hcℓ are assumed to have the simple form

⟨µ |Hcℓ | ν⟩ = ⟨ν | Hcℓ |µ⟩ = V2 .

lead

8
>>>>>>>>>>><

>>>>>>>>>>>:

µ′

µ

ν′

ν

CONDUCTOR

Fig. 9.9. A simple TB coupling of a conductor to a lead
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Show that

[E −Hℓ] Gℓc −HcℓGc = 0 ,

[E −Hc] Gc −HcℓGℓc = 1 ,

where [
Gℓ Gℓc

Gcℓ Gc

]
=

[
E −Hℓ −Hℓc

−Hℓc E −Hc

]−1

.

Then show that
Gc = [E −Hc − Σ]−1 ,

where

Σ (µ, µ′) = V 2
2 gℓ (µ, µ′) = V 2

2 [E −Hℓ]
−1
µµ′

= − |V2|Σχ∗
i (µ) exp (ikia)χi (µ′) ;

µ and µ′ are points on the first column of the lead, χi(µ) are the eigenfunctions
for any column of the lead, and a is the lattice spacing of the lead.

9.10s. Using the CPA vertex corrections calculate the quantity

s ⟨G(E + is)G(E − is)⟩

as s → 0+, where G(E ± is) is the diagonal element of the Green’s function
corresponding to a random TBH.

Is the result nonzero? Comments?
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Green’s Functions in Many-Body Systems
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Definitions

Summary. The Green’s functions defined earlier are recast in a second quantized
form. The resulting expressions can easily be generalized for the case where there
are many interacting particles. The time evolution of the operators involves now the
interaction terms in the Hamiltonian. As a result, the generalized Green’s functions
obey differential equations containing extra terms that depend on more complicated
Green’s functions.

10.1 Single-Particle Green’s Functions in Terms
of Field Operators

The Green’s function formalism that has been developed up to now is ap-
propriate for the problem of a single quantum particle moving in an external
potential or for the propagation of a classical wave. Quite often we are dealing
with systems involving many quantum particles interacting with each other
or with quantized versions of classical waves. It is possible to generalize the
definition of the Green’s functions to obtain from them important physical
information about the properties of these interacting many-particle systems.
Such generalization is achieved in two steps. We first reexpress the single-
body Green’s functions (which we studied in the previous chapters) in the
second quantization formalism, which is the most convenient language for
the description of many-body systems [19, 20, 113, 114, 133, 418]. We can then
generalize quite easily the definition of the Green’s functions, as we shall see
below.

In Appendix I we present very briefly the highlights of the second quan-
tization formalism for two characteristic and very important cases: (1) the
case of the field ψ(r, t) obeying the Schrödinger equation (first order in time);
(2) the case of the field u(r, t) obeying the wave equation (second order in
time). We express first the various Green’s functions for the wave equation in
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terms of the field operator u(r, t). The field u(r, t) can be expressed in terms
of creation and annihilation operators b†k and bk as follows (Appendix I):

u(r, t) =
∑

k

√
!c2

2ωkΩ

{
b†k exp [i (ωkt − k · r)]

+bk exp [−i (ωkt − k · r)]} . (10.1)

The above time dependence of the operator u(r, t) results from the general
time evolution equation involving the commutator [u,H] ≡ uH−Hu

i!∂u (r, t)
∂t

= [u(r, t),H] , (10.2)

which can be solved formally to give

u(r, t) = eiHt/!u(r, 0)e−iHt/! ; (10.3)

substituting in (10.3) the noninteracting Hamiltonian

H =
∑

k

!ωk

(
b†kbk +

1
2

)
, (10.4)

we obtain (10.1) by taking into account the commutation relations (I.23)
obeyed by b†k and bk. Since we ascribe the time dependence entirely to the
operators and not at all to the state vectors, we are working within the so-
called Heisenberg picture.

Now we express the various gs and g̃s associated with the wave equation
and defined in Chap. 2 in terms of the operator u(r, t) given by (10.1). We
have

g̃(r, r′, t, t′) = − i
! ⟨0 | [u(r, t)u(r′, t′) − u(r′, t′)u(r, t)] | 0⟩

= − i
! [u(r, t), u(r′, t′)] , (10.5)

g̃>(r, r′, t, t′) = − i
! ⟨0 |u(r, t)u(r′, t′) | 0⟩ , (10.6)

g̃<(r, r′, t, t′) = − i
! ⟨0 |u(r′, t′)u(r, t) | 0⟩ , (10.7)

gR(r, r′, t, t′) = − i
!θ (t − t′) ⟨0 | [u(r, t), u(r′, t′)] | 0⟩ , (10.8)

gA(r, r′, t, t′) =
i
!θ (t′ − t) ⟨0 | [u(r, t), u(r′, t′)] | 0⟩ , (10.9)

g(r, r′, t, t′) = − i
! ⟨0 |T [u(r, t)u(r′, t′)] | 0⟩ . (10.10)

The Green’s function g− can be expressed in terms of gR, gA, and g as g− =
gR + gA−g. To prove the above relations we proceed as follows. For (10.5) we
note that g̃(r, r′, t, t′) is uniquely defined by the wave equation it obeys,
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(
∇2 − 1

c2

∂2

∂t2

)
g̃(r, r′, t, t′) = 0 . (10.11)

and the initial conditions g̃(r, r′, t, t) = 0 and ˙̃g(r, r′, t, t) = −c2δ (r − r′).
These initial conditions follow immediately from (2.48). All we need to show
is that the rhs of (10.5) obeys the same equation and the same initial condi-
tions. The wave equation (10.11) is obeyed by the rhs of (10.5) because the
operator u(r, t) obeys it by definition. The initial conditions are obeyed as
a consequence of the commutation relation (I.21). Thus (10.5) is proved. Note
that the unequal time commutator [u(r, t), u(r′, t′)], where u(r, t) is given
by (10.1), is a c-number, and as such there was no need to take its mean value
in the vacuum state. We prefer to use the mean value of [u(r, t), u(r′, t′)] in
defining g̃, first, because we can then generalize easily for interacting fields,
and second, because we conform more to the definition of the other gs and g̃s.
To prove (10.6) and (10.7), we use (10.1) on the rhs of (10.6,10.7), and we take
into account that bk |0⟩ = 0 and

[
bk, b†k′

]
= δkk′ ; we find after some simple

algebra that the rhs of (10.6) and (10.7) are, respectively,

− ic
2

∑

k

(
eik · r/

√
Ω

)(
e−ik · r′

/
√

Ω
)

k
e−ick(t−t′)

and

−ic
2

∑

k

(
eik · r/

√
Ω

)(
e−ik · r′

/
√

Ω
)

k
eick(t−t′) .

These expressions coincide with the expressions (2.45) and (2.46), which were
obtained previously for g̃> and g̃<. To prove this last statement, take into
account that for the present case L = −∇2, λn = k2, and φn(r) = eik · r/

√
Ω.

The proof of (10.8) and (10.9) follows immediately from (10.5), (2.42), and
(2.43). Finally, the proof of (10.10) follows by recalling the definition of the
chronological operator T ,

T [u(r, t)u(r′, t′)] =
{

u(r, t)u(r′, t′) , t > t′,
u(r′, t′)u(r, t) , t < t′, (10.12)

and by taking into account (10.6), (10.7), and (2.41). We have thus succeeded
in expressing the various gs and g̃s for the wave equation in terms of the vac-
uum expectation values of bilinear combinations of the field operator u(r, t),
which obeys the wave equation. The relations (10.5)–(10.10) are valid for the
general case where the gs and g̃s are associated with the general linear second-
order equation

(
−∂2/c2∂t2 − L

)
φ = 0 and u(r, t) obeys the same equation

and the commutation relations (I.21).
Let us now try to express the gs and g̃s of a first-order equation (as the

Schrödinger equation) in terms of the field operators ψ and ψ†. In writing
expressions analogous to (10.5)–(10.10) we must take into account that the
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operator ψ is not Hermitian and that it may satisfy an anticommutation
(instead of commutation) relation; furthermore, its time dependence is

ψ(r, t) =
∑

n

anψn (r) exp (−iEnt/!) , (10.13)

ψ†(r, t) =
∑

n

a†
nψ∗

n (r) exp (iEnt/!) . (10.14)

Again this time dependence stems from the relation

ψ(r, t) = eiHt/!ψ(r, 0)e−iHt/! , (10.15)
ψ†(r, t) = eiHt/!ψ†(r, 0)e−iHt/! , (10.16)

where
H =

∑

n

Ena†
nan , (10.17)

and the creation and annihilation operators, a†
n and an, obey the relation

(I.22).
In analogy to (10.5)–(10.10) we define for the fields ψ(r, t) and ψ†(r, t′)

the following g̃s and gs:

g̃(r, r′, t, t′) = − i
!

〈
0

∣∣ [ψ(r, t)ψ†(r′, t′) ∓ ψ†(r′, t′)ψ(r, t)
] ∣∣ 0

〉

= − i
!

[
ψ(r, t), ψ†(r′, t′)

]
∓ , (10.18)

g̃>(r, r′, t, t′) = − i
!

〈
0

∣∣ψ(r, t)ψ†(r′, t′)
∣∣ 0

〉
, (10.19)

g̃<(r, r′, t, t′) = ∓ i
!

〈
0

∣∣ψ†(r′, t′)ψ(r, t)
∣∣ 0

〉
, (10.20)

gR(r, r′, t, t′) = − i
!θ (t − t′)

〈
0

∣∣∣
[
ψ(r, t), ψ†(r′, t′)

]
∓

∣∣∣ 0
〉

, (10.21)

gA(r, r′, t, t′) =
i
!θ (t′ − t)

〈
0

∣∣∣
[
ψ(r, t), ψ†(r′, t′)

]
∓

∣∣∣ 0
〉

, (10.22)

g(r, r′, t, t′) = − i
!

〈
0

∣∣T
[
ψ(r, t)ψ†(r′, t′)

] ∣∣ 0
〉

, (10.23)

where
[A, B]∓ = AB ∓ BA (10.24)

and

T
[
ψ(r, t)ψ†(r′, t′)

]
=

{
ψ(r, t)ψ†(r′, t′) , t > t′ ,

±ψ†(r′, t′)ψ(r, t) , t < t′ , (10.25)

where the upper sign refers to bosons and the lower sign to fermions. It is easy
to see that if the field operator ψ were Hermitian and were corresponding to
bosons, then relations (10.18)–(10.23) would be identical to (10.5)–(10.10). We
now show that the quantities defined by (10.18)–(10.23) are identical to the
Green’s functions g+, g−, and g̃ defined in Chap. 2 for a first-order equation.
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We note first that g̃< = 0 because ψ |0⟩ = 0. Next g̃> = g̃ for the same
reason. We now show that g̃ as defined by (10.18) coincides with the g̃ defined
in Chap. 2 [see, e.g., (2.13)]. Both g̃s satisfy the same equation (Schrödinger
equation) and obey the same initial condition, g(r, r′, t, t) = −iδ (r − r′) !
(for the Schrödinger case, c = 1/!, L = H, λn = En). We can easily see that

g(r, r′, t, t′) = gR(r, r′, t, t′) = θ (t − t′) g̃(r, r′, t, t′) = g+(r, r′, t, t′) ;

the last relation follows from (2.10). Similarly, g−(r, r′, t, t′) = gA(r, r′, t, t′).
Hence, in the case of a noninteracting field obeying a first-order (in time)
equation, the g̃s and gs defined in terms of the vacuum expectation values of
bilinear combinations of field operators ψ and ψ† are related to the g+, g−,
and g̃ associated with the same equation as follows:

g+(r, r′, t, t′) = g(r, r′, t, t′) = gR(r, r′, t, t′) , (10.26)
g−(r, r′, t, t′) = gA(r, r′, t, t′) , (10.27)

g̃(r, r′, t, t′) [Eq. (2.9)] = g̃(r, r′, t, t′) [Eq. (10.18)] = g̃>(r, r′, t, t′) , (10.28)
g̃<(r, r′, t, t′) = 0 . (10.29)

The reader may wonder why we have introduced three gs and three g̃s since
actually there are in the present case only two independent gs and one in-
dependent g̃. The reason is that when we generalize our definition to the
many-particle systems, all three gs and three g̃s become independent.

10.2 Green’s Functions for Interacting Particles

We now generalize the definition of Green’s functions to systems of many
interacting particles that are described by a Hamiltonian. We first define var-
ious gs and g̃s for the Schrödinger case characterized by the field operators
ψ†(r) and ψ(r). The time dependence of these operators in the Heisenberg
picture is given by the general equations (10.15) and (10.16). In what fol-
lows we assume for simplicity that there is no external potential felt by the
particles, i.e., the quantity Ve introduced in Appendix I is zero. We also take
! = 1 so that we can use frequencies or energies indiscriminately. Furthermore,
we write x for the four-vector r, t, and we denote by f (x, x′) the function
f(r, r′, t, t′), where f is any of the gs or g̃s. For the sake of simplicity we
omit the spin indices throughout the discussion. Because there is no external
potential, the Hamiltonian is invariant under translation in space or time.
This implies that all Green’s functions depend on the difference x − x′. The
definitions of the various gs and g̃s are the following:

g̃ (x, x′) = g̃ (x − x′) ≡ −i
〈[

ψ(x), ψ† (x′)
]
∓

〉
, (10.30)

g̃> (x, x′) = g̃> (x − x′) ≡ −i
〈
ψ(x)ψ† (x′)

〉
, (10.31)
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g̃< (x, x′) = g̃< (x − x′) ≡ ∓i
〈
ψ† (x′) ψ(x)

〉
, (10.32)

gR (x, x′) = gR (x − x′) ≡ −iθ (t − t′)
〈[

ψ(x), ψ† (x′)
]
∓

〉
, (10.33)

gA (x, x′) = gA (x − x′) ≡ iθ (t′ − t)
〈[

ψ(x), ψ† (x′)
]
∓

〉
, (10.34)

g (x, x′) = g (x − x′) ≡ −i
〈
T

[
ψ(x)ψ† (x′)

]〉
, (10.35)

where the upper sign refers to bosons and the lower to fermions. The sym-
bol ⟨A⟩ denotes thermal average of the arbitrary quantity A over the grand
canonical ensemble:

⟨A⟩ =
∑

i ⟨i |A | i⟩ exp [−β (Ei − µNi)]∑
i exp [−β (Ei − µNi)]

=
Tr

{
Ae−β(H−µN)

}

Tr
{
e−β(H−µN)

} , (10.36)

where H is the total Hamiltonian of the system, N is the operator of the total
number of particles, µ is the chemical potential, β = 1/kBT is the inverse
temperature, and {|i⟩} are the common eigenfunctions (in the Heisenberg
picture) of H and N with eigenvalues Ei and Ni, respectively. In the limit
T → 0 we have

⟨A⟩ → ⟨Ψ0 |A |Ψ0⟩ as T → 0+ , (10.37)

where |Ψ0⟩ is the ground state (in the Heisenberg picture) of the whole sys-
tem. Thus the generalization from (10.18)–(10.23) to (10.30)–(10.35) consists
in taking the actual time development of the operators ψ(x) and ψ† (x′) [in-
stead of (10.13)] and in calculating the averages over the actual state of the
system (instead of the vacuum). Obviously, if no particles are present in the
system, the g̃s and gs defined by (10.30)–(10.35) reduce to those defined by
(10.18)–(10.25), which, as we have seen, are identical to the gs and g̃s defined
in Chap. 2. In other words, we can say by inspection of (10.18)–(10.25), that
the gs and g̃s defined in Chap. 2 describe the propagation of a single particle
from x′ to x in the absence of other particles. On the other hand, the gs and
g̃s defined by (10.30)–(10.35) describe the propagation of a single particle (or
hole) from x′ to x (or x to x′) in the presence of other particles. For exam-
ple, g̃>(x, x′) from (10.31) can be interpreted as the probability amplitude of
finding at x an extra particle that was added in our system at x′ without any
other modification in our system; thus, g̃> describes the propagation of an
extra particle added to our system (such propagation has physical meaning
for t > t′). Similarly, g̃<(x, x′) describes the propagation of a hole from x
to x′. It follows that g(x, x′) describes the propagation of an extra particle
when t > t′ and the propagation of a hole when t′ > t. If the system is the
vacuum, as in (10.18)–(10.23), we cannot have holes, and as a result g̃< = 0.
On the other hand, for the general case (10.32) a hole can be created (i.e.,
a particle can be eliminated) and hence g̃< is not, in general, zero.

The various g̃s and gs defined by (10.30)–(10.35) are related to each other
in exactly the same way as the g̃s and gs introduced in Chap. 2 for the second-
order (in time) equation, i.e., by (2.38)–(2.44).
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We introduce also the Fourier transform of f(x − x′) with respect to the
variable ϱ = r − r′ and with respect to the four-vector x− x′, where f is any
of the g̃s or gs, i.e.,

f (k, τ) =
∫

dϱ e−ik ·ϱf (x − x′) (10.38)

and
f (k, ω) =

∫
dϱdτ e−ik ·ϱ+iωτf (x − x′) , (10.39)

where τ = t − t′. The Fourier transform f (k, ω) is the most widely used.
The (k, τ) Fourier transforms can be expressed in terms of the a†

k and ak

operators, creating and annihilating a particle with momentum k as follows:

g̃> (k, τ) = −i
〈
ak (τ + t′) a†

k (t′)
〉

(10.40)

with similar expressions for the other g̃s and gs. Equation (10.40) can be
proved using (I.29), which relates ψ(r) and ψ†(r′) to ak′ and a†

k′′ . Again,
ak(t) = exp (iHt) ak exp (−iHt) and a†

k(t) = exp (iHt) a†
k exp (−iHt). One can

use the relations (10.30)–(10.35) to define the Green’s functions associated
with any field. In particular, for the case of longitudinal acoustic (LA) phonons
it is customary to use the scalar field φ(r, t), which is real and depends on
the LA phonon creation and annihilation operators b†k and bk as in (I.46). We
have again that

φ(r, t) = eiHtφ (r, 0) e−iHt . (10.41)

Denoting by D the Green’s functions associated with the LA phonon field, we
have, e.g.,

D (x, x′) = D (x − x′) = −i ⟨T [φ(x)φ (x′)]⟩ , (10.42)

with similar expressions for DR, DA, D̃, D̃>, and D̃<. Again the D̃s and Ds
are related to each other by (2.38)–(2.43), i.e., in exactly the same way as the
single-particle Green’s functions.

In the case where the total Hamiltonian H involves interactions, there is
a basic difference between the Green’s function defined in this section and
those defined in Chap. 2. In the presence of interaction the field ψ (or φ) does
not obey the same equation as in the noninteracting case. As a result, the
differential equations obeyed by the g̃s or gs are more complicated than those
examined in Chap. 2. To be more specific, consider the Schrödinger case with
a total Hamiltonian H = T +Vi, where T is the kinetic energy given by (I.32)
and Vi is the interaction part given by (I.35). In this case we have shown in
Appendix I that

(
i
∂

∂t
+

∇2

2m

)
ψ (r, t) =

∫
dr′v (r − r′)ψ† (r′, t)ψ (r′, t)ψ (r, t) . (10.43)

Thus, the application of the operator i∂/∂t + ∇2
r/2m on ψ(r, t) does not

produce zero as in the noninteracting case but an extra term involving the
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interaction potential v and three ψ (or ψ†). As a result of this extra term,
application of i∂/∂t + ∇2

r/2m on g(x, x′) will give
(

i
∂

∂t
+

∇2

2m

)
g(x, x′)

= δ(x − x′) ± i
∫

d4x1v (r − r1) g2

(
x, x1; x′, x+

1

)∣∣
t1=t

, (10.44)

where x+
1 means r1, t1+s as s → 0+ and g2, the two-particle Green’s function,

is defined as

g2 (x1,x2; x′
1, x

′
2) = (−i)2

〈
T

[
ψ (x1)ψ (x2)ψ† (x′

2)ψ† (x′
1)

]〉
, (10.45)

where the chronological operator T arranges the operators in chronological
order so that the earliest time appears on the right and the latest on the left. In
addition, for fermions only, we introduce a factor±1 depending on whether the
time-ordered product is an even or odd permutation of the original ordering.
Thus, for t1 > t2 > t′1 > t′2, we have that

g2(x1, x2; x′
1, x

′
2) =

〈
ψ (x1) ψ (x2) ψ† (x′

1)ψ† (x′
2)

〉
;

in this case, g2 describes the propagation of two extra particles added to our
system. Equation (10.44) shows that in the presence of pairwise interactions
the differential equation obeyed by g(x, x′) involves an extra term depend-
ing on the two-particle Green’s function g2, which is unknown. In a similar
way, one finds that the differential equation for g2 involves the three-particle
Green’s function g3 and so on, where the n-particle Green’s function is de-
fined by

gn (x1, . . . , xn; x′
1, . . . , x

′
n) =

(−i)n
〈
T

[
ψ (x1) · · ·ψ (xn)ψ† (x′

n) · · ·ψ† (x′
1)

]〉
. (10.46)

Thus, the existence of interaction complicates the calculation of g in an es-
sential way: while in the noninteracting case g was determined by a single
differential equation (and the appropriate initial conditions), in the presence
of interactions we have an infinite hierarchy of equations, each connecting
a Green’s function of order n to one of order n+1. We postpone the question
of calculation of g until Chap. 12. In the next section we calculate g for the
special case where there are no interactions among the particles.

Since the various gs and g̃s are so closely interrelated, there is no need
to consider all of them. Most of the monographs on the subject develop the
whole formalism by using the causal Green’s function g defined by (10.35) or
(10.42). Some other authors (see, e.g., [419, 424]) prefer to work with gR.

In this section we have defined the various gs and g̃s for a system consisting
of many particles. From these Green’s functions one can obtain quantities of
physical importance. We will discuss this question in the next chapter.
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10.3 Green’s Functions for Noninteracting Particles

Consider first the Schrödinger case ψ(x). The Hamiltonian for noninteracting
particles is [see (I.32)]

H =
∑

k

εka†
kak , (10.47)

where εk = k2/2m. From the general equation

i
dak(t)

dt
= [ak(t),H]

we have in the present case

i
dak(t)

dt
= εkak(t) ,

which leads to
ak(t) = exp (−iεkt) ak . (10.48)

Substituting this into (10.40) we obtain

g̃> (k, t) = −i
〈
exp (−iεkt) aka†

k

〉
= −i exp (−iεkt)

(
1 ±

〈
a†

kak

〉)
. (10.49)

Similarly,
g̃< (k, t) = ∓i exp (−iεkt)

〈
a†

kak

〉
. (10.50)

The average number operator,
〈
a†

kak

〉
, is given by the Bose or Fermi function

for noninteracting particles:
〈
a†

kak

〉
= f∓ (εk) =

1
exp [β (εk − µ)] ∓ 1

, (10.51)

where µ is the chemical potential, β = (kBT )−1, and kB is the Boltzmann
constant. For the other gs and g̃s we have [using (2.40)–(2.43)]

g (k, t) =
{ −i exp (−iεkt) [1 ± f∓ (εk)] , t > 0 ,

∓i exp (−iεkt) f∓ (εk) , t < 0 , (10.52)

g̃ (k, t) = −i exp (−iεkt) , (10.53)
gR (k, t) = −iθ(t) exp (−iεkt) , (10.54)
gA (k, t) = iθ(−t) exp (−iεkt) . (10.55)

We see that, for noninteracting systems, the quantities g̃, gR, and gA do not
involve the temperature or µ and that they have exactly the same form as
in the case of a single particle moving in the vacuum. On the other hand,
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the quantities g̃>, g̃<, and g involve information pertaining not only to the
motion of the added particle (or hole) but to the state of the system as well.

For fermions in the limit T → 0 we have µ = εF = k2
F /2m; thus g(k, t)

becomes

g (k, t) =
{ −i exp (−iεkt) θ (k − kF ) , t > 0 ,

i exp (−iεkt) θ (kF − k) , t < 0 . (10.56)

For bosons, the limit T → 0 is more complicated because of the phenomenon
of Bose condensation [20].

Let us now calculate the Fourier transforms with respect to t. It is easy to
show that

g̃ (k, ω) = −2πiδ (ω − εk) , (10.57)

gR (k, ω) = lim
s→0+

1
ω + is − εk

, (10.58)

gA (k, ω) = lim
s→0+

1
ω − is − εk

. (10.59)

For T = 0 and for fermions we obtain from (10.56)

g (k, ω) = lim
s→0+

[
θ (k − kF )
ω + is − εk

+
θ (kF − k)
ω − is − εk

]

= lim
s→0+

1
ω − εk + isε̄ (k − kF )

, (10.60)

where ε̄(x) = 1 for x > 0 and −1 for x < 0. By defining the function

G (k, z) =
1

z − εk
, (10.61)

we can rewrite (10.58)–(10.60) as

gR (k, ω) = lim
s→0+

G (k, ω + is) , (10.62)

gA (k, ω) = lim
s→0+

G (k, ω − is) , (10.63)

g (k, ω) = lim
s→0+

G [k, ω + isε̄ (ω − εF )] . (10.64)

Equations (10.58)–(10.60) can be proved by applying the residue theorem to
show that the inverse Fourier transform of gR, gA, and g give (10.54)–(10.56).

We consider next the Green’s functions for the LA phonon field φ(x). As
was discussed in Appendix I, φ(x) can be expressed in terms of the phonon
creation and annihilation operators b†k and bk as follows:

φ(x) =
∑

k

√
ωk

2Ω

(
b†keikx + bke−ikx

)
, (10.65)
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where kx = ωkt − k ·r and the summation over k is restricted by |k| ≤ kD.
In obtaining (10.65) we have used the fact that the phonons do not interact,
i.e., that their Hamiltonian is H =

∑
k ωk(b†kbk + 1/2). Substituting (10.65)

into the definition of D̃>(x, x′), we have

D̃>(x, x′) = −i ⟨φ(x)φ (x′)⟩

=
−i
2Ω

∑

kk′

√
ωkωk′

[
exp (−ikx + ik′x′)

〈
bkb†k′

〉

+ exp (ikx− ik′x′)
〈
b†kbk′

〉]
. (10.66)

Taking into account that
〈
b†kbk′

〉
=

〈
bk′b†k

〉
− δkk′ = δkk′nk = δkk′ (exp (βωk) − 1)−1 ,

we obtain

D̃>(x, x′) =
−i
2Ω

∑

k

ω(k)
[
eik(x−x′)nk + e−ik(x−x′) (1 + nk)

]
, (10.67)

[ω(k) ≡ ωk]; in the T = 0 limit we have

D̃>(x, x′) =
−i
2Ω

∑

k

ω(k)e−ik(x−x′) . (10.68)

The quantity D̃<(x, x′) can be obtained immediately from the relation

D̃<(x, x′) = D̃>(x′, x) .

We have then for D̃(x − x′)

D̃(x − x′) =
−i
2Ω

∑

k

ω(k)
[
e−ik(x−x′) − eik(x−x′)

]
(10.69)

= − 1
Ω

∑

k

ω(k) sin [k(x − x′)] .

The Green’s functions D, DR, and DA can then be obtained by applying
(2.41)–(2.43). Having obtained the various D(x− x′)s and D̃(x− x′)s, we can
calculate their Fourier transforms easily. We find

D̃ (k, ω) = −iπωk [δ (ω − ωk) − δ (ω + ωk)]
×θ (kD − k) , k ≡ |k| , (10.70)

DR (k, ω) =
ω2

k

(ω + is)2 − ω2
k

θ (kD − k) , (10.71)

DA (k, ω) =
ω2

k

(ω − is)2 − ω2
k

θ (kD − k) . (10.72)
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In the T → 0 limit we obtain for D(k, ω)

D(k, ω) =
ω2

k

ω2 − ω2
k + is

θ (kD − k) . (10.73)

The factor θ(kD − k) = θ(ωD − ωk), where ωD = ckD comes from the re-
striction k ≤ kD in the basic expression (10.65); physically, it is justified by
the requirement that there are as many degrees of freedom in our continuous
elastic model as there are degrees of freedom in an actual (discrete) solid.

10.4 Summary

Let ψ(r) and ψ†(r) be the field operators resulting from quantizing (second
quantization) the wave function (and its complex conjugate) corresponding
to the Schrödinger equation. We take ! = 1 and (r, t) = x and omit any
external potential; we also omit for simplicity any spin indices. ψ(r, t) =
exp(iHt)ψ(r) exp(−iHt) with an identical expression for ψ†(r, t), where H
is the total Hamiltonian describing our system. We define the one-particle
Green’s functions for our many-body system as follows:

g̃ (x, x′) = −i
〈[

ψ(x), ψ† (x′)
]
∓

〉
, (10.30)

g̃> (x, x′) = −i
〈
ψ(x)ψ† (x′)

〉
, (10.31)

g̃< (x, x′) = ∓i
〈
ψ† (x′)ψ(x)

〉
, (10.32)

gR (x, x′) = θ (t − t′) g̃ (x, x′) , (10.33)
gA (x, x′) = −θ (t′ − t) g̃ (x, x′) , (10.34)
g (x, x′) = −i

〈
T

[
ψ(x)ψ† (x′)

]〉
, (10.35)

where [A, B]∓ = AB ∓ BA; the upper sign refers to bosons and the lower to
fermions; the chronological operator T is defined as

T
[
ψ(x)ψ†(x′)

]
=

{
ψ(x)ψ†(x′) , t > t′ ,

±ψ†(x′)ψ(x) , t < t′ . (10.25)

The symbol ⟨⟩ denotes the thermal average over the grand canonical ensemble,
i.e.,

⟨A⟩ =
Tr

{
Ae−β(H−µN)

}

Tr
{
e−β(H−µN)

} . (10.36)

For zero temperature ⟨A⟩ = ⟨Ψ0 |A |Ψ0⟩, where |Ψ0⟩ is the ground state (in
the Heisenberg picture) of our system.

The Green’s functions defined above describe the propagation of an ex-
tra particle (or hole) added to our system that is in thermal equilibrium.
If our system contains no particles at all, the Green’s functions defined by
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(10.30)–(10.35) reduce to those introduced in Chap. 2, which describe the
propagation of a particle in the vacuum. Using the commutation (anticom-
mutation) relations of the field operators, one can prove that the g̃s and gs
defined by (10.30)–(10.35) obey (2.38)–(2.44) as the Green’s functions intro-
duced in Chap. 2. Because the various gs and g̃s are interrelated, one can limit
oneself to one of them; the most commonly used is the causal g defined by
(10.35); a few authors use the retarded gR.

The time evolution of the field operator ψ(x) depends on the total Hamil-
tonian, which involves the other particles of the system if interactions are
present. Thus, for interacting systems the differential equations obeyed by
the gs or g̃s contain extra terms that involve more complicated Green’s func-
tions.

In practical calculations it is more convenient to work with the Fourier
transforms of the various gs and g̃s with respect to the four-variable x − x′.

The definitions (10.30)–(10.35) can be applied to any quantized field. An
example is given for the scalar field of the longitudinal acoustic phonons in
a continuous elastic medium.

Finally, we calculated the Green’s function for the simple case of nonin-
teracting Schrödinger or phonon fields.

Further Reading

• Second quantization is presented in several books either by following
a field-theoretical approach as in Appendix I (see, e.g., the book by
Schiff [19] or the book by Mahan [114]) or by introducing creation and
annihilation operators as a starting point (see, e.g., the books by Fetter
and Walecka [20], Abrikosov et al. [113], and Taylor and Heinonen [133]).

• Green’s functions for interacting particles are defined and extensively used
in several books dealing with many-body theory: the book by Kadanoff
and Baym [420] uses a notation similar to ours; the reader may find it
profitable to consult the books by Mahan [114], Fetter and Walecka [20],
and Abrikosov et al. [113].

Problems

10.1. Prove (I.22) and (I.23) starting from (I.20) and (I.21) and (I.12) and
(I.13).

10.2. Show that the ordering of the operators in (I.35) is the correct one by
calculating the matrix element ⟨Ψ2 |Vi |Ψ2⟩ of Vi, where Ψ2 is a state with two
particles.

10.3. Prove (I.38) starting from (I.32) and (I.35).
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10.4. Following the procedure outlined in Appendix I and starting from the
Lagrangian density

ℓ =
1
2
ϱḋ2 − 1

2
B (∇ ·d)2 ,

prove (I.39) and (I.46) by taking into account that ∇× d = 0.

10.5. Prove (10.43) and (10.44).

10.6s. Using the invariance of the trace to cyclic permutations and the com-
mutation relations (I.22) show that the Bose–Einstein and the Fermi–Dirac
distributions are given by

〈
a†

nan

〉
=

1
exp [β (εn − µ)] ∓ 1

for noninteracting particles.
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Properties and Use of the Green’s Functions

Summary. The Green’s functions defined in Chap. 10 have analytical properties
that are similar but not identical to the Green’s functions defined in Chap. 2 corre-
sponding to second-order (in time) differential equations. They can all be expressed
in terms of a generalized DOS and the Fermi or Bose thermal equilibrium distribu-
tions. From the Green’s functions (or the generalized DOS) one can easily obtain all
thermodynamic quantities and linear response functions like the conductivity. The
poles of an appropriate analytic continuation of G in the complex E-plane can be
interpreted as the energy (the real part of the pole) and the inverse lifetime (the
imaginary part of the pole) of quasiparticles. The latter are entities that allow us to
map an interacting system to a noninteracting one.

11.1 Analytical Properties of gs and g̃s

Let us consider first the quantity g̃>(k, t). We have

g̃>(k, τ) = −i
〈
ak(t)a†

k (t′)
〉

= −i
∑

m

ϱm

〈
m

∣∣∣ ak(t)a†
k (t′)

∣∣∣m
〉

= −i
∑

mℓ

ϱm

〈
m

∣∣ eiHtake−iHt
∣∣ ℓ

〉〈
ℓ
∣∣∣ eiHt′a†

ke−iHt′
∣∣∣m

〉

= −i
∑

mℓ

ϱm exp [−iτ (Eℓ − Em)]
∣∣∣
〈
ℓ
∣∣∣ a†

k

∣∣∣ m
〉∣∣∣

2
, (11.1)

where |m⟩ and |ℓ⟩ are eigenfunctions of the total H and N , i.e.,

H |m⟩ = Em |m⟩ , H |ℓ⟩ = Eℓ |ℓ⟩ ,

N |m⟩ = Nm |m⟩ , N |ℓ⟩ = Nℓ |ℓ⟩ ,

ϱm =
exp [−β (Em − µNm)]

Tr {exp [−β (H− µN)]} ,

τ = t − t′, and the summation extends over all eigenstates.
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By taking the Fourier transform with respect to τ we find

g̃>(k, ω) = −2πi
∑

mℓ

ϱm

∣∣∣
〈
ℓ
∣∣∣ a†

k

∣∣∣ m
〉∣∣∣

2
δ (ω + Em − Eℓ) . (11.2)

In a similar way we can show that

g̃<(k, ω) = ∓2πi
∑

mn

ϱm |⟨n |ak |m⟩|2 δ (ω + En − Em) . (11.3)

Equations (11.2) and (11.3) become in the T = 0 limit

g̃>(k, ω) = −2πi
∑

ℓ

∣∣∣
〈
ℓ
∣∣∣ a†

k

∣∣∣ Ψ0

〉∣∣∣
2

δ (ω + Eg − Eℓ) , (11.2′)

g̃<(k, ω) = ∓2πi
∑

n

|⟨n |ak |Ψ0⟩|2 δ (ω + En − Eg) , (11.3′)

where |Ψ0⟩ is the ground state and Eg the ground state energy.
One can easily show from (11.2) and (11.3) that

g̃<(k, ω) = ±e−β(ω−µ)g̃>(k, ω) . (11.4)

In the T = 0 limit, (11.4) becomes

g̃<(k, ω) = 0 for ω > µ ,

g̃>(k, ω) = 0 for ω < µ . (11.4′)

Equation (11.4′) can be proved directly from (11.2′) and (11.3′) by taking into
account that µ = Eg(N + 1) − Eg(N) = Eg(N) − Eg(N − 1).

Let us now define a generalized DOS-like quantity A(k, ω) as follows:

A(k, ω) ≡ ig̃(k, ω) = i
[
g̃>(k, ω) − g̃<(k, ω)

]
. (11.5)

Taking into account (11.4,11.5) we can express both g̃>(k, ω) and g̃<(k, ω) in
terms of A(k, ω). We find

g̃>(k, ω) = −iA(k, ω) [1 ± f∓(ω)] , (11.6)
g̃<(k, ω) = ∓iA(k, ω)f∓(ω) , (11.7)

where
f∓(ω) =

1
eβ(ω−µ) ∓ 1

(11.8)

is the Bose (Fermi) distribution. Equations (11.6,11.7) become in the T = 0
limit and for fermions

g̃>(k, ω) = −iA(k, ω)θ(ω − µ) , (11.6′)
g̃<(k, ω) = iA(k, ω)θ(µ − ω) ; (11.7′)
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for bosons the T = 0 limit is more complicated as a result of the phenomenon
of Bose condensation.

From (11.2), (11.3), and (11.5) it is easy to see that the generalized DOS-
like quantity A(k, ω) is real. For fermions it is always nonnegative. For bosons
it is nonnegative for ω > µ and nonpositive for ω < µ. One can show further
that A(k, ω) obeys the following sum rule:

∫
dω

2π
A(k, ω) = 1 . (11.9)

Equation (11.9) can be proved with the aid of (11.2), (11.3), and (11.5) or as
follows:

∫
dω

2π
A(k, ω) = i

∫
dω

2π

∫
dt eiωt

[
g̃>(k, t) − g̃<(k, t)

]

= i
[
g̃>(k, 0) − g̃<(k, 0)

]
=

〈
aka†

k ∓ a†
kak

〉
= 1 .

Consider now the Green’s function G(k, ω) defined by

G(k, ω) =
∫ ∞

−∞

dω′

2π

A(k, ω′)
ω − ω′ . (11.10)

The function G(k, ω) is analytic in the complex ω-plane and has singular-
ities (branch cuts, in general) along those portions of the real axis where
A(k, ω) ̸= 0. From (11.10) and (11.5) it follows that

G(k, ω + is) − G(k, ω − is) = −iA(k, ω) = g̃(k, ω) , (11.11)

where ω is real and s → 0+. In view of (11.11) it follows immediately that
g̃(k, t) is given by integrating e−iωτG/2π along the contour shown in Fig. 11.1f.

Now we can show that gR(k, τ) can be written as

gR(k, τ) =
∫

C

dω

2π
e−iωτG(k, ω) , (11.12)

where the integration path C is shown in Fig. 11.1b. The proof is as follows.
For negative τ we can close the integration path by a semicircle in the upper
half-plane, and consequently gR(k, t) = 0 for τ < 0, as it should be. For τ > 0
we can close the path by a semicircle in the lower half-plane and the resulting
contour can be deformed as in Fig. 11.1f. Hence for τ > 0

∫

C

dω

2π
e−iωtG(k, ω) =

∫ ∞

−∞

dω

2π
e−iωτ [G(k, ω + is) − G(k, ω − is)]

=
∫ ∞

−∞

dω

2π
e−iωτ g̃(k, ω)

= g̃(k, τ) = g̃R(k, τ) .
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✲
✲ ✲

µ
Re{ω}

ω-plane

g ③(a) T = 0, fermions

✲ ✲

µ
Re{ω}

ω-plane

gR ✿(b)

✲ ✲

µ
Re{ω}

ω-plane

gA
③(c)

✲
✛ ✲

µ
Re{ω}

ω-plane

g̃> ✿
(d) T = 0, fermions

✛
✲ ✲

µ
Re{ω}

ω-plane

g̃<
③(e)

T = 0, fermions

✲
✛ ✲

µ
Re{ω}

ω-plane

g̃ ③✿(f)

Fig. 11.1. Integration paths in the complex ω-plane for obtaining the various g(τ )s
and eg(τ )s. The quantities g, eg>, and eg< are given by the corresponding integrals
only for T = 0. The singularities of the integrand are located on the real ω-axis

In a similar way we can show that

gA(k, τ) =
∫

C

dω

2π
e−iωτG(k, ω) , (11.13)

where path C is shown in Fig. 11.1c.
For the Fourier transforms we have

gR(k, ω) = lim
s→0+

G(k, ω + is) , (11.14)

gA(k, ω) = lim
s→0+

G(k, ω − is) , (11.15)

where ω is real. Equations (11.14) and (11.15) can be written by taking into
account (11.10) as follows:
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Re
{
gR(k, ω)

}
= Re

{
gA(k, ω)

}
= P

∫ ∞

−∞

dω′

2π

A(k, ω)
ω − ω′ , (11.16)

Im
{
gR(k, ω)

}
= −Im

{
gA(k, ω)

}
= −1

2
A(k, ω) . (11.17)

From the general relation g = gR + g̃< [see (2.39)], with the aid of (11.7)
and (11.17) we obtain for real ω

Re {g(k, ω)} = Re
{
gR(k, ω)

}
= Re

{
gA(k, ω)

}
(11.18)

Im {g(k, ω)} = −1
2
A(k, ω) ∓ A(k, ω)f∓(ω)

= −A(k, ω)
[
1
2
± f∓(ω)

]

= Im
{
gR(k, ω)

}
[1 ± 2f∓(ω)]

= Im
{
gR(k, ω)

}
×

{
coth
tanh

[
β(ω − µ)

2

]
. (11.19)

Equation (11.19) in the limit T = 0 and for fermions becomes

Im {g(k, ω)} = ε̄(ω − µ)Im
{
gR(k, ω)

}
= −1

2
ε̄(ω − µ)A(k, ω)

= lim
s→0+

Im {G (k, ω + isε̄(ω − µ))} . (11.19′)

From (11.19′) and (11.18) it follows that, for T = 0 and for fermions, g(k, τ)
can be obtained by integrating g(k, ω) · e−iωτ/2π along the path shown in
Fig. 11.1a. By taking into account (11.6′), (11.7′), and (11.11), we see that
g̃>(k, τ) and g̃<(k, τ) (for T = 0 and for fermions) are given by integrating
G(k, τ) ·
e−iωτ/2π along the contours shown in Fig. 11.1d and e, respectively. With
the aid of (11.18), (11.16), and 11.19) we can express the Re {g(k, ω)} in
terms of Im {g(k, ω)} as follows:

Re {g(k, ω)} = −2P
∫ ∞

−∞

dω′

2π

Im {g(k, ω′)}
ω − ω′ ×

{
tanh
coth

[
β(ω − µ)

2

]
. (11.20)

We conclude this section with some remarks.

1. We see that all gs and g̃s can be expressed in terms of a single quantity,
namely, A(k, ω) = ig̃(k, ω), or in terms of the limiting values as s → 0+ of
an analytic function G(k, ω+is). Note that g̃(k, ω), gR(k, ω), and gA(k, ω)
depend only on A(k, ω) [or limG(k, ω + is)]; on the other hand, g(k, ω),
g̃>(k, ω), and g̃<(k, ω) involve both A(k, ω) and universal thermal factors;
in other words, g̃>, g̃<, and g are not simply the limits of G(k, ω ± is) as
s → 0+ (except when T = 0 and for fermions). This means that g̃>(k, ω),
g̃<(k, ω), and g(k, ω) cannot be continued off the real ω-axis to produce
functions that are analytic everywhere off the real ω-axis. This could be
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a serious drawback when one uses the residue theorem to evaluate integrals
or when one attempts to uniquely determine g(k, ω) by continuing off the
real ω-axis the equation obeyed by g(k, ω). We shall return to this last
point in the next chapter.

2. Note the close analogy of the analytic properties of the various gs and
g̃s for a many-body system and the gs and g̃s defined in Chap. 2.
Thus the quantity A(k, ω) is the analog of 2πϱ(k, ω), where ϱ(k, E)
is the density of states per unit volume in the k-space. The function
G(k, z) =

∫
dω′(z − ω′)−1A(k, ω′)/2π is the analog of the diagonal ma-

trix element (in the k-representation) of the Green’s function G(k, z) =〈
k

∣∣ (z −H)−1
∣∣ k

〉
. Similarly, the quantities g̃, g̃>, g̃<, gR, gA, and g have

their counterparts for the single-particle case. One must keep in mind that
there are differences between the gs defined in Chap. 2 and those defined
in Chap. 10. We mention some: the ω = 0 point in the Chap. 2 case
corresponds to the ω = µ point in the Chap. 10 case (compare Fig. 2.2
and Fig. 11.1). This difference can be easily eliminated by slightly mod-
ifying the definition of Green’s function, i.e., by replacing H by H − µN
in (10.15) and (10.16). This replacement implies that ω → ω′ = ω − µ.
Many authors use this modified definition (see, e.g., [20,113]). The quan-
tities g̃>, g̃<, and g have the same analytic structure as the corresponding
functions defined in Chap. 2 only for fermions at T = 0. The quantity
ϱ(E) can become a δ-function in a proper representation, while A(ω) can-
not, in general, become a δ-function no matter what representation we
choose. Finally, we mention once more that the equations obeyed by the
many-body Green’s functions are not as simple as those obeyed by the gs
(or g̃s) of Chap. 2 because an extra term is present involving higher-order
Green’s functions.

3. In Table 11.1 we present the connection of our notation with that used
in various books [20, 113, 114, 130,135, 420, 421] on the subjects. All these
monographs deal mainly with the causal Green’s function g.

11.2 Physical Significance and Use of gs and g̃s

In this section we examine the question of what physical information can be
extracted from the various Green’s functions. The thermodynamic average of
any quantity that is the sum of one-body terms can be expressed immediately
in terms of the Green’s functions. As mentioned in Appendix I, such quantities
can be written in the second quantized formalism as

F =
∫

d3rψ† (r)F (r)ψ (r) , (11.21)

where F (r) is the first quantized one-particle operator. Examples of opera-
tors F are the kinetic energy T with T (r) = −∇2/2m, the total number of par-
ticles N with N(r) = 1, and the density operator n(r0) with n(r) = δ(r−r0).
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It follows from the definition of g̃< that

⟨F ⟩ = ±i
∫

d3r F (r) g̃< (r, t, r, t)

= ±i
∫

d3r F (r) lim
t′→t+

g (r, t, r, t′) . (11.22)

More specifically, we have the kinetic energy ⟨T ⟩ and the density ⟨n(r)⟩

⟨T ⟩ = ±i
∫

d3r lim
r′ → r
t′ → t+

[
−∇2

2m
g (x, x′)

]

= ±i
∑

k

∫ ∞

−∞

dω

2π
g̃< (k, ω)

k2

2m

=
∑

k

∫ ∞

−∞

dω

2π
A (k, ω) f∓(ω)

k2

2m
, (11.23)

⟨n(r)⟩ = ±i lim
t′→t+

g (r, t, r, t′)

=
∫

d3k

(2π)3

∫ ∞

−∞

dω

2π
A (k, ω) f∓(ω) . (11.24)

The density in k-space is

⟨n(k)⟩ =
〈
a†

kak

〉
=

∫ ∞

−∞

dω

2π
A (k, ω) f∓(ω) . (11.25)

Operators that involve summation over pairs of particles such as the inter-
action energy Vi (Appendix I), contain four ψs (two ψs and two ψ†s). These
operators can be expressed in terms of g2 and not g. However, the interaction
Hamiltonian Vi, which is connected through the Schrödinger equation with T ,
can be written in terms of g. To show this we use the basic equation (see
Appendix I)

(
i
∂

∂t
+

∇2

2m

)
ψ (r, t) =

∫
d3r1v (r − r1)ψ† (r1, t)ψ (r1, t)ψ (r, t) (11.26)

and its adjoint
(
−i

∂

∂t′
+

∇′2

2m

)
ψ† (r′, t′)

= ψ† (r′, t′)
∫

d3r2v (r′ − r2)ψ† (r2, t
′) ψ (r2, t

′) . (11.27)

Multiplying (11.26) from the left by ψ†(r′, t′)/4 and (11.27) from the right by
ψ(r, t)/4, subtracting the resulting equations, setting t′ = t and r′ = r and
integrating over r we obtain

1
4

∫
d3r

[(
i
∂

∂t
− i

∂

∂t′

) 〈
ψ† (r, t′)ψ (r, t)

〉]

t=t′
=

1
2
⟨T ⟩ + ⟨Vi⟩ . (11.28)
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Using (11.23) and the definition of g, we obtain from (11.28)

⟨Vi⟩ = ± i
2

∫
d3r lim

t′ → t+

r′ → r

[
i
∂

∂t
+

∇2
r

2m

]
g (x, x′)

=
∑

k

∫
dω

2π

1
2

(
ω − k2

2m

)
A (k, ω) f∓(ω) . (11.29)

Adding (11.23) and (11.29) we obtain for the total energy

⟨H⟩ = ± i
2

∫
d3r lim

t′ → t+

r′ → r

[
i
∂

∂t
− ∇2

r

2m

]
g (x, x′)

=
∑

k

∫
dω

2π

1
2

(
ω +

k2

2m

)
A (k, ω) f∓(ω) . (11.30)

To obtain all the other thermodynamic quantities it is enough to calculate
the grand partition function ZG ≡ Tr {exp[−β(H−µN)]} as a function of the
volume Ω, the chemical potential µ, and the temperature T ≡ 1/kBβ. ZG is
directly related to the pressure by the general thermodynamic equation

ZG = eβΩP . (11.31)

Furthermore, the pressure can be expressed in terms of the density as [420]

P (β, µ) =
∫ µ

−∞
dµ′n (β, µ′) . (11.32)

Substituting in (11.32) from (11.24) we have

P (β, µ) =
∫ µ

−∞
dµ′

∫
d3k

(2π)3

∫
dω

2π
A (k, ω) f∓(ω) , (11.33)

where both A (k, ω) and f∓(ω) depend, in general, on the inverse temperature
and the chemical potential µ′. Unfortunately, the integral over µ′ can rarely
be performed explicitly [420].

Another way to calculate ZG (which avoids this difficulty) is based on the
general thermodynamic relation [422]

〈
∂H
∂a

〉
= −Ω

∂P

∂a

∣∣∣∣
T,µ

, (11.34)

where a is any parameter in the total Hamiltonian H. We write for H

H = T + a Vi , (11.35)
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so that a = 0 corresponds to the noninteracting case and a = 1 corresponds
to the actual case. Taking into account (11.31), (11.34), and (11.35) we obtain

−β ⟨Vi⟩ =
∂

∂a
[ln (ZG)] . (11.36)

Integrating (11.36) over a and using (11.29), we have, finally,

ln (ZG) = βPΩ

= βP0Ω − β

∫ 1

0

da

a

∑

k

∫
dω

2π

1
2

(
ω − k2

2m

)
Aa (k, ω) f∓(ω) , (11.37)

where the subscript a in A(k, ω) denotes that Aa(k, ω) corresponds to the
Hamiltonian (11.35), and P0 is the pressure for the noninteracting system.

Another class of important physical quantities which are related to the
Green’s functions are the linear response functions introduced in §8.2.4. The
system is perturbed from equilibrium at t = t0 by an external Hamiltonian
H1(t) which has the form

H1(t) =
∫

d3rB (r, t) f (r, t) , (11.38)

where B(r,t) is an operator and f(r, t) is a c-number such that f(r, t) = 0
for t < t0. According to (8.38), the first order in H1 of the change, δ ⟨X⟩ =
⟨X⟩ − ⟨X0⟩, of an operator X (r, t), as a result of the application of H1, is
given by (for ! = 1):

δX (r, t) = −i
∫

dt′d3r′ ⟨[X (r, t) , B (r′, t′)]⟩ f (r′, t′) , (11.39)

where the time evolution of the operators X (r′, t) and B (r′, t′) can be de-
termined either by H0 or by H0 + H1, since we are interested in the linear
response in H1. For what follows we shall restrict ourselves to the usual case
where X = B. We have then

δ ⟨B(r, t)⟩ =
∫ ∞

−∞
dt′

∫
d3r′DR (r, t, r′, t′) f (r′, t′) . (11.39′)

Equation (11.39′) is the analog of (2.52) with ψ − φ replaced by δ ⟨B(r, t)⟩.
The quantity DR(x, x′) is

DR(x, x′) = −iθ (t − t′) ⟨[B(x), B (x′)]⟩ , (11.40)

i.e., it has the form of a retarded Green’s function with the field operator ψ
replaced by the operator B. A specific example of the above, directly related
to the one examined in §8.2.4, is the case of an external electrostatic poten-
tial φe(r, t) applied to a system of electrons (each of charge −e) placed in
a uniform positive background (to ensure overall electrical neutrality). In this
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case, B(r, t) = δn(r, t), where δn(r, t) is the deviation of the electronic den-
sity from its equilibrium value n0, f(r, t) = (−e)φe(r, t), and δ ⟨B(r, t)⟩ is
⟨δn(r, t)⟩. Thus the Fourier transform of (11.39′) takes the form

⟨δn(k, ω)⟩ = (−e)DR(k, ω)φe(k, ω) , (11.41)

where DR(k, ω) is the Fourier transform of DR(x, x′) with respect to the
variable x − x′ and

DR(x, x′) = −iθ (t − t′) ⟨[δn(x), δn (x′)]⟩
= −iθ (t − t′)

〈[(
ψ†(x)ψ(x) − n0

)
,
(
ψ† (x′)ψ (x′) − n0

)]〉

= −iθ (t − t′)
〈[

ψ†(x)ψ(x), ψ† (x′)ψ (x′)
]〉

. (11.42)

Equation (11.42) shows that DR(x, x′) is related to the two-particle Green’s
function g2. Taking into account that the external potential φe is related to
the external density ne with Poisson’s equation

φe(k, ω) = −4π
ene(k, ω)

k2
, (11.43)

and that the longitudinal dielectric function, ε(k, ω), is defined by

ε(k, ω) ≡ ene(k, ω)
ene(k, ω) + e ⟨δn(k, ω)⟩ , (11.44)

we can express ε(k, ω) in terms of DR as follows:

1
ε(k, ω)

− 1 =
4πe2

k2
DR(k, ω) . (11.45)

Since the longitudinal conductivity σ(k, ω) is related to ε(k, ω) by (8.15)

ε(k, ω) = 1 − 4π

iω
σ(k, ω) , (11.46)

we conclude that the longitudinal conductivity can be expressed in terms DR,
i.e., in terms of g2. The quantity δn(x) in (11.42) is related to the current op-
erator by the continuity equation; as a result, DR can be expressed in terms
of the current–current commutator. This is a special case of the fluctuation–
dissipation theorem [253], which connects the imaginary part of a response
function (which determines the dissipation of energy) to the square of the
fluctuation of the corresponding physical quantity. For more details on the
evaluation of the transverse and longitudinal conductivity the reader is re-
ferred to [113,135,423].

As we can see from (11.23), (11.24), (11.29), (11.30), (11.33), and (11.37),
the various thermodynamic quantities involve an integral of the type

I = lim
σ→0−

I(σ) = lim
σ→0−

∫
dω

2π
e−ωσF (ω)A(k, ω)f∓(ω) , (11.47)
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where F (ω) is a polynomial; the factor e−ωσ was introduced in order to allow
the transformations that follow. Taking into account (11.11) and subtracting
the contribution of the pole of f−(ω) at ω = µ we can write for I(σ)

I(σ) +
1
β

e−z0σF (z0)G (k, z0) = i
∫

C

dω

2π
e−ωσF (ω)G(k, ω)f∓(ω)

= i
∫

CR

dω

2π
e−ωσF (ω)G(k, ω)f∓(ω)

−i
∫

CA

dω

2π
e−ωσF (ω)G(k, ω)f∓(ω) , (11.48)

where z0 ≡ µ and the contour C = CR −CA and paths CR and CA are shown
in Fig. 11.1f,b,c, respectively. For fermions the last term of the lhs of (11.48)
must be taken as zero. The integral over the path CR, IR can be transformed
as shown in Fig. 11.2. The new path C1 + C2 + C3 + C4 avoids the poles of
the integrand in the upper ω-half-plane; these poles come from f∓(ω) and are
given by

zν = µ +
iπν

β

{
ν = 2n for bosons, (11.49a)
ν = 2n − 1 for fermions, (11.49b)

where n is a positive integer. Assuming that

−β < σ < 0 , (11.50)

we can easily show that the contributions from C1 and C4 vanish. Thus

IR(σ) = ∓ 1
β

∑

ν>0

exp (−zνσ) F (zν)G (k, zν) ; (11.51)

CR

C2 C3

C4

Re {ω}µ

C1

ω-plane

Im {ω}

CA

Fig. 11.2. The integration of e−ωσF (ω)G(k, ω)f∓(ω)/2π (see text) along the
path CR can be equivalently performed along the composite path C1 +C2 +C3 +C4
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in a similar way one shows that

IA(σ) = ± 1
β

∑

ν<0

e−zνσF (zν)G (k, zν) . (11.52)

Combining (11.48), and (11.51), and (11.52) we have

I(σ) = ∓ 1
β

∑

ν

e−zνσF (zν)G (k, zν) ,

I = ∓ 1
β

∑

ν

F (zν) G (k, zν) . (11.53)

Equation (11.53) shows that the thermodynamic quantities can be obtained
from the values of G(k, ω) at the special points zν given by (11.49). The
importance of this result stems from the fact that the quantities G(k, zν) are
easier to calculate than A(k, ω). We shall return to this point in the next
chapter.

The results of this section show that the quantity A(k, ω)/2π not only
reduces in the absence of interactions to the density of states ϱ(k, ω) per unit
volume in k-space but also allows the calculation of various thermodynamic
quantities in a way similar to the way that ϱ(k, ω) gives the thermodynamics
of noninteracting particles. Because of this property we can interpret the quan-
tity A(k, ω)/2π as a generalized density of states per unit frequency and unit
volume in k-space. Then, with the aid of (11.7), g̃<(k, ω) can be interpreted
(apart from a factor ±i) as the average number of particles per unit volume
in k–ω-space; similarly, with the aid of (11.6), g̃>(k, ω) can be interpreted as
the average number of states (per unit volume in k–ω-space) available for the
addition of an extra particle to the system.

In the absence of interactions and for a translationally invariant system,
we have

A(k, ω)
2π

= ϱ(k, ω) = δ
(
ω − ε0

k

)
, (11.54)

where for Schrödinger particles ε0
k = k2/2m. Equation (11.54) expresses sim-

ply the fact that in the absence of interactions a particle of momentum k
necessarily has energy ε0

k. A formal proof of (11.54) is obtained by combining
(11.11) with (10.57). Substituting (11.54) in the basic formulae of Sects. 11.1
and 11.2, we rediscover the results of Sect. 10.3 and the well-known thermo-
dynamic expressions for noninteracting particles.

11.3 Quasiparticles

Let us assume that A(k, ω) has a sharp peak at ω = εk; for simplicity we
assume further that the peak has a Lorentzian shape, i.e.,

A(k, ω) = Ab(k, ω) +
2 |γk|wk

(ω − εk)2 + γ2
k

. (11.55)
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Here Ab(k, ω) is the smooth background, εk the position of the maximum,
|γk| the width, and wk (0 < wk ≤ 1) the weight of the peak. It is natural to
attempt to interpret the peak as representing a quasiparticle of momentum k,
energy εk, and lifetime τk = 1/ |γk|; wk can be interpreted as the percentage of
a real particle participating in the creation of the corresponding quasiparticle.
The quasiparticle can be thought of as a dressed particle consisting in part
(wk) of a bare (real) particle and in part (1−wk) of a cloud of other particles
surrounding the bare one. As the interactions approach zero each quasiparticle
tends to the corresponding bare particle, i.e.,

εk → ε0
k , τk → ∞ , |γk| → 0+ , wk → 1 , Ab → 0 .

The concept of quasiparticle is of fundamental importance in analyzing the
behavior of many-body systems; it allows us to replace a system of strongly
interacting particles by an equivalent system of weakly interacting quasiparti-
cles. Then, in a first approximation, the interactions among the quasiparticles
can be omitted, and the problem reduces to one that can be solved. A straight-
forward method to obtain the weakly interacting quasiparticles out of the
strongly interacting particles is by a canonical transformation; this method,
although conceptionally simple, is extremely difficult in practice since for ev-
ery particular system one must find the appropriate canonical transformation.
On the other hand, the Green’s function method provides a general way to rec-
ognize the existence of weakly interacting quasiparticles as peaks in A(k, ω).
Furthermore, it gives basic information about the quasiparticles, i.e., it gives
its energy as a function of its momentum; it gives its finite lifetime resulting
from the weak interactions with the other quasiparticles; and, finally, it gives
what percentage of the quasiparticle is made up of bare particle and what per-
centage is made up of cloud. For a more precise statement of the last sentence
the reader is referred to Nozieres [423].

A peak in A(k, ω) of the type shown in (11.55) will appear as a pole in the
analytic continuation of G(k, ω) across the discontinuity along the real ω-axis.
The analytic continuation of G(k, ω), a.c.{G(k, ω)}, to the lower ω-half-plane
is, according to (11.11),

a.c.{G(k, ω)} = G(k, ω) − ia.c.{A(k, ω)} ; Im {ω} < 0 ; (11.56)

similarly,

a.c.{G(k, ω)} = G(k, ω) + ia.c.{A(k, ω)} ; Im {ω} > 0 . (11.57)

Substituting (11.55) into (11.56) and (11.57) we obtain

a.c.{G(k, ω)} = G(k, ω) ± ia.c.{Ab(k, ω)} ± 2γkwki
(ω − εk)2 + γ2

k

= G(k, ω) ± ia.c.{Ab(k, ω)} ± 2γkwki
(ω − zk) (ω − z∗k)

,

Im {ω} ≷ 0 , (11.58)
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where
zk = εk + iγk . (11.59)

Thus, a sharp peak of Lorentzian shape in A(k, ω) appears as a pole (near
the real axis) of the analytic continuation a.c.{G(k, ω)} of G(k, ω) across the
real axis. The real part of the pole gives the energy of the quasiparticle, the
imaginary part gives the inverse lifetime, and the residue equals the weight wk.
Taking into account (11.14), (11.15), and (11.58) we have

a.c.
{
gR(k, ω)

}
=

⎧
⎪⎪⎨

⎪⎪⎩

G(k, ω) , Im {ω} > 0 , (11.60a)
G(k, ω) − ia.c. {Ab}

− 2γkwki
(ω − zk) (ω − z∗k)

, Im {ω} < 0 , (11.60b)

a.c.
{
gA(k, ω)

}
=

⎧
⎪⎪⎨

⎪⎪⎩

G(k, ω) + ia.c. {Ab}

+
2γkwki

(ω − zk) (ω − z∗k)
, Im {ω} > 0 , (11.61a)

G(k, ω) , Im {ω} < 0 . (11.61b)

Equations (11.60) and (11.61) mean that a pole in the analytic continuation of
gR(k, ω)[gA(k, ω)] in the lower (upper) ω-half-plane describes a quasiparticle.
The closer the pole to the real ω-axis, the better the quasiparticle is defined.

For fermions at T = 0 we obtain with the aid of (11.19′) that the pole
of the analytic continuation of g(k, ω), a.c.{g(k, ω)}, appears, if at all, in
the upper ω-half-plane when Re {ω} < µ and in the lower ω-half-plane when
Re {ω} > µ, i.e.,

a.c.{g(k, ω)} =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

G(k, ω) , Re {ω} > µ, Im {ω} > 0 , (11.62a)
a.c.{G(k, ω)} , Re {ω} < µ, Im {ω} > 0 , (11.62b)
G(k, ω) , Re {ω} < µ, Im {ω} < 0 , (11.62c)
a.c.{G(k, ω)} , Re {ω} > µ, Im {ω} < 0 , (11.62d)

where a.c.{G(k, ω)} is given by (11.58). The function a.c.{g(k, ω)} as defined
by (11.62) has a branch cut along the line Re {ω} = µ. Furthermore, a peak
in A(k, ω) of the type shown in (11.55) appears as a peak in Im {g̃<(k, ω)}
when εk < µ or as a peak in −Im {g̃>(k, ω)} when εk > µ. Since g̃< (g̃>)
describes the propagation of a hole (particle), it follows that when εk < µ, the
pole in a.c.{g(k, ω)}, which lies in the upper half-plane describes a quasihole;
when εk > µ, the pole in a.c.{g(k, ω)} which lies in the lower ω-half-plane,
describes a quasiparticle. This situation is summarized in Fig. 11.3. When k is
very small, the elementary excitation is expected to be a quasihole; this means
that for very small k the pole zk lies in region II of Fig. 11.3. On the other
hand, for very large k the pole lies in region IV. Assuming that the trajectory
defined by zk as k increases from zero is a continuous one, it follows that this
trajectory must cross the real ω-axis at the point ω = µ. Thus, a characteristic
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III

Re {ω}

IV

ω-plane

III

µ

Im {ω}

zk = εk + iγk

zk′ = εk′ + iγk′

Fig. 11.3. Analytic structure in complex ω-plane of analytic continuation of g(k, ω),
a.c.{g(k, ω)}, as given by (11.62) for fermions at T = 0. A pole or any other singu-
larity will appear either in region II (corresponding to a quasihole) or in region IV
(corresponding to a quasiparticle). As k increases the pole moves along a trajectory,
an example of which is shown. The function a.c.{g(k, ω)} has a branch cut along
the line Re {ω} = µ

surface in k-space, which is called the Fermi surface, can be defined by the
relation

εkF = µ . (11.63)

For a rotationally invariant system the Fermi surface is a sphere of radius
kF ; kF is called the Fermi momentum. The Fermi surface as defined above
has (under certain conditions) one property of the Fermi surface of a system of
noninteracting particles, i.e., the quantity ⟨n (k)⟩ is discontinuous at k = kF .
To show this, use (11.25) and (11.55) and assume that the slope of the pole
trajectory is continuous at µ and of magnitude s = lim (|γk| / |εk − µ|) as
k → kF . Then we obtain

〈
n

(
k−

F

)〉
−

〈
n

(
k+

F

)〉
=

2wkF

π
tan−1

(
1
s

)
. (11.64)

Thus, if the slope is zero (as in Fig. 11.3), the discontinuity equals wkF . If
the slope is infinite or if the trajectory is discontinuous at kF , the difference〈
n

(
k−

F

)〉
−

〈
n

(
k+

F

)〉
is zero and the Fermi surface loses its usual physical

meaning. In Fig. 11.4 we plot n (k) vs. k for the case where s = 0. Systems
for which the trajectory of the pole is continuous with a zero slope at µ are
called normal.

We show now that for normal systems the quasiparticles (or quasiholes)
near the Fermi surface can be used to analyze not only the thermodynamic
behavior of the system but the dynamic behavior as well. For this purpose we
try to calculate g(k, t), which, for t > 0, describes the propagation of an extra
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k

1

0 kF

⟨n(k)⟩

wkF

Fig. 11.4. Average particle number per unit volume in k-space for a normal inter-
acting Fermi system at T = 0; kF is the Fermi momentum

particle added to the system at t = 0. As was mentioned before, for fermions
at T = 0

g(k, t) =
∫

C

dω

2π
e−iωtG(k, ω) =

∫

C

dω

2π
e−iωta.c. {g(k, ω)} , (11.65)

where the path C is shown in Fig. 11.1 a and (11.62) was used. For t > 0
the path can be closed by a semicircle in the lower ω-half-plane. The result-
ing contour can be deformed as shown in Fig. 11.5. We have assumed that
there is a pole at zk, and any remaining singularities in region IV of the
a.c.{g(k, ω)} are below the line Im {ω} = −Γ . The contribution from this line
contains a factor e−Γ t, and, consequently, it is negligible for t ≫ 1/Γ . The
contribution from the pole is

−iwk exp (−iεkt − |γk| t) , (11.66)

zk

Re {ω}

ω-plane

I

III

IV

II

Im {ω}

−Γ

µ

Fig. 11.5. Contour in ω-plane for evaluating g(k, t) for t > 0



280 11 Properties and Use of the Green’s Functions

and the contribution from the contour around the branch cut is, according to
(11.62) and (11.58),

∫ µ−i∞

µ

dω

2π
e−iωt [a.c. {G (k, ω)}− G (k, ω)]

≈
∫ µ−i∞

µ

dω

2π
e−iωt −2γkwki

(ω − zk) (ω − z∗k)
. (11.67)

In obtaining the last expression we have omitted the quantity −ia.c.{Ab(k, ω)}
in (11.58) because it is small in comparison with the last term in (11.58) when
the pole zk is close to the point ω = µ. The contribution of (11.67) is compa-
rable to the contribution of (11.66) when t ≤ 1/(εk − µ). For t ≫ 1/(εk − µ)
the contribution of (11.67) becomes about equal to

γkwke−iµt

πt (εk − µ)2
=

wke−iµt

πt (εk − µ)
γk

εk − µ
. (11.68)

Since t(εk − µ) ≫ 1 and γk/(εk − µ) → 0 as k → kF , it follows that the
contribution of (11.68) is negligible. We can thus conclude that for

max
{

1
Γ

,
1

|εk − µ|

}
≪ t ≪ 1

|γk|
, (11.69)

the propagator g(k, t) is given by

g(k, t) ≃ −iwk exp (−iεkt − |γk| t) , (11.70)

which is the propagator of an entity of weight wk, of energy εk, and of lifetime
1/ |γk|, i.e., of the quasiparticle we have already introduced. We can interpret
the results (11.69) and (11.70) physically as follows: following the addition of
a new bare particle in our system, a time or order 1/ |εk − µ| is required for
its dressing, i.e., for the appearance of the quasiparticle. After the quasipar-
ticle is formed, it behaves as an independent entity for a period of the order
1/ |γk|. For a normal system 1/ |εk − µ| ≪ 1/ |γk| → ∞ as k → kF . Hence,
for a normal system there is a considerable time span when the quasiparticles
(and quasiholes) lying close to the Fermi surface are well-defined independent
elementary excitations of the system. Further considerations supporting this
last statement can be found in [423].

Physically we can understand the existence of long-lived quasiparticles
because the available phase space for decaying processes is proportional to
(k − kF )2 as k → kF [113] [while (εk − µ) ∼ (k − kF ) as k → kF ]. This
(k − kF )2 result for the available phase space is based upon the conservation
of energy and momentum and upon the assumption that the quasiparticles are
fermions with a well-defined Fermi surface. Because of this last assumption
the argument above only shows that the normal state is a consistent state of
an interacting Fermi system and not necessarily the actual one. However, if
this consistent state is the actual one for very small α (as in the case where
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the perturbation expansion in powers of αVi converges), then by a continuity
argument, one expects that it may remain such for the real value α = 1.

Examples of normal systems are a dense system of electrons repelling each
other via Coulomb forces and moving in a positive background to ensure
overall electrical neutrality and a system of fermions interacting through short-
range repulsive forces. On the other hand, a system of fermions attracting each
other is not a normal one. We have seen in Chap. 6 that no matter how weak
the attraction, the system rearranges itself to a new state, the superconducting
state, consisting of bound pairs.

Another system that is not a normal one is the so-called Luttinger model or
Luttinger liquid, which is a 1-d exactly solvable model, such that any nonzero
value of the interaction constant totally destroys the Fermi distribution and
eliminates the concept of the Fermi momentum as a point of discontinuity of
nk [114, 135].

Although under the condition γk ≪ |εk − µ| the poles of a.c.{G(k, ω)}
lying near the real ω-axis give the quasiparticles (or quasiholes), which are
independent elementary excitations of the system, not all the elementary ex-
citations appear as poles of a.c.{G(k, ω)}. Excitations made of pairs of parti-
cles must appear as poles of a.c.{g2}, which describes the propagation of two
particles. Also, even in normal systems there are excitations, such as plasmons
or zero sound, that are elementary density waves. Such collective excitations
must appear as poles of a.c.{D(k, ω)}, where D(x, x′) ≡ −i ⟨T [n(x), n(x′)]⟩
[n(x) = ψ†(x)ψ(x) is the density operator]. Thus, in a typical normal sys-
tem the role of the interactions is twofold: first, the bare particles are dressed
and appear as independent quasiparticles characterized by a new dispersion
relation ε = f(k); second, new collective density wave-type excitations are
created. In a system that is not normal the interactions play a more drastic
role, creating a new ground state that, in general, is fundamentally different
from the ground state of the noninteracting system.

11.4 Summary

11.4.1 Properties

The Green’s functions defined in Chap. 10 for a many-body system have an-
alytical properties that are similar but not identical to the Green’s functions
defined in Chap. 2 corresponding to a second-order (in time) differential equa-
tion. For a translationally invariant system the Fourier transforms of the gs
and g̃s can be expressed in terms of a single real quantity A(k, ω) that can be
interpreted as 2π times a generalized density of states in k–ω-space. We have
for real ω

g̃(k, ω) = −iA(k, ω) , (11.5)
gR(k, ω) = lim

s→0+
G(k, ω + is) , (11.14)
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gA(k, ω) = lim
s→0+

G(k, ω − is) , (11.15)

g̃>(k, ω) = −iA(k, ω) [1 ± f∓(ω)] , (11.6)
g̃<(k, ω) = ∓iA(k, ω)f∓(ω) , (11.7)

g(k, ω) = gR(k, ω) + g̃<(k, ω) , (11.18,19)

where, for complex ω, G(k, ω) is defined as

G(k, ω) =
∫ ∞

−∞

dω′

2π

A(k, ω′)
ω − ω′ (11.10)

and
f∓(ω) =

1
eβ(ω−µ) ∓ 1

. (11.8)

A(k, ω) can be expressed in terms of G as follows:

A(k, ω) = i lim
s→0+

[G(k, ω + is) − G(k, ω − is)] ; ω real. (11.11)

Equations (11.5), (11.14), (11.15), (11.10), and (11.11) are the analogs of
(1.22), (2.34), (2.35), (1.30), and (1.21), respectively. Equations (11.18) and
(11.19) reduce to (2.33) only for fermions at T = 0 and with ω = µ instead
of ω = 0; similarly for (11.6) and (11.7). The analogy can also be seen by
comparing Fig. 11.1 with Fig. 2.2.

11.4.2 Use

1. Having the generalized density of states A(k, ω)/2π, one can obtain several
quantities of physical interest, such as the density of particles in k-space
⟨n (k)⟩, the total kinetic energy ⟨T ⟩, the total potential energy ⟨Vi⟩, the
total Hamiltonian ⟨H⟩, and the grand partition function ZG. We have
explicitly

⟨n(k)⟩ =
∫ ∞

−∞

dω

2π
A (k, ω) f∓(ω) , (11.25)

⟨T ⟩ =
∑

k

∫ ∞

−∞

dω

2π

k2

2m
A (k, ω) f∓(ω) , (11.23)

⟨Vi⟩ =
∑

k

∫ ∞

−∞

dω

2π

(
ω − k2/2m

2

)
A (k, ω) f∓(ω) , (11.29)

⟨H⟩ =
∑

k

∫ ∞

−∞

dω

2π

ω +
(
k2/2m

)

2
A (k, ω) f∓(ω) , (11.30)

ln (ZG) = βPΩ = βP0Ω − β

∫ 1

0

dα

α

∑

k

∫ ∞

−∞

dω

2π

× 1
2

(
ω − k2

2m

)
Aα (k, ω) f∓(ω) , (11.37)



11.4 Summary 283

where Aα(k, ω) corresponds to an interaction part in the Hamiltonian
equal to αVi and ZG0 = exp(βP0Ω) is the grand partition function for
α = 0.

2. The poles of the analytic continuation of G(k, ω), a.c.{G(k, ω)}, in the
complex ω-plane can be interpreted as representing quasiparticles or
dressed particles, i.e., weakly interacting entities determining the low-
lying excitation spectrum of the many-body system. The real part, εk, of
the pole gives the energy of the quasiparticle, the inverse of the imaginary
part, γk, gives its lifetime, and the residue gives the percentage of the
dressed particle consisting of a bare (actual) particle. Normal systems are
those for which γk/ |εk − µ| → 0 as εk → µ. Not all systems are normal;
superconductors and Luttinger liquids are two examples of nonnormal
systems.

3. Green’s functions also give the linear response of a system to an external
perturbation. For example, the dielectric function ε(k, ω) is given by

1
ε(k, ω)

− 1 =
4πe2

k2
DR(k, ω) , (11.45)

where DR is a retarded Green’s function with the field operator replaced
by the total density operator ψ+(x)ψ(x) − n0.

Further Reading

The material of this chapter is presented in detail in the standard books on
many-body theory such as the books by Fetter and Walecka [20], Mahan [114],
Kadanoff and Baym [420], Abrikosov et al. [113], etc. For an introductory
level the book by Mattuck [421] may be found very satisfactory. The subject
of quasiparticles is treated in a thorough way in the book by Nozieres [423]; in
the same book the reader will find an extensive examination of the dielectric
function.

Problems

11.1. Prove (11.4).

11.2. Prove (11.19).

11.3. Prove (11.25).

11.4s. Prove (11.37) and recast it in terms of G (k, zν).

11.5. Show how (11.46), (11.45), (11.42) can be recast in the form of (8.47).
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Calculational Methods for g

There are two basic approaches to the approximate calculation of Green’s
functions. One is based upon the differential equation obeyed by g. In the
other, a perturbation expansion is employed where g is expressed as a series
whose terms involve the unperturbed g0 and the interaction potential v(r−r′).

12.1 Equation of Motion Method

As was mentioned in Chap. 10, the Green’s functions for an interacting many-
body system obey a hierarchy of equations, the first of which has the form

(
i
∂

∂t
+

∇2
r

2m

)
g (x, x′) = δ (x − x′)

±i
∫

d3r1v (r − r1) g2

(
x, x1; x′, x+

1

)
t1=t

(12.1)

and connects the one-particle causal Green’s function with the two-particle
causal Green’s function; the next equation in the hierarchy connects g2

with g3; and so on. A similar hierarchy of equations is obeyed by the re-
tarded and advanced Green’s functions [424]. The infinite number of coupled
differential equations shows clearly the essential complication introduced by
interparticle interactions. It is obvious that to obtain a solution, one has to
terminate the hierarchy at some point by employing an approximate relation
connecting gn with gn−1, gn−2, etc. The simplest such approximation attempts
to express g2 in terms of g and then substitute in (12.1). Thus a nonlinear
integrodifferential equation for g will result.

We consider first the simplest approximate relation expressing g2 in terms
of g, which is equivalent to the so-called Hartree approximation,

g2 (x1, x2; x′
1, x

′
2) ≃ g (x1, x

′
1) g (x2, x

′
2) . (12.2)

Remembering the physical interpretation of g2 as describing the propagation
of two additional particles from x1, x2 to x′

1, x
′
2, we can see that (12.2) means



286 12 Calculational Methods for g

that the two particles propagate independently, one from x1 to x′
1 and the

other from x2 to x′
2. Note that (12.2) does not satisfy the basic symmetry

property demanding that g2
2 be invariant under the exchange x1 $ x2 or

under the exchange x′
1 $ x′

2. Thus (12.2) is a quite drastic approximation
indeed.

Substituting (12.2) into (12.1) we obtain
(

i
∂

∂t
+

∇2
r

2m

)
g (x, x′)

= δ (x − x′) ± ig (x, x′)
∫

d3r1v (r − r1) g
(
x, x+

1

)

= δ (x − x′) + g (x, x′)
∫

d3r1v (r − r1) ⟨n (r1)⟩ , (12.3)

where (11.24) was used. Introducing the effective one-body potential

V (r) ≡
∫

d3r1v (r − r1) ⟨n (r1)⟩ , (12.4)

we can rewrite (12.3) as
[
i
∂

∂t
+

∇2
r

2m
− V (r)

]
g (x, x′) = δ (x − x′) , (12.5)

which shows that the added particle (or hole) moves (independently) in the
average potential V (r) created by the particles of the system. For a trans-
lationally invariant system, the density ⟨n (r1)⟩ is a constant n0; as a result
V (r) is a constant n0v0, where v0 =

∫
d3rv(r). Then (12.5) becomes a simple

differential equation that by a Fourier transformation can be written as
(

ω − k2

2m
− n0v0

)
g (k, ω) = 1 . (12.6)

The general solution of (12.6) is the sum of a particular solution plus the
general solution of the corresponding homogeneous equation, which is propor-
tional to δ

(
ω − k2/2m− n0v0

)
. In Chap. 1, to get rid of this indeterminacy,

we have allowed ω to become complex, in which case the homogeneous equa-
tion has no solution, and then we have taken the limit of the solution as ω
approaches the real axis. This method works here for fermions at T = 0 where
g(k, ω) is the limit of an analytic function, as can be seen from (11.19′). Thus
for fermions at T = 0 we have, by combining (12.6) with (11.19′), that

g (k, ω) = lim
s→0+

1
ω − k2/2m− n0v0 + isε̄(ω − µ)

. (12.7)

For T ̸= 0, g(k, ω) is not the limit of an analytic function, and consequently
one cannot continue (12.6) in the complex ω-plane without further analy-
sis. This point shows why the equation of motion method works well for gR
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(or gA), since each one is the limit of an analytic function for all tempera-
tures [see (11.14) and (11.15)]. There is also a trick that allows us to use the
equation of motion method for the “imaginary time” causal Green’s functions.
Consider the quantity

g (r1,−iσ1, r2,−iσ2) =
{

g̃> (r1,−iσ1, r2,−iσ2) , σ1 > σ2 , (12.8a)
g̃< (r1,−iσ1, r2,−iσ2) , σ2 > σ1 , (12.8b)

which results from replacing in the causal Green’s function, g (r1, t1, r2, t2),
the time t1 by −iσ1, the time t2 by −iσ2, and the time ordering by σ-ordering;
the quantities σ1 and σ2 are confined in the interval [0, β], where β is the in-
verse temperature. For the systems we consider, g (r1,−iσ1, r2,−iσ2) is a func-
tion of r = r1 − r2 and σ = σ1 − σ2. Using the relation

g̃< (r1, t1, r2, t2)

=
∫ ∞

−∞

dω

2π

∫
d3k

(2π)3
exp [−iω (t1 − t2) + ik · (r1 − r2)] g̃< (k, ω) ,

together with (12.8) and (11.7), we obtain

g̃< (r1,−iσ1, r2,−iσ2)

= ∓i
∫ ∞

−∞

dω

2π

∫
d3k

(2π)3
exp [−ωσ + ik · (r1 − r2)] A (k, ω) f∓(ω) , (12.9)

where σ1 − σ2 ≡ σ < 0. From the general equation (11.53) we have that

g (r1,−iσ1, r2,−iσ2) = ∓i
∫

d3k

(2π)3
eik · (r1−r2)∓1

β

∑

ν

e−zνσG (k, zν) ,

which shows that the Fourier transform of g (r1,−iσ1, r2,−iσ2) with respect
to r1 − r2, g(k,−iσ), obeys the relation

g(k,−iσ) =
i
β

∑

ν

exp (−zνσ) G (k, zν) , (12.10)

where zν is given by (11.49). In a similar way one obtains that (12.10) is
valid also for σ > 0. Equation (12.10) shows that the imaginary time Green’s
function, g(k,−iσ), can be expanded in a Fourier series whose coefficients are
the values of the analytic function G(k, ω) at points zν . Inverting (12.10) we
have

G (k, zν) = − i
2

∫ β

−β
g(k,−iσ) exp (zνσ) dσ . (12.11)

From (12.10) it follows immediately that

g(k,−iσ) = ±eβµg (k,−i(σ + β)) , σ < 0 . (12.12)
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From definition (12.8) it follows that g (r1,−iσ1, r2,−iσ2) obeys the basic
equation (12.1) with each t replaced by −iσ and δ(t1− t2) replaced by iδ(σ1−
σ2). Using (12.2) for the imaginary time Green’s function, substituting in
(12.1), and employing (12.10), we obtain

(
zν − k2

2m
− n0v0

)
G (k, zν) = 1 . (12.13)

Because of the analyticity of G(k, ω) in the complex ω-plane, it follows im-
mediately from (12.13) that

G (k, zν) =
1

zν − k2/2m− n0v0
, (12.14)

which by analytic continuation gives

G (k, ω) =
1

ω − k2/2m− n0v0
. (12.15)

From G (k, ω) one can obtain all the real time Green’s functions by employing
the general relations of Sect. 11.1. The above analysis shows that the imagi-
nary time causal Green’s functions are very convenient tools because, on the
one hand, they obey the hierarchy of equations of motion and, on the other
hand, their Fourier coefficients are the values of the analytic function G (k, ω)
at the points ω = zν .

To summarize the calculational procedure for T ̸= 0:

1. The imaginary time causal Green’s functions (resulting from substituting
t1 = −iσ1, etc., into g, g2,. . . ) obey a hierarchy of equations, the first of
which is (12.1) with t = −iσ,. . . and δ(t − t′) = iδ(σ − σ′).

2. The hierarchy is approximately terminated usually by expressing g2 in
terms of g. There is a systematic procedure for obtaining increasingly
more accurate expressions of g2 in terms of g [420].

3. Combining (12.1) and the approximate relation g2 ≃ f(g) one obtains an
equation for g, which in view of (12.10) becomes an equation for G(k, zν).
The solution of this equation determines the analytic function G(k, ω) at
the points ω = zν . As we have seen in Sect. 11.2, the values of G(k, zν) is
all we need in order to calculate the thermodynamic quantities.

4. If the real time Green’s functions are needed, one has to obtain G(k, ω)
by analytically continuing G(k, zν) and by taking into account that
G(k, ω) → 1/ω as ω → ∞ [20]. This asymptotic behavior is a conse-
quence of (11.9) and (11.10). Determining G(k, ω) from its values at the
points ω− zν may be a difficult problem; however, in most practical cases
it involves no more than substituting zν by ω. Having G(k, ω), one can
obtain all Green’s functions by employing the equations of Sect. 11.1.

The above procedure was illustrated in the simple case of the Hartree ap-
proximation (12.2). As can be seen from (12.15), within the framework of this



12.2 Diagrammatic Method for Fermions at T = 0 289

approximation, a quasiparticle of momentum k has energy εk = k2/2m+n0v0,
infinite lifetime, and weight equal to 1, i.e., it is a free particle with the added
energy n0v0. The average energy is obtained by combining (11.30), (11.11),
and (12.15); so

⟨H⟩ =
∑

k

εkf∓ (εk) − 1
2
Ωn2

0v0 , (12.16)

where the last term corrects for the double counting of the interaction n0v0.
The equation of state in the low-density limit is [420]

P − 1
2
n2

0v0 = n0kBT , (12.17)

which is of the van der Waals type without the volume-exclusion effect [420].
An improvement over the Hartree approximation can be obtained by tak-

ing into account the symmetry (or antisymmetry) or g2 under the exchange
x1 $ x2 or under the exchange x′

1 $ x′
2, while still considering the added

particles as moving independently of each other. Under these conditions we
have the so-called Hartree–Fock approximation

g2 (x1, x2; x′
1, x

′
2) ≃ g (x1, x

′
1) g (x2, x

′
2) ± g (x1, x

′
2) g (x2, x

′
1) . (12.18)

Following the procedure outlined above one obtains within the framework of
the Hartree–Fock approximation

G(k, ω) =
1

ω − εk
, (12.19)

where
εk =

k2

2m
+ n0v0 ±

∫
d3k′

(2π)3
v (k − k′) ⟨n (k′)⟩ (12.20)

and v(k) =
∫

d3re−ik · rv(r) is the Fourier transform of the potential v(r).
Note that the quasiparticle energy εk depends implicitly on the tempera-
ture T through the density ⟨n (k′)⟩. In [420] more complicated g2 ≃ f(g) are
examined.

12.2 Diagrammatic Method for Fermions at T = 0

This method is applicable to the important case where the total Hamiltonian
can be decomposed as

H = H0 + H1 , (12.21)

where H0, the unperturbed part, is such that the Green’s functions corre-
sponding to H0 can be easily calculated. The method here is analogous to
that presented in Chap. 4 where the eigenvalues and eigenfunctions of the
one-body H were determined from G = (E − H)−1 and G was expressed as
a perturbation series in terms of H1 and G0 = (E −H0)−1. In the present
many-body case, working with g is much more advantageous than in the one-
body case. The reason is that the causal Green’s function g not only has
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a simpler perturbation expansion than any other quantity, but it also pro-
vides a host of important physical information without unimportant details
of the many-body system. For comparison we mentioned that while the per-
turbation expansion for the ground-state energy is more complicated than the
expansion for g, the information we obtain is clearly less.

To obtain the perturbation expansion for g, we need to work within the
interaction picture according to which the time development of the operators
is determined by the unperturbed part, H0, while the time development of
the states is determined by the perturbation H1. More explicitly, we have for
any operator A [see (8.38b) and (8.38c)]

AI(t) = exp (iH0I t)AS exp (−iH0It) , (12.22)

which is equivalent to

i
dAI(t)

dt
= [AI(t),H0I ] . (12.23)

We also have
|ΨI(t)⟩ = exp (iH0It) |ΨS(t)⟩ , (12.24)

which leads immediately to

i
d
dt

|ΨI(t)⟩ = H1I(t) |ΨI(t)⟩ . (12.25)

The subscript “I” denotes the interaction picture; the subscript “S” denotes
the Schrödinger picture according to which

dAS

dt
= 0 (12.26)

and
i
d
dt

|ΨS(t)⟩ = HS |ΨS(t)⟩ , HS ≡ H , (12.27)

or, equivalently,
|ΨS(t)⟩ = e−iHt |ΨS(0)⟩ . (12.28)

We consider also the Heisenberg picture where

AH(t) = eiHtASe−iHt (12.29)

or, equivalently,

i
dAH(t)

dt
= [AH(t),HH] (12.29′)

and
|ΨH(t)⟩ = |ΨS(0)⟩ . (12.30)

From the above relations it is easy to see that the observable matrix elements
are the same in all pictures:

⟨ΦS(t) |AS(t) |ΨS(t)⟩ = ⟨ΦH |AH(t) |ΨH⟩ = ⟨ΦI(t) |AI(t) |ΨI(t)⟩ . (12.31)
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By integrating (12.25) or by employing (4.39), (4.42), and (12.24) we obtain

|ΨI(t)⟩ = S (t, t0) |ΨI (t0)⟩ , (12.32)

where S(t, t0) is given by (4.55) with all the integration limits being t0 and t; as
can be seen from (4.51) and (12.22), we have HI

1(t) ≡ H1I(t). In what follows
we assume that H1 contains a factor e−s|t| and that after the calculations are
done, we will take the limit s → 0+. This means that the interaction is turned
on adiabatically at t = −∞ and is turned off adiabatically as t = ∞. We can
now prove that

⟨ΨH |AH(t) |ΨH⟩ =
⟨Φ |S(∞, t)AI(t)S(t,−∞) |Φ⟩

⟨Φ |S |Φ⟩ , (12.33)

where |ΨH⟩ is the normalized ground state of the total Hamiltonian H, |Φ⟩ is
the ground state of the unperturbed Hamiltonian H0, and S ≡ S(∞,−∞).
The proof is as follows:

⟨ΨH |AH(t) |ΨH⟩ = ⟨ΨI(t) |AI(t) |ΨI(t)⟩
= ⟨ΨI (t0) |S (t0, t)AI(t)S (t, t0) |ΨI (t0)⟩
= ⟨Φ |S(−∞,∞)S(∞, t)AI(t)S(t,−∞) |Φ⟩ . (12.34)

The second step follows from (12.32) and the third step from (12.24) and
the fact that |ΨI (t0)⟩ = exp (−iH0t0) |Φ⟩ as t0 → −∞, since H1 → 0 as
t → −∞: we have also used the basic property S(t1, t2) = S(t1, t3)S(t3, t2)
with t1 = −∞, t3 = ∞, t2 = t. Assuming that the ground state |Φ⟩ is
nondegenerate, and taking the limit s → 0+, we can see from (4.46) that
S |Φ⟩ is proportional to |Φ⟩, i.e.,

S |Φ⟩ = eiφ |Φ⟩ . (12.35)

Equation (12.35) means that an interaction switched on and off adiabatically
does not produce a transition from a nondegenerate state. From (12.35) we
have

⟨Φ|S(−∞,∞) = e−iφ ⟨Φ| (12.36)

and
e−iφ =

1
⟨Φ |S |Φ⟩ . (12.37)

Combining (12.37) and (12.36) with (12.34), we obtain (12.33). With the help
of (4.55) we can rewrite (12.33) in a more explicit way as follows:

⟨ΨH |AH(t) |ΨH⟩ =
1

⟨Φ |S |Φ⟩

×
〈

Φ

∣∣∣∣∣

∞∑

n=0

(−i)n

n!

∫ ∞

−∞
dt1 · · ·

∫ ∞

−∞
dtnT [H1I (t1) · · · H1I (tn) AI(t)]

∣∣∣∣∣ Φ

〉
.

(12.38)
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In a similar way we can prove that

⟨ΨH |T [A1H(t)A2H (t′) · · · ] |ΨH⟩ =
1

⟨Φ |S |Φ⟩

×
〈

Φ

∣∣∣∣∣

∞∑

n=0

(−i)n

n!

∫ ∞

−∞
dt1 · · ·

∫ ∞

−∞
dtn

× T [H1I (t1) · · · H1I (tn)A1H(t)A2I (t′) · · · ]
∣∣∣∣ Φ

〉
. (12.39)

Equation (12.39) is the basis for the perturbative-diagrammatic expansion
of the causal Green’s function. We consider the case where the interaction
part H1 is given by

H1 =
1
2

∫
d3rd3r′ψ† (r) ψ† (r′) v (r − r′)ψ (r′)ψ (r) , (12.40)

which can be rewritten as
∫ ∞

−∞
H1I(t)dt =

1
2

∫
dxdx′ψ†

I(x)ψ†
I (x′) v (x − x′)ψI (x′)ψI(x) , (12.41)

with
v(x − x′) = v(r − r′)δ(t − t′) (12.42)

and
ψI(x) = exp (iH0t)ψ (r) exp (−iH0t) . (12.43)

Using the definition of g(x, x′), (12.39), and (12.41), we obtain the following
expansion:

g(x, x′) =
N

D
, (12.44)

N = −i
∞∑

n=0

(
1
2

)n (−i)n

n!

∫
dx1dx′

1 · · ·
∫

dxndx′
n

×
〈
Φ

∣∣∣T
[
ψ†

I (x1)ψ†
I (x′

1)ψI (x′
1)ψI (x1) · · ·

× ψ†
I (xn)ψ†

I (x′
n)ψI (x′

n)ψI (xn)ψI(x)ψ†
I (x′)

]∣∣∣Φ
〉

×v (x1 − x′
1) · · · v (xn − x′

n) , (12.45)

D =
∞∑

n=0

(
1
2

)n (−i)n

n!

∫
dx1dx′

1 · · ·
∫

dxndx′
n

×
〈
Φ

∣∣∣ T
[
ψ†

I (x1)ψ†
I (x′

1) · · ·ψI (x′
n)ψI (xn)

] ∣∣∣ Φ
〉

×v (x1 − x′
1) · · · v (xn − x′

n) . (12.46)
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Taking into account (10.46) we can write (12.45) and (12.46) as follows:

N =
∞∑

n=0

(
1
2

)n in

n!

∫
dx1dx′

1 · · ·
∫

dxndx′
n

×g2n+1,0 (x, x1, x
′
1, . . . ; x

′, x1, x
′
1, . . .)

×v (x1 − x′
1) · · · v (xn − x′

n) , (12.47)

D =
∞∑

n=0

(
1
2

)n in

n!

∫
dx1dx′

1 · · ·
∫

dxndx′
n

×g2n,0 (x1, x
′
1, . . . ; x1, x

′
1, . . .)

×v (x1 − x′
1) · · · v (xn − x′

n) ; (12.48)

the subscript “0” denotes that the Green’s functions g2n+1 and g2n correspond
to the unperturbed Hamiltonian H0 (since all ψIs, ψ†

Is and |Φ⟩ refer to H0).
Remembering the physical interpretation of gm as describing the propagation
of m additional particles, and taking into account that the unperturbed part
H0 does not include any interparticle interactions, we can conclude that the
m added particles propagate independently of each other, and hence gm,0 can
be written as a product of one-particle propagators. This product must be
symmetrized (or antisymmetrized) in order to take into account the invariance
of physical quantities under particle exchange. Thus, we have

g2n+1,0 (x, x1, x
′
1, . . . ; x

′, x1, x
′
1, . . .)

=
∑

(−1)P g0 (x, x̃′) · · · g0 (x′
n, x̃′

n) , (12.49)

where {x̃′ , x̃1, x̃′
1, . . . x̃n, x̃′

n} is an arbitrary permutation of the set
{x′, x1, x′

1, . . . , xn, x′
n}, the summation is over all permutations, and P is even

(odd) when the permutation is even (odd). Equal time g0 must be interpreted
as g̃<

0 ; this can be seen from the starting equations (12.45) and (12.46), where
the creation operator precedes the equal time annihilation operator.

Equation (12.49) can be proved formally [20]; it is known as Wick’s the-
orem. Combining (12.49) with (12.47), (12.48), and (12.44), we immediately
see that we have succeeded in expressing g in powers of g0 and v (x − x′); this
expansion is substantially more complicated than the analogous expansion in
the single-particle case.

It is obvious that the zero-order contributions to N and D are N (0) =
g0(x, x′) and D(0) = 1, so that, to zero order, g(x, x′) = g0(x, x′) as expected.
The first-order contribution to N, N (1) contains 3! = 6 terms; N(2) contains
5! = 120 terms, and so on. At this point we introduce a set of diagrams,
each of which is in one-to-one correspondence with each term in N (n) via
certain well-defined rules to be presented below. We introduce also diagrams
for each term contributing to D(n). The introduction of these diagrams, called
Feynman diagrams, was done for the following reasons:
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1. They facilitate the task of keeping track of the enormous number of terms
contributing to N or D. We will also see that the diagrams have some
additional very important advantages.

2. Certain cancellations are revealed by the introduction of diagrams.
3. One can ascribe a physical meaning to each diagram as representing a par-

ticular process associated with the propagation of the added particle in
our system.

To be specific, consider the terms contributing to N (1); there are six terms
in the summation (12.49) for n = 1. These six terms are in one-to-one corre-
spondence with the six ways one can connect by directed lines the four points
x, x′, x1, and x′

1 shown in Fig. 12.1a. These six ways give the six diagrams
shown in Fig. 12.1b. The rules for finding the contribution to N (1) from the
corresponding diagrams can be obtained by simple inspection of (12.49) and
(12.47). Thus each directed line starting at xλ and ending at xµ corresponds
to g0(xµ, xλ); the wavy line connecting x1 with x′

1 corresponds to v (x1 − x′
1).

We multiply these factors by (i/2)(−1)P and integrate them over the internal
variables x1 and x′

1. Note that (−1)P equals (−1)m, where m is the number of
closed loops. The same rules allow us to calculate D(1) from the two diagrams
shown in Fig. 12.2.

As one can see from Fig. 12.1b, the diagrams can be classified as con-
nected (such as the third to sixth) and disconnected (such as the first and
second). The contribution of a disconnected diagram consisting of two or
more connected subdiagrams can be written as a product of terms each one
corresponding to each subdiagram. The reason is that the subdiagrams have
no common integration variables, and consequently the integral of the cor-
responding products is the product of the corresponding integrals. Thus, the
contribution to N up to first order can be written as in Fig. 12.1c. Taking into
account that D(0) = 1 and that D(1) is given by the diagrams in Fig. 12.2,
we see that the quantity in the second parenthesis in Fig. 12.1c equals the
contribution to D up to first order. It follows that the contributions to g up
to first order are given by the connected diagrams up to first order contribut-
ing to N and shown in the first parenthesis in Fig. 12.1c. It turns out [20]
that this feature is correct to all orders, so that g(x, x′) is given by the sum
of connected diagrams contributing to N .

Because we are left with connected diagrams only, we can make some fur-
ther simplifications. We observe that nth-order diagrams resulting from each
other by permutation of the pairs (x1, x′

1), (x2, x′
2),. . . , (xn, x′

n) are equal since
this permutation is equivalent to renaming the integration variables. There are
n! such diagrams. Thus we can keep only one of them and drop the factor 1/n!
in (12.47). Similarly, interchanging xλ with x′

λ leaves the contribution of the
diagram unchanged. Thus we can consider only one set of all diagrams re-
sulting from interchanges of the type xλ $ x′

λ and drop the factor (1/2)n in
(12.47). We are now in a position to give the final rules for calculating the
nth-order contribution to g(x, x′):
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(a)

(b)

N (1) ≡

| {z }
1st(+)

+

| {z }
2nd(−)

+

| {z }
3rd(−)

+

| {z }
4th(+)

+

| {z }
5th(−)

+

| {z }
6th(+)

(c)

N (0) + N (1) =

2

66664
+ +

+ +

3

77775

×

2

66664
1 + +

3

77775

Fig. 12.1. The six terms contributing to N (1) (see text) are in one-to-one corre-
spondence with the six diagrams (b) resulting from all possible ways of connecting
the two external points x and x′ and the two internal points x1 and x′

1 (a) according
to the following rules: a directed line must start from x′; a directed line must end
at x; one directed line must start from and one must end at each internal point;
and no directed line must start from or end at any other point except x, x′, x1,
and x′

1. The plus or minus sign in parentheses is the sign of (−1)P [see (12.49)] for
the corresponding term. The terms N (0) + N (1) can be written as in c, where up to
first-order terms must be kept
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| {z }
1st(+)

+

| {z }
2nd(−)

Fig. 12.2. The two diagrams contributing to D(1) (see text)

1. Draw all topologically distinct connected diagrams with n interaction
(wavy) lines, two external points, and 2n + 1 directed g0 lines.

2. Label each vertex with a 4-d point xi ≡ ri, ti.
3. For each directed line starting from xν and ending at xµ write a factor

g0(xµ, xν).
4. For each interaction (wavy) line between xi and x′

i write a factor
iv (xi − x′

i).
5. Integrate over all internal variables xi, x′

i.
6. Multiply the expression by (−1)m, where m is the number of closed

fermion loops.
7. Interpret g0 (ri, ti, r′

i, ti) as being equal to g̃<
0 (ri, ti, r′

i, ti).

In Fig. 12.3 we plot all the diagrams for g up to second order. The contribution
of the two first-order diagrams is, according to the rules above,

−i
∫

g0 (x, x1) g0 (x1, x
′) g0 (x′

1, x
′
1) v (x1 − x′

1) dx1dx′
1

+i
∫

g0 (x, x′
1) g0 (x′

1, x1) g0 (x1, x
′) v (x1 − x′

1) dx1dx′
1 .

For translationally invariant systems the calculations are facilitated by
working in momentum-frequency space. This is achieved by expressing all
g(xν −xµ) and v (xi − x′

i) in terms of their Fourier transforms with respect to
the variables xν − xµ and xi − x′

i, respectively. Then the integration over the
internal variables xi can be performed explicitly giving δ-functions expressing
energy-momentum conservation at each vertex. Thus, in momentum space,
we have rules resulting from the previous ones by the following replacement:
2 → 2′, 3 → 3′, 4 → 4′, 5 → 5′, and 7 → 7′, where

2′. Label each line with a four-momentum q ≡ k, ω; conserve energy-
momentum at each vertex.

3′. For each directed line labeled with a four-momentum k, ω write a factor

g0 (k, ω) = lim
s→0+

1
ω − ε0

k + isε̄(ω − µ)
.

4′. For each interaction (wavy) line labeled by k, ω write a factor

iv(k) = i
∫

d3rv(r)e−ik · r .
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g = +

+ +

+ + + +

+ + +

+ +

Fig. 12.3. Feynman diagrams for g of zero order (first line), first order (second
line), and second order (third, fourth, and fifth lines)

5′. Integrate over all internal independent four-momenta (with a factor 1/2π
for each single integration).

7′. Interpret each g0(k, ω) corresponding to a line starting from and ending at
the same point (or linked by the same interaction line) as being g̃<

0 (k, ω) =
2πiδ(ω − ε0

k)θ(kF − k).

According to the above rules, the contribution to g(q) from the first-order
diagrams shown in Fig. 12.4 is

−i
∫

d4q′

(2π)4
g̃<
0 (q′) v(0)g0(q)g0(q) + i

∫
d4q′

(2π)4
g0(q)g0(q)g̃<

0 (q′) v (k − k′)

= g2
0(q)

[
v(0)

∫
d3k′

(2π)3
θ (kF − k′) −

∫
d3k′

(2π)3
v (k − k′) θ (kF − k′)

]
.
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+

Fig. 12.4. First-order Feynman diagrams for g in the four-momentum space

It should be noted that the above rules for obtaining g are appropriate
for an interaction term H1 of the form given by (12.40). Similar but not
identical rules would apply for the case where H0 = H0e + H0p and H1 =
γ

∫
d3rψ† (r)ψ (r)φ (r), where H0e describes noninteracting electrons, H0p

describes noninteracting phonons, and H1 is the electron–phonon interaction.
In this case we have a causal Green’s function g for the electron field and
another causal Green’s function D for the phonon field, for each of which we
can write perturbative expansions involving both the unperturbed Green’s
functions g0 and D0 and the interaction γ. For details the reader is referred
to [20] or [113].

12.3 Diagrammatic Method for T ̸= 0

In the last section we succeeded in expanding the T = 0 fermion g in terms of
g0 and v. This expansion was based upon: (1) (12.39), expressing the average
(at T = 0) of a chronological product of Heisenberg operators as N/D, where
N is the unperturbed average (at T = 0) of the chronological product of
S(∞,−∞) and the same operators in the interaction picture and D is the
unperturbed average (at T = 0) of S(∞,−∞); (2) Wick’s theorem (12.49),
expressing gm,0 in terms of products of g0s. For finite temperatures an equation
analogous to (12.39) does not exist. Hence, the real time g for T ̸= 0 cannot be
expanded in terms of g0 and v. However, it turns out that such an expansion
for T ̸= 0 is possible for the imaginary time Green’s functions introduced in
Sect. 12.1. The basis for such an expansion is the following equation:

⟨T [A1H(−iσ)A2H (−iσ′) · · · ]⟩

=
⟨T [S(−iβ, 0)A1I(−iσ)A2I (−iσ′) · · · ]⟩0

⟨S(−iβ, 0)⟩0
, (12.50)

where
⟨A⟩ ≡ Tr {A exp [−β (H− µN)]}

Tr {exp [−β (H− µN)]} ;

in ⟨A⟩0, H has been replaced by H0. Equation (12.50) is the analog of (12.39).
To prove (12.50) we use the relation

|ΨI(0)⟩ = |ΨS(0)⟩ = |ΨH⟩ , (12.51)
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which follows from (12.24) and (12.30). From (12.51), (12.32), and (12.31) it
follows that

AH(t) = S(0, t)AI(t)S(t, 0) . (12.52)

We have also that
e−iHt = e−iH0tS(t, 0) . (12.53)

Equation (12.53) follows from (12.28), (12.24), (12.32), and (12.51). Replacing
t by −iβ in (12.53) and multiplying by eβµN , we obtain

e−β(H−µN) = e−β(H0−µN)S(−iβ, 0) . (12.54)

To arrive at (12.54) we need to assume that N commutes with H and H0.
If this is not the case, then µ = 0; consequently, (12.54) is always valid.
Combining (12.54) with (12.52) and the property S(t1, t2) = S(t1, t3)S(t3, t2),
we obtain (12.50).

Taking into account (12.50), (12.49) (which holds for imaginary times as
well [20]) and the definition of g (r1,−iσ1, r2,−iσ2), we have a diagrammatic
expansion of the latter in terms of g0 (ri,−iσi, r′

i,−iσ′
i) and v (ri − r′

i) based
on rules resulting from the previous ones by the following substitutions: 2 by
II, 4 by IV, 5 by V, and 7 by VII, where

II. Label each vertex with a 4-d point xi ≡ ri,−iσi.
IV. For each interaction (wavy) line between xi and x′

i write a factor

v (ri − r′
i) δ (σi − σ′

i) .

V. Integrate over all internal variables ri and σi:
∫

d3ri

∫ β
0 dσi.

VII. Interpret g0 (ri,−iσi, r′
i,−iσi) as being equal to g̃<

0 (ri,−iσi, r′
i,−iσi).

The calculational effort is greatly simplified if we work in the k, zν-space, i.e.,
if we try to calculate G(k, zν) given by (12.11). The final rules for obtaining
the nth-order contribution to G(k, z) are the following:

I′. Draw all topologically distinct connected diagrams with n interaction
lines, two external points, and 2n + 1 directed lines.

II′. Label each line with a four-momentum k′, z′ν; conserve momentum and
Im {z′ν} at each vertex.

III′. For each directed line labeled with a four-momentum k, zν write a factor

G0 (k, zν) =
1

zν − ε0
k

.

IV′. For each interaction (wavy) line labeled k, zν write a factor −v(k).
V′. Integrate over all internal independent momenta k

[
(2π)−3

∫
d3k

]
and

sum over all internal independent discrete frequencies (β−1
∑

ν).
VI′. Multiply by (−1)m, where m is the number of closed fermion loops.

VII′. Whenever a directed line either closes on itself or is joined by the same
interaction line, insert a convergence factor exp(−zνσ) with σ → 0−.
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As an example we calculate the contributions of the first-order diagrams
shown in Fig. 12.5. We have

G2
0(k, zν)

[
∓v(0)

∫
d3k′

(2π)3
1
β

∑

ν′

exp (−z′νσ) G0(k′, z′ν)

−
∫

d3k′

(2π)3
v (k − k′)

1
β

∑

ν′

exp (−z′νσ)G0(k′, z′ν)

]
,

which, with the help of (11.53) and A0(k, ω) = 2πδ(ω − ε0
k), becomes

G2
0(k, zν)

[
v(0)

∫
d3k′

(2π)3
f∓

(
ε0

k′
)
±

∫
d3k′

(2π)3
v (k − k′) f∓

(
ε0

k′
)]

(upper sign for bosons; lower sign for fermions).
It should be noted that the above rules for finite temperatures are appro-

priate for an interaction of the form (12.40). For other interactions, such as
the electron–phonon interactions, the rules must be modified [20, 113].

Before concluding this section we remind the reader that the calcula-
tional schemes we have presented do not cover the case of bosons at low
temperatures. The reason is that the unperturbed system for T < Tc un-
dergoes the phenomenon of Bose condensation according to which a fi-
nite fraction of the particles occupy a single quantum state, the k = 0
state. This effect requires a special treatment, which is presented in [20]
and [113]. Special treatment is also required for fermion systems, which are
not normal (superfluid or superconducting systems). These questions will
not be covered in the present work (with the exception of superconduc-
tivity).

+

Fig. 12.5. First-order Feynman diagrams for G(k, zν)

12.4 Partial Summations. Dyson’s Equation

It is very rare that a small number of lowest-order diagrams would be a good
approximation for g. For this reason, in practical calculations we either try to
obtain certain general results without employing approximations or, whenever
specific results are sought, we try to find a class of diagrams such that the
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contribution of the whole class is both calculable and dominant. Of course,
it is not so often that such a happy situation occurs. Anyway, our calcula-
tional task is facilitated by reorganizing our expansion through certain partial
summations. These partial summations can be performed in a graphical way.
An example of such a summation is shown in Fig. 12.6. Square 1 denotes
a part of the diagram connected to the rest by two directed lines; square 2
denotes a different part connected to the rest by two directed lines. The sum
of the two diagrams can be found by calculating first the contributions of
parts 1 and 2 according to the rules, summing these two contributions, and
using this result for the part 1 + 2. This idea can be developed further so
that starting from a few simple diagrams (called skeletons) and performing
all possible summations in the lines and vertices (putting flesh to the skele-
tons [421]) we obtain g. Such a procedure requires care to ensure that all
diagrams have been included and no diagram was counted more than once.
To examine this question, we need to introduce some definitions and present
some relations.

We call self-energy Σ the sum of the contributions from all parts that are
connected to the rest by two directed lines (one in and one out). From the
structure of the diagrams for g it follows that

G(k, zν) = G0(k, zν) + G0(k, zν)Σ(k, zν)G0(k, zν) . (12.55)

Equation (12.55) can be written in a graphical way (Fig. 12.7), which shows
that in x-space it would acquire an integral form. Note the similarity of (12.55)
and (4.17). We define next the proper self-energy, Σ∗, which involves only
those self-energy parts that cannot be divided into two pieces by cutting

+ =

Fig. 12.6. An example of graphical summation

Fig. 12.7. Relation between Green’s function G (thick line), unperturbed Green’s
function G0 (thin line), and self-energy Σ
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a single particle line. It is not difficult to see that

Σ = Σ∗ + Σ∗G0Σ
∗ + Σ∗G0Σ

∗G0Σ
∗ + · · ·

= Σ∗ + Σ∗G0Σ

= Σ∗ + ΣG0Σ
∗ . (12.56)

Note the analogy of (12.56) and (4.13), (4.15), and (4.16). Combining (12.55)
and (12.56) we obtain

G = G0 + G0Σ
∗G = G0 + GΣ∗G0 , (12.57)

which is the analog of (4.6) and (4.7). In k, ω-space (12.57) can be rewritten
as

G(k, ω) =
G0(k, ω)

1 − G0(k, ω)Σ∗(k, ω)
=

1
ω − ε0

k − Σ∗(k, ω)
, (12.58)

where we have taken into account that G0(k, ω) =
(
ω − ε0

k

)−1. In Fig. 12.8
we show (12.57) in a diagrammatic way. It is clear that (12.58) has not solved
the problem since Σ∗ involves the summation of infinite diagrams. One could
try to connect Σ∗ with G by employing the idea of partial summations in the
diagrams for Σ∗; these partial summations would replace the G0-lines by G-
lines. It turns out that one cannot express Σ∗ with a few diagrams involving
G-lines and interaction lines. This is to be expected since, as we have seen
in the equation of motion method, one cannot obtain a system with a finite
number of equations for a finite number of unknown functions that are related
to the many-body g. However, one can express Σ∗ in terms of G with the help
of a new quantity Γ , which is called the vertex part and is defined as the sum
of the contributions from all parts that are connected with four (two in and
two out) directed lines (G0-lines) to the rest and that cannot be decomposed
into disconnected parts. Γ is related to the two-particle Green’s function g2,
as shown in Fig. 12.9, i.e.,

g2 (x1, x2, x
′
1, x

′
2) = g (x1, x

′
1) g (x2, x

′
2) ± g (x1, x

′
2) g (x2, x

′
1)

+
∫

dx̃1dx̃2dx̃′
1dx̃′

2Γ (x̃1, x̃2; x̃′
1, x̃

′
2) g (x1, x̃1) g (x2, x̃2)

× g (x̃′
1, x

′
1) g (x̃′

2, x
′
2) . (12.59)

= +

Fig. 12.8. Relation between G (thick line), G0 (thin line) and proper self-energy Σ∗
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g2 = ± +

Fig. 12.9. Relation between g2, g, and vertex part Γ

One can show [113] that Σ∗ is given in terms of G and Γ as shown in
Fig. 12.10a. One can easily prove that the relation shown in Fig. 12.10a is
equivalent to the equation of motion (12.1). The proof makes use of (12.59)
and (12.57). Figure 12.10 shows that Σ∗ can be calculated by “putting flesh”
to the four skeleton diagrams shown in Fig. 12.10b, i.e., by replacing the G0-
lines by G-lines and one of the two interaction lines in the last two diagrams
by the vertex part. (If both interaction lines in the same diagram are replaced
by vertex parts, one would double count diagrams.) As expected, one cannot
express Γ in a closed form involving G and Γ , i.e., the skeleton diagrams for Γ
(to be fleshed by the substitution G0 → G and v → Γ ) are infinite in number.
Usually we stop this infinite hierarchy of relations by approximately expressing
Γ in a closed form in terms of G and Γ . The simplest such approximation is
to put Γ = 0 in the relation shown in Fig. 12.10a. This is the Hartree–Fock
approximation. We obtain then for Σ∗ (k, zν) the expression

Σ∗ (k, zν) = ∓v(0)
∫

d3k′

(2π)3
1
β

∑

ν′

exp (−z′νσ)G (k′, z′ν)

−
∫

d3k′

(2π)3
v (k − k′)

1
β

∑

ν′

exp (−z′νσ)G (k′, z′ν)

(12.60)

(a) = + + +

(b) , , ,

Fig. 12.10. The proper self-energy, Σ∗, can be calculated from the four diagrams
(a) resulting by “fleshing” the skeleton diagrams (b)
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= v(0)
∫

d4q′

(2π)4
A (k′, ω′) f∓ (ω′)

±
∫

d4q′

(2π)4
v (k − k′)A (k′, ω′) f∓ (ω′)

= Σ∗ (k) . (12.61)

Combining (12.61) with (12.58) we obtain (12.19) and (12.20). The Hartree–
Fock approximation is shown diagrammatically in Fig. 12.11. The basic
equation (12.58) combined with the equation connecting Σ∗ with G and Γ
(Fig. 12.10a) is called Dyson’s equation.

We introduce also the concept of an effective interparticle interaction ve

as the sum of v plus the contributions (apart from a factor i or −1 for the
T = 0 or T ̸= 0 case, respectively) from all parts that have two external
interaction lines. The effective interaction, ve, can be expressed as shown in
Fig. 12.12a in terms of the polarization Π ; the latter is defined as the sum of
the contributions (apart from the above factors) of all parts that are connected
to the rest by two interaction lines. Following an analysis similar to the one
given for the self-energy, we can easily express the polarization, Π , in terms of
the proper polarization, Π∗, as shown in Fig. 12.12b. The proper polarization
Π∗ is the sum of the contributions (apart from a factor −i or −1 for the
T = 0 or T ̸= 0 case, respectively) of all parts that are connected to the
rest by two interaction lines and that cannot be divided into two pieces by
cutting a single interaction line. For a translationally invariant system and in
the q-representation, the relations of Fig. 12.12 become

ve(q) = v(q) + v2(q)Π(q) , (12.62)

Π(q) = Π∗(q) + Π∗(q)v(q)Π∗(q) + · · · = Π∗(q) + Π∗(q)v(q)Π(q) , (12.63)

which leads to
Π(q) =

Π∗(q)
1 − v(q)Π∗(q)

(12.63′)

and
ve(q) = v(q) + v(q)Π∗(q)ve(q) , (12.64)

which can be solved for ve(q) to yield

ve(q) =
v(q)

1 − v(q)Π∗(q)
. (12.64′)

= + +

Fig. 12.11. Hartree–Fock approximation
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(a) = +

(b) = + + · · ·

= +

(c) = +

Fig. 12.12. Relation between: a ve, v, and Π ; b v, Π , and Π∗; c ve, v, and Π∗ for
fermions at T = 0. For the T ̸= 0 imaginary time case in k, zν-space ive, iv, −iΠ ,
and −iΠ∗ must be replaced by −ve, −v, −Π , and −Π∗, respectively

If we define a dielectric function εC(k, ω) from the relation

ve(q) =
v(q)
εC(q)

, (12.65)

we obtain, by taking into account (12.62) and (12.64′),

1
εC(q)

= 1 + v(q)Π(q) =
1

1 − v(q)Π∗(q)
. (12.66)

To find the relation between the usual (retarded) dielectric function defined
in Chap. 11 and εC(k, ω), we observe first that the inverse Fourier transform
of the polarization Π(q) equals D(x, x′), where

D(x, x′) ≡ −i ⟨T [ñH(x)ñH (x′)]⟩ (12.67)

and

ñH(x) = nH(x) − ⟨nH(x)⟩ = ψ†
H(x)ψH(x) −

〈
ψ†(x)ψ(x)

〉
. (12.68)

The proof of the relation D = Π follows from a diagrammatic expansion of
(12.67). The causal Green’s function, D(x, x′), is connected with the retarded
Green’s function, DR(x, x′), which was introduced in Chap. 11 in the usual
way. Thus for fermions at T = 0

Re
{
DR(q)

}
= Re {D(q)} = Re {Π(q)} ,

Im
{
DR(q)

}
= ε̄(ω)Im {D(q)} = ε̄(ω)Im {Π(q)} , (12.69)



306 12 Calculational Methods for g

where

ε̄(ω) =
{

+1 for ω > 0,
−1 for ω < 0.

Taking into account (12.66), (11.45), and (12.69) and the fact that v(q) =
4πe2/q2 (for a Coulomb interaction), we obtain that

Re {ε (k, ω)} = Re
{
εC (k, ω)

}
, (12.70)

Im {ε (k, ω)} = ε̄(ω)Im
{
εC (k, ω)

}
. (12.71)

In the T ̸= 0 imaginary time formalism, the sum of all polarization diagrams
gives −Π(k, zν), from which, by analytic continuation, one obtains Π(k, z).
The dielectric function ε(k, ω) is then given by

1
ε(k, ω)

= 1 + v(k) limΠ(k, z) , (12.72)

as z approaches ω from above the real ω-axis. The conclusion is that from the
polarization diagrams one can obtain the dielectric function for either T = 0
or T ̸= 0.

Of course, the polarization Π or the proper polarization Π∗ involves an
infinite number of diagrams, which cannot be summed exactly. Thus the calcu-
lation of Π or Π∗ must be done approximately. The approximation is usually
implemented either by keeping a few diagrams for Π∗ or by expressing Π in
terms of g and Γ and then approximating Γ . An example will be examined
in the next chapter.

12.5 Other Methods of Calculation

Several other methods of treating many-body systems have been developed.
Besides the standard technique of canonical transformations various bosoniza-
tion approaches are employed, such as the introduction of the so-called slave
boson operators [135], or the reexpression of electron Hamiltonian in the Lut-
tinger liquid model in terms of the bosonic density operators [114, 135]. The
interested reader is referred to the books by Mahan [114] and Doniach and
Sondheimer [135].

12.6 Summary

In all practical cases the total Hamiltonian H can be decomposed into an
unperturbed part H0, such that the corresponding Green’s functions can be
easily calculated, and a perturbation H1.
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In the equation of motion method one writes a differential equation for
one of the gs; this equation also contains a term involving H1 and a higher-
order Green’s function. The calculation is done by approximately expressing
the higher-order Green’s function in terms of g. This method is applicable to
gR, gA (for T = 0 or T ̸= 0), and g (for T = 0 only). It can be applied to the
T ̸= 0 causal g if complex times are considered.

In the perturbative diagrammatic method, g is expressed as a complicated
series each term of which involves products of g0 and H1. Keeping track of
the terms in the series is facilitated by associating diagrams with each term.
The diagrams help in intermediate algebraic manipulations and permit also
a physical interpretation of each term (this last feature can be used to develop
meaningful approximations). The diagrammatic method is applicable to the
causal Green’s function g at T = 0; it is applicable to the imaginary time
causal g for T ̸= 0.

The calculational effort is facilitated by defining the summation of cer-
tain types of diagram parts. Thus, the self-energy, Σ, and the proper self-
energy, Σ∗, are defined; their relation to the causal Green’s function is shown
in Fig. 12.7 and 12.8. We defined also the vertex part, Γ , which is related
to g2, as shown in Fig. 12.9. The proper self-energy, Σ∗, can be expressed
in terms of Γ and G. The system of equations can be closed by approximat-
ing Γ in terms of Γ and G. Finally, the polarization part, Π , and the proper
polarization part, Π∗, are defined and related with the effective interaction,
as shown in Fig. 12.12. The quantity Π (or Π∗) is directly related to the
dielectric function.

Further Reading

For the equation of motion method the interested reader may consult the book
by Kadanoff and Baym [420].

The diagrammatic approach for g, G, Σ, Σ∗, Γ , Π , and Π∗ is presented
in a clear way in the book by Fetter and Walecka [20]. The other classic
books, such as the one by Abrikosov et al. [113] or the one by Mahan [114],
provide extensive treatments of the diagrammatic approach and the partial
summations leading to the concepts of the proper self-energy and the proper
polarization.

Problems

12.1. Calculate the energy and the thermodynamic potential, −PΩ, within
the Hartree–Fock approximation.

Hint : Use (11.30) and (11.37) as a starting point and assume that v0 in
(12.20) is zero. For T = 0 obtain explicit results. See [20], pp. 121–127 and
261–267.
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12.2. Express the energy, εk, and the inverse lifetime, γk, of a quasiparticle
in terms of expansion of the proper self-energy around the pole of the Green’s
function.

Hint : See next chapter.

12.3. How is wk related to the derivative of Σ∗ (k, ω)?
Hint : See next chapter.

12.4s. Obtain (12.19) and (12.20) from Fig. 12.11 by employing the finite
temperature diagrammatic approach.

12.5. Calculate the sum
∑

ν

G0

(z

2
+ zν , εk

)
G0

(z

2
− zν , ε′k

)
.

Hint : Reexpress the product of G0G0 as a difference of G0s, and use (11.47)
and (11.53).
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Applications

Summary. Some applications of the many-body Green’s functions are briefly
presented. They include the study of a high-density electronic system moving in
a positive background; this model describes approximately electrons in metals.
A low-density Fermi system with short-range interactions is also examined. The em-
ployment of the Green’s function formalism to justify the widely used independent-
particle approximation is emphasized. Superconductivity and the Hubbard model
are also examined.

13.1 Normal Fermi Systems. Landau Theory

In Chap. 11 we defined a normal Fermi system as one for which the a.c.
{g(k, ω)} has a single pole with a trajectory (as k varies) that crosses the real
ω-axis at ω = µ (for k = kF ) with zero slope. Taking into account that

g(k, ω) = [ω − ε0
k − Σ∗(k, ω)]−1 , (13.1)

it follows that for a normal Fermi system Σ∗
I = Im {Σ∗(k, ω)} must behave

as
Σ∗

I (k, ω) = ε̄(µ − ω)Ck |ω − µ|n , Ck ≥ 0 , real, (13.2)

for ω ≈ µ with n > 1. Luttinger [425] has proved that n = 2 is a consistent
solution of the equations for g and Σ∗. The outline of the proof is the following.
We substitute (13.2) into (13.1), and the resulting expression is used in the
equation shown in Fig. 12.10a. The first two terms give Σ∗

I = 0. In the next
two terms, Γ is replaced by an infinite series of diagrams involving the bare
interaction v and the dressed propagator g. One can then show [425] that each
of the resulting diagrams gives an imaginary part that behaves as

(ω − µ)2m , m = 1, 2, 3, . . . ,

in the limit ω → µ±. Hence,

lim
ω→µ

Σ∗
I (k, ω) ∝ (ω − µ)2 , (13.3)
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as was assumed at the beginning. Thus, expression (13.1), subject to condition
(13.3), is a solution of the equations for g, which means that the normal state
of a strongly interacting Fermi system is a possible one. The pole zk = εk+iγk

is a solution of
zk − ε0

k − Σ∗(k, zk) = 0 , (13.4)

which for k ≈ kF gives

εk = µ +
∣∣∣∣
∂ε0

k

∂k
+

∂Σ∗
R

∂k

∣∣∣∣wk · (k − kF ) , (13.5)

wk =
[
1 − ∂Σ∗

R

∂ω

]−1

, (13.6)

γk = ε̄ (µ − εk)wkCk (εk − µ)2 , (13.7)

where the derivatives are calculated for k = kF and ω = µ.
The Green’s function g can be written as

g(k, ω) =
wk

ω − εk − iγk
+ gb(k, ω) , (13.8)

where the smooth background contribution, gb(k, ω), can be omitted for
ω ≈ εk. We see that the normal solution, (13.8), not only is a possible so-
lution of the interacting Fermi system but also goes continuously to the un-
perturbed g0(k, ω), since, as the coupling constant goes to zero, Ck → 0,
wk → 1, εk → ε0

k, and gb(k, ω) → 0. Thus, if we assume that the actual state
of the interacting system develops in a unique and continuous way from the
unperturbed state as the interactions are turned on, we can conclude that
the normal solution, (13.5)–(13.8), is the actual one and that our system is
a normal one. Obviously, if the perturbation expansion converges, the above
assumptions are correct and the system is a normal one. However, it should
be stressed that the continuity assumption may be valid while the expansion
in powers of the coupling constant may diverge, which means that a system
may be normal even if the perturbation expansion diverges. On the other
hand, there are physical systems (e.g., a superconducting material) where the
perturbed state does not develop from the unperturbed in a continuous way
as the interactions are turned on; such systems are not normal, and the actual
Green’s function does not have the form (13.5)–(13.8).

Equation (13.5) shows that the dispersion relation εk for k ≈ kF is char-
acterized by a single quantity vF =

∣∣∂ε0
k/∂k + ∂Σ∗

R/∂k
∣∣wk; the expansion

coefficient vF is the velocity of the quasiparticles at the Fermi level, and it is
usually expressed as

vF =
kF

m∗ . (13.9)

Equation (13.9) can be considered as the definition of the effective mass m∗.
For a noninteracting system m∗ = m.
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For a normal system characterized by (13.5)–(13.8) with short-range forces,
one can prove (see, e.g., [425]), by analyzing the diagrams for the vertex part
Γ (p1, p2; k), that

Γ (p1, p2; k) ≃ Γ ω (p1, p2)

+
w2

kF
k2

F

(2π)3vF

∫
Γ ω (p1, q)Γ (q, p2; k)

v ·k
ω − v ·kdO . (13.10)

In (13.10) p1 = p1, ω1 and p2 = p2, ω2 are the four momenta at the two “in”
points of the vertex part Γ ; p1 + k, p2 − k are the four momenta at the two
“out” points of the vertex part Γ ; k = k, ω is the four-momentum transfer;
Γ ω ≡ limω→0 limk→0 Γ (k) (note the order of the limits); v is a vector directed
along q with |v| = vF ; the four-momentum q equals q, µ with |q| = kF ;

∫
dO

denotes an integration over the direction of q. Equation (13.10) is valid for
small ω and |k|.

Using (13.10) together with some relations connecting the derivatives
∂g−1/∂ω, ∂g−1/∂k, k · ∂g−1/∂k, and ∂g−1/∂µ with the vertex part Γ (see
[425]), one can prove the following two important relations first derived by
Landau [426,427].

The Fermi momentum kF , which was defined by the equation εkF = µ,
satisfies the relation

4π

3
k3

F

(2π)3
=

N

Ω
, (13.11)

where N is the total number of particles for each spin direction and Ω is
the volume. We see that kF for a normal interacting Fermi system satisfies
the same basic equation as for the noninteracting system. Thus, for a normal
system, turning on the interactions not only retains the concept of a Fermi
surface; it leaves the Fermi surface unchanged.

The other relation connects the bare mass m with the effective mass m∗

and the vertex part Γ ω

1
m∗ =

1
m

−
kF w2

kF

2(2π)3

∫
Γ ω (p1, p2) cos θ dO , (13.12)

where p1 ≡ p1, µ; p2 ≡ p2, µ; |p1| = |p2| = kF ; θ is the angle between p1

and p2; and the integration is over all directions of p1 or p2 (the interaction
is isotropic). For an alternative derivation of (13.11) and (13.12) the reader is
referred to [423].

From (13.10) one can prove [113] that Γ (p1, p2; k) develops a pole as
a function of ω. Since Γ (p1, p2; k) is directly related to the polarization part
Π(k), it follows that the pole of Γ (p1, p2; k) appears as a pole in Π(k) ≡
Π (k, ω). As was mentioned in Chap. 11, the pole of Π (k, ω) [≡ D (k, ω)] cor-
responds to a collective Bose excitation, which is an elementary density wave.
Thus, a normal system possesses collective Bose excitations. For short-range
interactions at T = 0, these excitations are given as the poles of the solution
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of (13.10). It turns out [20, 113] that the eigenfrequency ωk of this collective
excitation is of the form

ωk = c0 |k| , (13.13)

i.e., it resembles sound waves. For this reason it is called zero sound. Zero
sound is clearly distinguished from ordinary sound because the former, in con-
trast to the latter, does not correspond to a local equilibrium condition (i.e.,
the variation in the distribution, δf(r, k), is not spherical in k-space). This
question was discussed by Abrikosov et al. [113] and Fetter and Walecka [20].

We close this section by mentioning that the leading term in the difference
Φ(T ) − Φ(0) as T → 0+, where Φ is any thermodynamic quantity (such as
specific heat, entropy, or energy), is given by replacing the bare mass m∗ in
the corresponding free-particle expression by the effective mass m∗ [113]. In
other words, for a normal Fermi system and for the purpose of calculating the
temperature dependence of thermodynamic quantities in the limit T → 0, one
can replace the strongly interacting particles by noninteracting quasiparticles
of an effective mass m∗.

In this section we have outlined how the many-body Green’s function for-
malism can be used to justify and quantify the fundamental idea that an
interacting system of particles can be replaced by a weakly interacting system
of quasiparticles. For many purposes the interactions among quasiparticles
can be omitted, and consequently the so-called one-body approximation is
justified. For normal systems there is one-to-one correspondence between par-
ticles and quasiparticles, and each quasiparticle reduces to a real particle as
the interactions are turned off. Note, though, that the interactions produce
a Bose-type excitation (a density wave) that is absent in a noninteracting
system.

We reiterate that there are systems (such as the superconducting materials
or superfluid He3) where the interactions play a fundamental role in reorganiz-
ing the low-lying states to a new configuration that cannot result from the un-
perturbed states in a continuous way. For such a system the Green’s function
formalism requires some modifications. The reader is referred to Sect. 13.4 or
to the book by Mattuck, [421] for an introduction. More detailed treatment
is given in [20], [111], and [113]. The modified Green’s function formalism
finds one of the most important applications in the study of these nonnormal
fermion systems.

13.2 High-Density Electron Gas

In this section we consider a particular but important fermion system, the
so-called jellium model, a high-density electronic system moving in the back-
ground of positive charge to ensure overall electrical neutrality. The jellium
model is an idealization of a real metal; this idealization omits the discrete
character of the positive background, its dynamics (phonons), and the inter-
action of the ion motion with the electrons. The high-density jellium model,
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although a normal Fermi system, has certain peculiarities associated with the
long-range character of the electron–electron interaction. The 1/r2 nature of
the Coulomb force gives that the average potential energy per particle is pro-
portional to n1/3; on the other hand, the average kinetic energy per particle,
as a result of the Pauli principle, is proportional to k2

F /2m, i.e., proportional
to n2/3, where n = N/Ω is the number density. Thus, in contrast to ordinary
gases, in the high-density limit, the kinetic energy of the electron system dom-
inates the potential energy, and therefore the system behaves as a gas; on the
other hand, in the low-density limit, the potential energy is the dominant one,
and the system becomes a (Wigner) solid; for intermediate densities we have
a liquid. We can express formally this feature by introducing the dimensionless
interparticle spacing rs, where

rs =
r0

aB
; (13.14)

r0 is defined by 4πr3
0/3 = Ω/N and aB = !2/me2 is the Bohr radius. By

introducing the dimensionless quantities Ω′, k′, p′, and q′, where

Ω′ = Ω/r3
0 , k′ = r0k , p′ = r0p , q′ = r0q , (13.15)

we can rewrite the Hamiltonian of the jellium model (Appendix I) as

H =
e2

aBr2
s

⎛

⎝1
2

∑

k′

k′2a†
k′ak′ +

rs

2Ω′

∑

k′p′q′

′ 4π

q′2
a†

k′+q′a
†
p′−q′ap′ak′

⎞

⎠ , (13.16)

which shows that in the high-density limit (rs → 0) the potential energy
becomes negligible. Note that the prime in the summation means that the
q′ = 0 term must be excluded.

By inspection of (13.16) one may suspect that terms of higher than second
order in the potential energy would give contributions that approach zero as
rs → 0. Hence, it is reasonable to try to terminate the diagrammatic expansion
in the second order. Because of the q′ = 0 exclusion, the diagrams involving
a q′ = 0 interaction line give no contribution and can be omitted. Thus the
only diagrams that contribute to the proper self-energy up to second order are
those of Fig. 13.1. The Σ∗

1 , Σ∗
2a, and Σ∗

2b diagrams can be calculated according
to the rules and give no problems. Explicit results can be found in [20]. The
Σ∗

2r diagram is troublesome and requires detailed consideration; we have

Σ∗
2r (k, ω) = i

∫
d3q

(2π)3
dω1

2π
g0 (k − q, ω − ω1) v2(q)Π∗

0 (q, ω1) , (13.17)

where −iΠ∗
0 is the contribution of the bubble, i.e., the contribution of the

lowest order to the proper polarization

Π∗
0 (q, ω1) = −i

∫
d3p1

(2π)3
dω2

2π
g0 (p1, ω2) g0 (p1 + q, ω1 + ω2) . (13.18)
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+ + +

Σ∗
1 + Σ∗

2a + Σ∗
2b + Σ∗

2r

Fig. 13.1. All the contributions of up to second order to the proper self-energy of
an electron gas

This quantity Π∗
0 (q, ω1) is calculated explicitly in [20]. It turns out that

lim
q→0

Π∗
0 (q, |q|x) = F (x) , (13.19)

where F (x) is an integrable function of x ≡ ω1/ |q|. Substituting (13.19) into
(13.17), and taking into account that v(q) = 4πe2/q2, we obtain that the
integral over q behaves for small q as

Σ∗
2r (k, ω) ∼

∫

0

d3q

q4
q ∼

∫

0

dq

q
, (13.20)

i.e., it diverges logarithmically. This logarithmic divergence simply indicates
that the perturbation expansion in powers of the Coulomb potential 4πe2/q2

does not converge. One way to avoid this difficulty is to replace the Coulomb
potential by e2e−λr/r, which has a Fourier transform equal to

vλ (q) =
4πe2

q2 + λ2
, (13.21)

with λ being a small quantity. One can then try to sum the perturbation se-
ries in powers of vλ and take the limit λ → 0 in the final result. In summing
the power series expansion, one must keep in mind that there are now two
independent small quantities, namely, rs and λ, and hence one cannot termi-
nate the series at the second order because some of the higher-order terms
(which tend to zero as rs → 0) may approach infinity as λ → 0. To handle this
problem correctly one must find for each order of perturbation series (i.e., for
each power of rs) the leading term(s) in λ. In second order the leading term λ
is Σ∗

2r, which behaves as ln λ in the limit λ → 0. This behavior stems from
the fact that the two interaction lines in Σ∗

2r have the same q. It is easy to
see that the leading term in λ of nth order will come from the diagram that
has the same q in all interaction lines (Fig. 13.2). Such a diagram would give
a contribution Σ∗

nr that is proportional to

Σ∗
nr ∼ rn−2

s

∫

0

d3q

(q2 + λ2)n q ∼ rn−2
s λ2−n , n = 3, 4, . . . , (13.22)
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+ + · · ·

Σ∗
3r + Σ∗

4r + · · ·

Fig. 13.2. Leading diagrams of third, fourth, etc. order for proper self-energy of an
electron gas

while all the other diagrams of nth order give a contribution of the order
rn−2
s λ3−n or less. Thus, in the limit λ → 0, the nth-order contribution to Σ∗

and Σ∗
n equals Σ∗

nr. We can conclude that in the limit of small rs and small
λ the proper self-energy is given by

Σ∗ ≃ Σ∗
1 + Σ∗

2a + Σ∗
2b +

∞∑

n=2

Σ∗
nr . (13.23)

The quantity Σ∗
1 + Σ∗

2r + Σ∗
3r + · · · can be written as in Fig. 13.3, where

ve,RPA = vλ + v2
λΠ∗

0 + v3
λΠ∗2

0 + · · · =
v

1 − vΠ∗
0

. (13.24)

Thus we have for Σ∗
r =

∞∑

n=2

Σ∗
nr

Σ∗
r = i

∫
d3q

(2π)3
dω1

2π
g0 (k − q, ω − ω1) [ve,RPA (q, ω) − v (q)]

= i
∫

d3q

(2π)3
dω1

2π
g0 (k − q, ω − ω1)

v2 (q)Π∗
0 (q1, ω1)

1 − v (q)Π∗
0 (q1, ω1)

. (13.25)

Note that ve,RPA results from the general expression (12.64′) by replacing the
proper polarization Π∗ by its lowest approximation Π∗

0 . The approximation

Π∗ (q, ω1) ≃ Π∗
0 (q, ω1) (13.26)

Fig. 13.3. The sum Σ∗
1 + Σ∗

2r + Σ∗
3r + · · · ; ve,RPA is the effective interaction corre-

sponding to the approximation Π∗ = Π∗
0
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is known, for historical reasons, as the random phase approximation (RPA).
It is also known as the summation of the ring diagrams. It must be stressed
that on the rhs of (13.24) or (13.25) we can take the limit λ → 0 without any
divergence.

The approximation (13.26) coupled with the general equation (12.66) for
the dielectric function gives

εc
RPA (q, ω) = 1 − v (q)Π∗

0 (q, ω) . (13.27)

Having obtained Σ∗ and εC we can calculate several quantities of physical
interest:

(a) Quasiparticles εk and γk. The reader is referred to [421] and references
therein.

(b) Ground-state energy. Taking into account the general thermodynamic re-
lation 〈

∂H
∂a

〉
=

∂E

∂a

∣∣∣∣
N,Ω

, (13.28)

(11.29), (11.7), Fig. 11.1, and (12.58), we can express the ground-state
energy E as follows:

E = E0 −
i
2

∫
da

a

∑

k

∫

C

dω

2π
Σ∗ (k, ω) g (k, ω) , (13.29)

where E0 is the unperturbed ground-state energy, contour C consists of
the path shown in Fig. 11.1 a and a semicircle in the upper half-plane,
and Σ∗ and g correspond to an interaction potential equal to αv(q). Equa-
tion (13.29) is more convenient for calculations than (11.30). Substituting
(13.23) into (13.29) and expanding g in powers of the small quantity Σ∗,
we obtain that

gΣ∗ ≃ (Σ∗
1 + Σ∗

2a + Σ∗
2b + Σ∗

r ) g0 + (Σ∗
1g0)2 , (13.30)

where the omitted terms in (13.30) would give a contribution to E that
would approach zero as rs → 0. Combining (13.29) with (13.30) and
performing the integrations, we obtain for the ground-state energy

E =
e2N

2aB

[
2.21
r2
s

− 0.916
rs

+ 0.0622 ln (rs) − 0.094 + · · ·
]

, (13.30′)

where the first term in parentheses is the unperturbed ground-state en-
ergy, the second corresponds to the first-order g0Σ∗

1 in (13.30), the third
comes from g0Σ∗

r , and the fourth from the sum g0 (Σ∗
2a + Σ∗

2b)+ (Σ∗
1g0)

2.
The remaining terms approach zero as rs → 0. Equation (13.30′) shows
that we cannot obtain a series expansion of E in powers of rs.
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(c) Effective interaction ve,RPA. Using (13.27) we have

ve,RPA =
v (q)

εc
RPA (q)

=
v (q)

1 − v (q) Π∗
0 (q)

, (13.31)

which for the static case, ω = 0, becomes [20]

ve,RPA =
4πe2

q2 + q2
TF f (q/kF )

, (13.32)

where the Thomas–Fermi screening length, q−1
TF , is given by

q2
TF =

4rs

π

(
4
9π

)1/3

k2
F , (13.33)

and the function f(x) equals

f(x) =
1
2
− 1

2x

(
1 − 1

4
x2

)
ln

∣∣∣∣
2 − x

2 + x

∣∣∣∣ . (13.34)

In the limit q → 0, (13.32) becomes

ve,RPA (q, 0) ≃ 4πe2

q2 + q2
TF

as q → 0 , (13.35)

which shows clearly the effects of screening produced by the summation
of the ring diagrams.

(d) Response to an external static point charge. From εc(q) we can immedi-
ately obtain, with the use of (12.70) and (12.71), the retarded dielectric
function ε(q), which gives the following expression for the electronic charge
density δϱ(r) induced by a static point charge Z |e| at the origin:

δϱr(r) = −Z |e|
∫

d3q

(2π)3
eiq · r q2

TF f (q/kF )
q2 + q2

TF f (q/kF )
; (13.36)

the subscript r indicates that the ring approximation was used. Some
interesting consequences of (13.36) are discussed in [20]. Here we mention
that, as r → ∞,

δϱr(r) → Z |e|
π

2ξ

(4 + ξ)2
cos (2kF r)

r3
; ξ ≡ q2

TF

2k2
F

, (13.37)

i.e., the induced charge does not decay exponentially, as one would con-
clude from the approximate expression (13.35), but in an oscillating
power law way. These Friedel oscillations [428, 429] arise from the sharp
Fermi surface, which produces the singularity at q = 2kF of the function
f(q/kF ).
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(e) Collective (plasma) oscillations. As was mentioned in Chap. 11, collective
density oscillation modes appear as poles in the analytic continuation of
Π(k, ω) or, in view of (12.72), as zeros in the analytic continuation of
εc(k, ω) or ε(k, ω). Within the RPA, εc(k, ω) is given by (13.27), so the
collective mode of the electron gas has a complex eigenfrequency zq =
ωq − iε̄(ωq)γq that satisfies the equation

1 = v(q)a.c.{Π∗
0 (q, zq)} . (13.38)

Using the properties of Π∗
0 (q, ω) as q → 0 and the fact that v(q) ∼ q−2

as q → 0, we can prove [20] that

zq = ωq ≃ ωp

[
1 +

9
10

(
q

qTF

)2
]

as q → 0 , (13.39)

where ωp, the plasma frequency, is given by

ω2
p =

4πe2n

m
. (13.40)

Equation (13.39) shows that the plasma has a dispersion relation that
starts from a finite value ωp at q = 0 and grows quadratically with q.
Within the RPA, the lifetime 1/γq is exactly infinite for small q. If the
RPA is relaxed, γq becomes different from zero for all q ̸= 0. Note that if
v(q) were approaching a constant v as q → 0, i.e., if v(r) were of short
range, then the solution of (13.38) would have a dispersion relation of the
form

ωq = c0q as q → 0 , (13.41)

where the velocity c0 would satisfy the equation [20]

1 =
v0mkF

π2

[
1
2

c0

v0
F

ln
∣∣∣∣
c0/v0

F + 1
c0/v0

F − 1

∣∣∣∣ − 1 − iπ
2

c0

v0
F

θ

(
1 −

∣∣∣∣
c0

v0
F

∣∣∣∣

)]
, (13.42)

where v0
F = kF /m. Equation (13.42) shows that c0/v0

F > 1; otherwise
there is no real solution. In the weak coupling limit, v0mkF ≪ 1, the
solution of (13.42) is

c0 ≃ v0
F

[
1 + 2 exp

(
− 2π2

mkF v0
− 2

)]
, (13.43)

while in the strong coupling limit, v0mkF ≫ 1, we have

c0 ≃
√

nv0

m
. (13.44)

As was mentioned in Sect. 13.1, the collective mode with the linear dispersion
relation is called zero sound. For the Coulomb interaction case the collective
mode is called plasmon and its dispersion is given by (13.39), i.e., it approaches
a nonzero value ωp as q → 0. This nonzero ωp implies a nonzero restoring
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force as q → 0, which is a result of the long-range character of the Coulomb
interaction. Note that the zero sound or the plasmon dispersion is given in
general as a solution of the same equation, 1 = v(q)a.c.{Π∗(q, z)}, which in
the RPA reduces to (13.38).

13.3 Dilute Fermi Gas

In this section we examine the case of a low-density Fermi system with re-
pulsive short-range interactions. This is a particular example of the general
theory outlined in Sect. 13.1. Its interest lies in the fact that explicit results
can be obtained that are of relevance to the studies of nuclear matter and He3.

The small parameter in this case is kF a, where a is the scattering length
defined by the relation

f (kf , k) → −a as kf = k → 0 , (13.45)

where f (kf , k) is the scattering amplitude (Chap. 4) corresponding to the
potential v(r). Thus the theory outlined here is appropriate for either a di-
lute system (kF → 0) or short-range interactions a → 0. For nuclear matter
kF a ≃ 1/3.

Because kF a → 0, one could guess that the most important diagrams are
those describing the interactions of pairs of particles to all orders. Quanti-
tatively, this means that the vertex part Γ could be approximated by the
so-called ladder diagrams shown in Fig. 13.4a. One can prove [20, 421] that
the diagrams for Γ omitted in Fig. 13.4a give contributions to Σ∗ of higher
order in kF a. This statement can be demonstrated by comparing the two dia-
grams for Σ∗ in Fig. 13.5. Diagram a is proportional to kF a, while diagram b

(a) ≃ + + + · · ·

(b) ≃ +

Fig. 13.4. a Vertex part Γ in ladder approximation. b Integral equation obeyed by
Γ in ladder approximation
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(a) (b)

Fig. 13.5. Diagram a was retained in the ladder approximation, while diagram b
was omitted

is proportional to (kF a)2; in general the power of kF a is determined by the
number of reverse running g0-lines. It follows that the lowest order in kF a is
obtained by keeping diagrams in Γ involving only parallel running g0-lines,
i.e., by keeping the ladder diagrams. The summation of the ladder diagrams is
equivalent to an integral equation for Γ , as shown in Fig. 13.4b. This integral
equation is known as the ladder approximation to the Bethe–Salpeter equa-
tion; its kernel involves the product vg0g0. For present purposes it is much
more convenient to express the integral equation for Γ in terms of the scatter-
ing amplitude f (kf , k), which is related to the potential v(q) through (4.62).
After some lengthy algebraic manipulations one obtains

Γ (p, p′; P ) = Γ0 (p, p′; P ) + m

∫
d3k

(2π)3
Γ0 (p, k; P )

×
[

N (P , k)
mE − k2 + isN (P , k)

− 1
mE − k2 + is

]
Γ (k, p′, P ) , (13.46)

with

Γ0 (p, p′; P ) = −4π

m
f (p, p′) +

(4π)2

m

∫
d3k

(2π)3

×f (p, k)
(

1
mE − k2 + is

+
1

k2 − p′2 − is

)
f∗ (p′, k) ; (13.47)

in the above equations s → 0+; the four-momentum P stands for p1 + p2;
the four-momentum p stands for (p1 − p2)/2 + k and p′ = (p1 − p2)/2; E =
E0 −P 2/4m is the total energy of the pair in the center-of-mass frame; E0 =(
p2
1 + p2

2

)
/2m; N(P , k) = 1(−1) if both P /2 ± k are outside (inside) the

Fermi sea; N(P , k) = 0 otherwise. The quantity Γ0 is the vertex part for
two particles in the vacuum: Γ → Γ0 as kF → 0. The usefulness of (13.46)
and (13.47) is that the quantity Γ is related to the observable scattering
amplitude, which remains finite even for infinite potentials such as the hard-
sphere potential. Equations (13.46) and (13.47) were obtained first by Galitskii
[430] and Beliaev [431].
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The integration over k in (13.46) is essentially restricted within the Fermi
sea because the integrand vanishes when both P /2± k are outside the Fermi
sea. Since we are interested in energies of the order εF , the last term in (13.46)
is of the order mΓ0kF Γ , so that (Γ − Γ0)/Γ ∼ mΓ0kF ∼ fkF ∼ kF a. Thus
(13.46) can be solved by iteration in the present case where kF a ≪ 1. In the
same limit only small values of p, p′, and k are important in (13.47) for which
the scattering amplitude f (k, k′) behaves as

f (k, k′) = −a + ika2 + O
(
k2a3

)
; |k| = |k′| → 0 . (13.48)

Substituting (13.48) into (13.47), replacing Γ by Γ0 in the last term of (13.46),
and keeping terms of order a2, we obtain Γ to order a2. Replacing the result
for Γ in the equation shown in Fig. 12.10a (with the g-lines approximated
by g0-lines) we have the self-energy to order (kF a)2. For details the reader is
referred to [20]. The final results for physical quantities are the following [20]:

γk =
k2

F

2m

2
π

(kF a)2
(

kF − k

kF

)2

ε̄ (kF − k) + · · · , (13.49)

µ ≡ εkF =
k2

F

2m

[
1 +

4
3π

kF a +
4

15π2
(11 − 2 ln 2) (kF a)2 + · · ·

]
,(13.50)

m∗

m
= 1 +

8
15π2

(7 ln 2 − 1) (kF a)2 + · · · , (13.51)

⟨H⟩ =
Nk2

F

2m

[
3
5

+
2
3π

kF a

+
4

35π2
(11 − 2 ln 2) (kF a)2 + · · ·

]
. (13.52)

The theory outlined above can be improved if in the equation shown in
Fig. 13.4b the g0-lines are replaced by g-lines. The resulting integral equation
together with the equation of Fig. 12.10a (which in view of the integral equa-
tion for Γ can be simplified as in Fig. 13.6) and the equation g−1 = ω−ε0

k−Σ∗

form a complete set of equations. For a discussion of this improvement the
reader is referred to [20].

≃ +

Fig. 13.6. In the self-consistent (i.e., with the g0-lines replaced by the g-lines) ladder
approximation, Σ∗ is related to Γ as shown
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13.4 Superconductivity

13.4.1 Diagrammatic Approach

The ladder approximation of the previous section is a reasonable one for ex-
amining the phenomenon of superconductivity because it includes the char-
acteristic physical process responsible for this phenomenon, i.e., the multiple
scattering of two particles leading to the bound Cooper pair. Since the many-
body Green’s function incorporates the indistinguishability of the electrons,
both the direct and the indirect processes, discussed in Chap. 6, are expected
to show up automatically in the present formalism. We demonstrate here that
this is indeed the case.

From Fig. 13.4 we see that the structure of the ladder approximation to
the vertex part is of the form

T = −v − vGGT . (13.53)

We have used the symbol T instead of Γ in order to stress the anal-
ogy with the t-matrix in one-body Green’s function formalism. Referring
to Fig. 13.4b, we denote by p the sum p1 + p2 and by s the difference
(p1 − p2) /2, so that p1 = s + (p/2) and p2 = −s + (p/2), where p ≡
(z, p), s = (iωn, s), z = 2µ + 2Im {z}, and iωn = iπ(2n − 1)/β. Simi-
larly, p1 + k is denoted by s′ + (p/2), p2 − k by −s′ + (p/2), p1 + k − q
by s̄ + (p/2), and p2 − k + q by −s̄ + (p/2). Notice that, when p1, p2 cor-
responds to the same spin direction (e.g., both up), then within the lad-
der approximation both diagrams of Fig. 13.6 contribute to the proper self-
energy. In contrast, when p1 and p2 are associated with opposite spins,
only the first diagram of the rhs in Fig. 13.6 contributes to Σ∗. Further-
more, if the interaction v is proportional to a δ-function in real space [and,
consequently, a constant in k-space, for |ε(k) − µ| < ωD], then for paral-
lel spins the two diagrams in Fig. 13.6 exactly cancel each other (within
the ladder approximation). This is physically obvious, since two electrons
with parallel spins cannot be at the same point in space and thus they
give no chance to the δ-function interaction to act. Two more remarks:
for the purpose of calculating Σ∗ in the framework of the diagrams in
Fig. 13.4 and the first diagram in Fig. 13.6, we must put p2 − k = p2, or
s′ = s; then the presence of a δ-function interaction makes T depend only
on p.

Taking into account the points above and the rules III′ to VI′ in Sect. 12.3
we can write (13.53) more explicitly as follows:

T (p)

[
1 + v

∫
d3s̄

(2π)3
1
β

∑

n̄

G
(
s̄ +

p

2

)
G

(
−s̄ +

p

2

)]
= −v . (13.54)

To proceed further we shall replace the dressed propagators by the bare ones
in the summation over n̄:
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1
β

∑

n̄

G0

(
s̄ +

p

2

)
G0

(
−s̄ +

p

2

)

=
1
β

∑

n

1
iωn + (z/2)− ε1

1
−iωn + (z/2)− ε2

, (13.55)

where we have replaced the dummy index n̄ by n, and we set

ε1 = ε0

(∣∣∣s̄ +
p

2

∣∣∣
)

and ε2 = ε0

(∣∣∣−s̄ +
p

2

∣∣∣
)

.

To perform the summation over n in (13.55) we write

1
iωn + (z/2)− ε1

× 1
−iωn + (z/2) − ε2

= − 1
z − ε1 − ε2

[
1

iωn − (z/2) + ε2
− 1

iωn + (z/2)− ε1

]
; (13.56)

then, according to (11.53), we have

1
β

∑

n

1
iωn − (z/2) + ε2

=
1

exp [β (µ − ε2)] + 1
, (13.57a)

1
β

∑

n

1
iωn + (z/2)− ε1

=
1

exp [β (ε1 − µ)] + 1
. (13.57b)

In (13.57a) and (13.57b) we have taken the limit Im {z} = 0 so that z/2 = µ.
As was discussed in Chap. 6 and can be verified by performing the integral in
(13.54) numerically, the most favorable condition for the blowing up of T (p)
occurs when p = 0; in this case, ε1 = ε2 = ε, and (13.55) in view of (13.57a)
and (13.57b) becomes

1
β

∑

n̄

G0

(
s̄ +

p

2

)
G0

(
−s̄ +

p

2

)
= −1 − 2f(ε)

z − 2ε
, (13.58)

where f(ε) =
[
eβ(ε−µ) + 1

]−1 is the Fermi distribution.
The integration over d3s̄ can be transformed to an integration over dε

times the DOS at EF , ϱF , which can be taken out of the integral. Thus, the
denominator of T (p) becomes

1 − vϱF

∫ µ+ωD

µ−ωD

dε
1 − 2f(ε)

z − 2ε
. (13.59)

By setting z = E and ε = E′/2, the integral in (13.59) becomes identical
to the one in (6.65), which was calculated for E = 2µ ≃ 2EF in (6.67) and
turned out to be negative. Thus the quantity T blows up only for negative v
(i.e., for attractive interaction), signaling the creation of a bound state, i.e.,
the creation of a Cooper pair. The critical temperature is given by (6.68),
where λ = ϱF |v| (|v| has dimensions of energy times volume).
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13.4.2 Equation of Motion Approach

This approach is based on imaginary time Green’s functions and on a fac-
torization of g2 in the spirit of the Hartree–Fock approximation, but with
a crucial addition:

g2 (x1, x2; x′
1, x

′
2) ≃ g (x1, x

′
1) g (x2, x

′
2) − g (x1, x

′
2) g (x2, x

′
1)

+ ⟨T (ψ (x1)ψ (x2))⟩
〈
T

(
ψ† (x′

1) ψ† (x′
2)

)〉
, (13.60)

where x1, x2, x′
1, and x′

2 are condensed notations for (r1,−iσ1, s1), (r2,−iσ2,
s2), (r′

1,−iσ′
1, s

′
1), and (r′

2,−iσ′
2, s

′
2), respectively, and s1, s2, s′1, and s′2 are

spin indices taking values up or down. The last term in (13.60) describes the
propagation of two holes and two particles. It was added for physical reasons
in order to incorporate in the formalism the possibility of Cooper pairs and
in the hope that the resulting theory will provide a self-consistent way for the
formation of Cooper pairs as well as their properties.

One may argue that the last term in (13.60) is automatically zero; this is
certainly true for a particle-conserving Hamiltonian. However, the factoriza-
tion of the interaction part, Vi, of the Hamiltonian,

Vi =
1
2

∫
d3rd3r′v (r − r′)ψ†

s (r)ψ†
s′ (r′)ψs′ (r′) ψs (r) , (13.61)

consistent with (13.60), will render Vi in a particle-nonconserving form:

Vi ≃ ViHF +
∫

d3rd3r′v (r − r′)
[〈

ψ†
↓ (r) ψ†

↑ (r′)
〉

ψ↑ (r′)ψ↓ (r)

+ ⟨ψ↑ (r′)ψ↓ (r)⟩ψ†
↓ (r)ψ†

↑ (r′)
]

, (13.62)

which allows the possibility of nonzero ⟨T (ψ (x1)ψ (x2))⟩ and〈
T

(
ψ† (x′

1)ψ† (x′
2)

)〉
. The choice of spin indices in (13.62) reflects the fact

that electrons in the Cooper pairs have opposite spins. The same choice of
spin indices must be made in (13.60), where the imaginary time evolution of
the operators is determined by the Hamiltonian H = H0 +Vi, where H0 is the
kinetic energy and Vi is replaced by the rhs of (13.62). Actually, for simplicity
we shall omit ViHF and in explicit calculations we shall choose

v (r − r′) = − |v| δ (r − r′) . (13.63)

Note that the average value

⟨A(σ)⟩ =
Tr

{
e−β(H−µN)eσHAe−σH}

Tr
{
e−β(H−µN)

}

of any Heisenberg time-dependent operator remains invariant if σH is replaced
by σ (H − µN). This follows from the invariance of the trace in cyclic permu-
tations (when H and N commute), and by the fact that µ = 0, when H and N
do not commute. Thus, in calculating thermal averages, we can use for the
time evolution either H or H− µN . However, it is imperative to use H− µN
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instead of H, in the case where H and N commute, but H has been replaced
by a particle-nonconserving approximation, as in (13.62). The advantage of
H−µN , besides letting us attribute the nonconservation to particle exchange
with a bath of chemical potential µ, is that it allows us to have a nonzero µ,
defined by µ =

(
∂F/∂N̄

)
T,V

(where N̄ is the average number of particles
within the grand canonical ensemble) despite the approximate nonconserva-
tion of particles. Henceforth we shall use H−µN for the time development of
Heisenberg operators. As a result of this change, all single-particle energies,
εk → ξk = εk − µ and zn → iωn = zn − µ and ωn = π(2n − 1)/β.

The factorization (13.60) forces us to introduce two new closely related
Green’s functions

f (x, x′) ≡ −
〈
T

[
ψ↑(x)ψ↓(x′)

]〉
, (13.64a)

f † (x, x′) ≡ −
〈
T

[
ψ†
↓(x)ψ†

↑(x
′)

]〉
. (13.64b)

Combining (12.1) (with t → −iσ, etc.), (13.60), (13.62), and (13.63) with the
approximation ViHF = 0, we find the following equation for the time evolution
of g:

(
− ∂

∂σ
+

1
2m

∇2 + µ

)
g (x, x′) = iδ (r − r′) δ (σ − σ′)

+i |v| ⟨ψ↑ (r)ψ↓ (r)⟩ f † (x, x′) . (13.65)

It is clear from (13.65) that we need to find an equation for the time evolution
of the new Green’s function f † (x, x′). This can be achieved by employing
the general time evolution equations, ∂ψ/∂σ = [H− µN, ψ] and ∂ψ†/∂σ =[
H− µN, ψ†], and the approximate form of H together with the definitions

(13.64a) and (13.64b). We find
(
− ∂

∂σ
+

1
2m

∇2 + µ

)
f (x, x′) = −i∆ (r) g (x′, x) , (13.66a)

(
∂

∂σ
+

1
2m

∇2 + µ

)
f † (x, x′) = −i∆∗ (r) g (x, x′) , (13.66b)

where the so-called gap, ∆ (r), is by definition

∆ (r) ≡ |v| ⟨ψ↓ (r)ψ↑ (r)⟩ = − |v| ⟨ψ↑ (r)ψ↓ (r)⟩ ≡ |v| f
(
x+, x

)
. (13.67)

For a time and space translationally invariant system, it is convenient to use
Fourier transforms with respect to the difference x − x′. Then, taking into
account (12.9)–(12.11) and

f † (x, x′) =
∫

d3k

(2π)3
eik · (r−r′) 1

β

∑

n

e−iωn(σ−σ′)F † (k, zn) , (13.68)

∆∗ = |v| f † (
x+ − x

)

=
|v|
β

∑

n

e−iωnsF † (r − r′ = 0, iωn) as s → 0+ , (13.69)
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we obtain from (13.65) and (13.66b) the following pair of equations:

(iωn − ξk)G (k, iωn) + ∆F † (k, iωn) = 1 , (13.70a)
(−iωn − ξk) F † (k, iωn) − ∆∗G (k, iωn) = 0 , (13.70b)

where ξk =
(
k2/2m

)
− µ and ωn = π(2n− 1)/β. The solution of (13.70a) and

(13.70b) is

G (k, iωn) =
u2

k

iωn − Ek
+

v2
k

iωn + Ek
, (13.71a)

F (k, iωn) = F † (k, iωn) = −ukvk

(
1

iωn − Ek
− 1

iωn + Ek

)
, (13.71b)

where

Ek =
√

∆2 + ξ2
k , (13.72)

ukvk =
∆

2Ek
, (13.73)

v2
k = 1 − u2

k =
1
2

(
1 − ξk

Ek

)
. (13.74)

We have assumed, without loss of generality, that ∆ is real.
It remains to use the definitions of ∆, (13.67), and (13.69) and the solution

(13.71b) to find an equation that determines the gap ∆:

∆ =
|v|
β

∑

n

∫
d3k

(2π)3
∆

ω2
n + E2

k

or
1 =

|v|
β

∑

n

∫
d3k

(2π)3
1

ω2
n + E2

k

. (13.75)

The series has been summed already [see (13.55) and (13.58) and set z = 0]
and gives

∑

n

1
β

1
(ω2

n + E2
k)

=
1

2Ek
tanh

(
βEk

2

)
,

while the integration over d3k can be transformed to an integration over dξ
times the DOS per unit volume at the Fermi level. Thus

1 = |v| ϱF

∫ ωD

0

dξ√
ξ2 + ∆2

tanh

(√
ξ2 + ∆2

2kBT

)
. (13.76)

Equation (13.76) allows us to determine the gap as a function of temperature.
It turns out that ∆ ̸= 0 for T < Tc and ∆ = 0 for T ≥ Tc. In particular, for
T = 0 we find that

∆(0) = 2ωDe−1/λ , λ = |v| ϱF . (13.77)
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The critical temperature, Tc, is determined by letting ∆ → 0+ in (13.76). We
find as before

kBTc =
2eγ

π
ωDe−1/λ . (13.78)

Many other quantities of physical interest may be obtained by employing
(13.71), (13.72)–(13.74), and (13.76). For details see, e.g., the book by Fetter
and Walecka [20].

13.5 The Hubbard Model

The Hubbard model, within the LCAO framework, is as important as the
interacting electrons [see (13.16)] within the jellium framework. Actually, it is
richer, since it incorporates the discrete nature of the solid-state structure and
is amenable to several generalizations so as to incorporate essential features
characterizing various groups of materials.

In its simplest form, the Hubbard model is described by the following
Hamiltonian:

H =
∑

iσ

Vija
†
iσajσ + U

∑

i

ni↑ni↓ . (13.79)

The first term on the rhs of (13.79) is the usual TBH with one state per site; a†
iσ

creates a particle at state |i⟩ with spin σ (σ =↑ or ↓); ajσ destroys a particle
with spin σ at the state |j⟩. The last term in the rhs of (13.79) describes
the on-site interaction of strength U , when two particles of opposite spin are
on the same state |i⟩. Usually, we assume for simplicity that Vij = Vji = V
when i, j nearest neighbors, and zero otherwise; furthermore, we shall take
U > 0, i.e., repulsive interaction.

The most important parameter in the Hamiltonian (13.79) is the ra-
tio U/ |V |, which determines the relative weight of the two competing as-
pects incorporated in this model: U , the strength of the repulsive poten-
tial energy, which tells the particles to avoid each other as much as pos-
sible; and |V |, the strength of the kinetic energy, which favors the spread-
ing of the particles over all sites of the system. Important factors in de-
termining the outcome of this competition of conflicting tendencies are the
number of particles per state, ζ, and the dimensionality, d, of the system.
Depending on the values of U/ |V |, ζ, and the dimensionality d, the sys-
tem may exhibit magnetic ordering and/or undergo a metal-insulator tran-
sition. Thus, a phase diagram in the ζ–U/ |V | plane has to be constructed
[392, 432–440].

Several generalizations of the simple Hubbard model can be achieved by
adding more terms in the Hamiltonian (13.79) or by having more than one
orbital per site. These generalizations seem to be necessary for allowing the
appearance of important physical phenomena such as ferromagnetism. For
example, we can add to (13.79) additional interactions, H1, of the form
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H1 =
1
2

∑

i̸=j

Uj−ininj +
1
2

∑

i̸=j

∑

σσ′

Jj−ia
†
iσa†

jσ′aiσ′ajσ

=
1
2

∑

i̸=j

(
Uj−i −

1
2
Jj−i

)
ninj −

∑

i̸=j

Jj−isi · sj , (13.80)

where ni = a†
i↑ai↑ + a†

i↓ai↓ and 2sisj = 2sizsjz + si+sj− + si−sj+. The last
term in (13.80), known as the Heisenberg model, favors ferromagnetic ordering
for Jj−i > 0 and antiferromagnetic ordering for Jj−i negative between nearest
neighbors and zero otherwise.

Returning now to the simple Hubbard model, (13.79), one can show that
for ζ = 1 and in the limit U/ |V | → ∞, it is equivalent to

H′ =
2V 2

U

⎛

⎝
∑

i̸=j

′
si · sj −

NsZ

4

⎞

⎠ , (13.81)

where the prime in the summation denotes restriction to the Z nearest neigh-
bors only and Ns is the total number of sites. Equation (13.81) shows clearly
that the simple Hubbard model is capable (at least in this limit) of creating
magnetic ordering.

Within the Hartree approximation, the Green’s function for the simple
Hubbard model can be obtained by replacing the last term in (13.79) by∑

iσ εiσniσ, where self-consistency requires that

εiσ = U ⟨niσ′⟩ , (13.82)

where σ′ is opposite to σ. Three of the possible choices for ⟨niσ⟩ are shown
schematically in Fig. 13.7 and given below:

Case (a)

⟨niσ⟩ =
1
2
ζ , (13.83)

Case (b)

⟨niσ⟩ =

⎧
⎨

⎩

1
2 (ζ + µ) , σ =↑

1
2 (ζ − µ) , σ =↓

, (13.84)

Case (c)

⟨niσ⟩ =

⎧
⎨

⎩

1
2 (ζ + µ) , σ =↑, sublattice A or σ =↓, sublattice B,

1
2 (ζ − µ) , σ =↓, sublattice A or σ =↑, sublattice B.

(13.85)

Using the techniques of Chap. 5, we determine the diagonal matrix elements
of the one-particle Green’s functions for each of the three phases:

G†
iσ(E) = lim

s→0+

〈
i

∣∣∣∣
1

E + is −Hσ

∣∣∣∣ i

〉
, (13.86)
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Fig. 13.7. Schematic representation of three possible choices for ⟨ni↑⟩ and ⟨ni↓⟩
within the Hartree approximation to the Hubbard model: a nonmagnetic fully sym-
metric phase, b ferromagnetic phase, c antiferromagnetic phase

where

Hσ =
∑

i

εiσniσ + V
∑

i̸=j

′
a†

iσajσ =
∑

i

|iσ⟩ εiσ ⟨iσ| + V
∑

i̸=j

′
|iσ⟩ ⟨jσ| , (13.87)

as well as the DOS per site

ϱiσ(E) = − 1
π

Im {Giσ(E)} . (13.88)

The number of electrons per site is given by

ζ =
∫ EF

dEϱi↑(E) +
∫ EF

dEϱi↓(E)dE , (13.89)

and the local magnetic moment, µ, [for cases (b) and (c)]

µ = |⟨ni↑⟩ − ⟨ni↓⟩| =

∣∣∣∣∣

∫ EF

dEϱi↑(E) −
∫ EF

dEϱi↓(E)

∣∣∣∣∣ . (13.90)

Equations (13.89) and (13.90) determine self-consistently the two unknowns,
EF and µ [in case (a) µ is identically zero]. Equation (11.30) [with k2/2m
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replaced by εσ (k), the eigenvalues of Hσ] yields for the average energy in the
present case

⟨H⟩
Ns

=
∑

σ

∫ EF

dEϱiσ(E)E − U

4
(
ζ2 − µ2

)
, (13.91)

where the last term on the rhs of (13.91) corrects for the double counting of
the interaction term present in both H↑ and H↓.

For a given value of U/ |V | and ζ, the phase with the lowest value of ⟨H⟩
is the preferable one among the three, but not necessarily the ground state.
This is because a better approximation than the Hartree may change the
ordering (e.g., it may make ⟨H⟩ferromagnetic always larger than the minimum
between the other two); furthermore, other, more complicated, configurations
may have lower energy than those shown in Fig. 13.7 at least in some regions
of the ζ–U/ |V | plane [432, 433, 441].

The model allows us to calculate the value of the magnetic couplings Jj−i

(in the magnetic phases) by reversing one or two local moments and computing
the resulting change in energy [439]. For example, if Jj−i is different from zero
for nearest neighbors only, J is given by

|J | =
∣∣∣∣
δ ⟨H⟩

Z

∣∣∣∣ , (13.92)

Fig. 13.8. Phase diagram for the 3-d simple Hubbard model in the Hartree approxi-
mation showing the regions where the nonmagnetic (P), the antiferromagnetic, (AF)
and the ferromagnetic (F) phases have the lowest energy. In the F phase, µ = ζ;
the exact solution is expected to shrink the F region probably until it disappears
completely. B is half the bandwidth in the P phase. The results are the same for ζ
and 2 − ζ
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where δ ⟨H⟩ = ⟨Hr⟩− ⟨H⟩, Hr = H↑r +H↓r, and the subscript r indicates the
sign reversal of a single moment, which creates a single impurity of strength
|ε| = U |⟨ni↑⟩ − ⟨ni↓⟩| in both H↑r and H↓r. ⟨Hr⟩ can be calculated using the
formalism of Chap. 6.

The reader may verify the results [434, 440] of the Hartree approximation
shown in Figs. 13.8–13.10 by following the procedures outlined in this section.

Fig. 13.9. The magnetic moment per site (in units of µB) vs. U/B (B = Z |V |)
for the AF phase of the Hubbard model and for ζ = 1 within the framework of
the Hartree approximation. Solid line: simple cubic lattice; dotted line: Bethe lattice
Green’s function

Fig. 13.10. Value of J (as defined in −J
P′si · sj) vs. U/B (B = Z |V |) for AF

phase of Hubbard model and for ζ = 1 (for Hartree approximation). For large values
of U/B, J → −2V 2/U , in accordance with (13.81)



332 13 Applications

13.6 Summary

We first outlined the proof that the normal state of a Fermi system is a con-
sistent solution of the equations, and it goes continuously to the free-particle
state as the interactions are turned off. Thus, if the actual state of the inter-
acting system develops in a continuous way as the interactions are turned on,
the system is normal, i.e., it has a well-defined Fermi surface determined from
the equation

εkF = µ ,

where εk is the quasiparticle energy. Moreover, the quasiparticle lifetime ap-
proaches infinity as (k − kF )−2 in the limit k → kF ; and each quasiparticle is
in one-to-one correspondence with the real particles.

We then indicated how the Green’s function formalism can be used to jus-
tify Landau’s theory. The most important results are: (1) The Fermi momen-
tum kF (as defined above) satisfies the simple equation (taking into account
the two directions of spin)

2
4π

3
k3

F

(2π)3
=

N

Ω
. (13.11)

(2) The effective mass m∗ defined by the equation

m∗ =
kF

|∂εk/∂k|k=kF

(13.9)

is related to the bare mass m as follows:

1
m∗ =

1
m

−
kF w2

kF

2(2π)3

∫
Γ ω (p1, p2) cos θdO , (13.12)

where Γ ω is a limiting value of the vertex part. (3) There are also collective
excitations (such as zero sound) in an interacting Fermi system with an acous-
ticlike dispersion relation that is given by the poles of the vertex part Γ or the
poles of the polarization part Π . The above results are quite important be-
cause they provide (for normal Fermi systems) a justification for the one-body
approximation, which is widely used in solid-state and nuclear physics. More-
over, they give corrections and refinements; they also clarify the conditions
under which the one-body approximation is valid.

We also examined four important specific examples for which explicit re-
sults were obtained:

1) The high-density electron gas moving in a uniform positive background.
This is a normal Fermi system that approximates electrons in a metal.
It exhibits some peculiarities associated with the long-range character of
the Coulomb interaction; the most important consequence of this feature
is that the collective excitation, which is called plasmon, has a dispersion
relation of the form

ω2
q = ω2

p + Aq2 as q → 0 . (13.39)
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2) A low-density Fermi system with short-range repulsive interactions. Ex-
plicit results for quasiparticles and ground-state energy were obtained;
these results are applicable to nuclear matter and with appropriate refine-
ments to liquid He3.

3) We revisited the problem of superconductivity within the framework of the
diagrammatic approach and the equation of motion approach to the many-
body Green’s functions. The first approach confirms the results of §6.3.2
without the hand-waving physical arguments employed there. The second
approach provides a full solution to the Green’s function – and, hence,
to the calculation of thermodynamic quantities of the superconducting
state – through the gap function ∆(T ) given by

1 = |v| ϱF

∫ ωD

0

dξ√
ξ2 + ∆2

tanh

(√
ξ2 + ∆2

2kBT

)
. (13.76)

4) The Hubbard model, which in its simpler form has the following Hamil-
tonian:

H =
∑

iσ

Vija
†
iσajσ + U

∑

i

ni↑ni↓ , (13.79)

where usually Vij = V for nearest neighbors and zero otherwise. This
model incorporates the essential competition between the spreading of
the electrons throughout the system on the one hand and the require-
ment of avoiding double occupation of the same state |i⟩ on the other.
As a result of this, the model is capable of describing many-body-driven
metal-insulator transitions as well as magnetic phases. For one electron
per site and U/ |V | → ∞, the Hamiltonian (13.79) reduces to a Heisenberg
type Hamiltonian

H = −
∑

i̸=j

Jijsi · sj + const. (13.93)

with J given by

J = −2V 2

U
(13.94)

for nearest neighbors and zero otherwise.

We mention finally that the Green’s function formalism is very useful in
describing effects due to interactions among other elementary excitations in
solids such as phonons and magnons as well as interactions of these excitations
with electrons.

Further Reading

The material of Sects. 13.1, 13.2, 13.3, and 13.4.2 is presented in detail in the
classic books on many-body theory such as those by Fetter and Walecka [20],
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Mahan [114], and Abrikosov et al. [113]. The ladder approximation to the
vertex part is treated also in the last chapter of the Kadanoff and Baym
book [420]. Some relevant material can be found in solid-state books [30,133].

The Hubbard model and the related subjects of magnetism and metal-
insulator transitions are presented in several books, e.g., the books by Mott
[442], Enz [134], Auerbach [443], Montorsi [444], Mattis [441], etc.

Problems

13.1. Consider the process k1, k2 → k3, k4, where k1 > kF , k2 < kF , k3 > kF ,
k4 > kF . We have that |ki − kF | /kF ≪ 1, (i = 1, . . . , 4). Show that the
available phase space for this process is proportional to (k1 − kF )2. Conclude
from this that Im {Σ∗ (k, ω)} ∼ (ω − µ)2.

Hint : See [113], p. 17.

13.2. Calculate the quantity Π∗
0 given by (13.18).

Hint : See [20], pp. 281–282.

13.3. Show that the specific heat for an electron gas within the Hartree–
Fock approximation behaves like −T/ lnT as T → 0 while experimentally is
proportional to T in this limit.

Hint : Consider the thermodynamic potential −PΩ = −kBT lnZG as given
by (11.37); take into account that

d(PΩ) = SdT + PdV + Ndµ .

(See also [20], pp. 261–267; do not forget that we are dealing with a jellium
model with long-range forces between the electrons and no screening.)

13.4. Prove that the finite temperature dielectric function, εRPA (q, ω), can
be brought to the form

εRPA (q, ω) = 1 − 8πe2

q2

∫
d3k

(2π)3
f (εk) − f (εk+q)

ω + is − εk+q + εk
.

13.5s. Prove (13.37).

13.6. Starting from the following expression for the thermodynamic potential
−PΩ

−PΩ = 2kBT
∑

k

ln [1 − f (Ek)] +
∑

k

[ξk − Ek] v2
k − ∆2

∑

k

1
Ek

,

show that the specific heat, CV , of the superconducting state is given by

CV = −2ϱF

T

∫ ∞

−∞
dε

(
E2 +

1
2kBT

∂∆2

∂β

)
∂f

∂E
, E =

√
ε2 + ∆2 .
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Hint : Take into account that

∂(PΩ)
∂Ek

=
∂(PΩ)
∂uk

= 0 ,

since the potential, −PΩ, must be minimum at equilibrium.

13.7. Following (13.82)–(13.91), verify the results shown in Figs. 13.8–13.10.
Use Bethe lattice Green’s functions in the limit K → ∞ with 2 |V ′|

√
K =

B = Z |V |. How are the results modified for the 1-d case?
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Dirac’s delta Function

The 1-d delta function, δ(x), is defined through a limiting procedure so that

δ(x) = 0 for x ̸= 0 (A.1a)

and δ(0) = ∞. The meaning of this last relation, taking into account (A.1a),
is that ∫ b

a
dxf(x)δ(x) = f(0) (A.1b)

for any well-behaved function f(x) and for any pair a, b such that a < 0 < b.
Some functions producing in the limit the delta function, as defined by

(A.1a, A.1b), are given below:

δ(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

lim
ε→0+

1
π

ε

x2 + ε2
, Lorentzian, (A.2a)

lim
σ→0+

1
σ
√

2π
exp

(
− x2

2σ2

)
, Gaussian, (A.2b)

lim
ε→0+

sin(x/ε)
πx

, Dirichlet, (A.2c)

lim
L→∞

1
2π

∫ |L|

−|L|
eikxdk , Fourier. (A.2d)

From the definition of the delta function it follows that

δ(g(x)) =
∑

n

δ (x − xn)
|g′ (xn)| , (A.3)

where g(x) is a well-behaved function of x, the sum runs over the real roots,
{xn}, of g(x) = 0, and g′ (xn) ≡ (dg/dx)x=xn

̸= 0 for all xn.
The derivative of the delta function is properly defined as

δ′(x) = 0 , x ̸= 0 (A.4a)
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and ∫ b

a
dxf(x)δ′(x) = −f ′(0) (A.4b)

for any well-behaved function f(x) and for any pair a, b such that a < 0 < b.
The integral of the delta function is the so-called theta function

δ(x) =
dθ(x)
dx

, (A.5a)

where

θ(x) ≡
{ 1 , for x > 0 ,

0 , for x < 0 . (A.5b)

The definition of the delta function is generalized to more than one inde-
pendent cartesian variable:

δ (r) = δ (x1) δ (x2) . . . δ (xn) (A.6)

in an n-dimensional space. More explicitly we have

δ (r − r′) = δ (x − x′) δ (y − y′) =
1
r

δ (r − r′) δ (φ − φ′) , 2-d , (A.7)

δ (r − r′) = δ (x − x′) δ (y − y′) δ (z − z′)

=
1
r2

δ (r − r′) δ (cos θ − cos θ′) δ (φ − φ′)

=
1

r2 sin θ
δ (r − r′) δ (θ − θ′) δ (φ − φ′) , 3-d . (A.8)

The completeness relation (1.4) of Chap. 1 allows us to obtain many series
or integral representations of the delta function. For example, the Fourier
representation of the d-dimensional delta function is, according to (1.4) and
the footnote on p. 3,

δ (r − r′) =
∑

k

φk (r)φ∗
k (r′) =

1
Ω

∑

k

eik · (r−r′) −→
Ω→∞

=
1
Ω

Ω

(2π)d

∫
dkeik · (r−r′) =

1
(2π)d

∫
dkeik · (r−r′) . (A.9)

Equation (A.9) generalizes in d-dimensions (A.2d).
Similarly, the delta function over the spherical angles θ and φ can be

expressed as a sum over spherical harmonics, Yℓm(θ, φ), according to (1.4):

δ (cos θ − cos θ′) δ (φ − φ′) =
1

sin θ
δ (θ − θ′) δ (φ − φ′)

=
∞∑

ℓ=0

ℓ∑

m=−ℓ

Yℓm(θ, φ)Y ∗
ℓm (θ′, φ′) , (A.10)
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where the spherical harmonics are given in terms of the associated Legendre
polynomials, P |m|

ℓ , by the following expression:

Yℓm(θ, φ) = iℓ(−1)(|m|+m)/2

√
(2ℓ + 1)(ℓ − |m|)!

4π(ℓ + |m|)! P |m|
ℓ (cos θ)eimφ . (A.11)

Equation (A.10) is valid because the set Yℓm(θ, φ) is orthonormal
∫ π

0
sin θdθ

∫ 2π

0
dφY ∗

ℓm(θ, φ)Yℓ′m′(θ, φ) = δℓℓ′δmm′ .
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Dirac’s bra and ket Notation

In quantum mechanics, the states of a particle are described by eigenfunctions,
φn (r), of any hermitian operator,L, corresponding to a physical quantity such
as its momentum, its Hamiltonian, etc. The same physical states can equally
well be described by the Fourier transforms, φ̃n (k), of φn (r) or by any other
representation of φn (r) such as the set {an,ℓ} of the expansion

φn (r) =
∑

ℓ

an,ℓψℓ (r) (B.1)

in terms of a complete orthonormal set of functions {ψℓ}.
It is very convenient to introduce for a physical state a single symbol that

will be independent of any particular representation and such that the various
representations, φn (r), φ̃n (k), and {an,ℓ}, can be reproduced easily whenever
they are needed. This symbol is denoted by |n⟩ or by |φn⟩ and is called a ket.
Thus

State of a particle characterized by quantum number(s) n ⇐⇒ |φn⟩ or |n⟩
To each ket |φn⟩ corresponds one and only one conjugate entity denoted

by ⟨φn| and called a bra. We define also the inner product of two kets, |φ⟩ and
|ψ⟩, (in that order) as a complex quantity denoted by ⟨φ |ψ⟩ and such that

⟨φ |ψ⟩∗ = ⟨ψ |φ⟩ . (B.2)

In particular, for an orthonormal set we have

⟨φn |φm⟩ = δnm . (B.3)

Physically, the inner product ⟨φ |ψ⟩ gives the probability amplitude for a par-
ticle being in state |ψ⟩ to be observed in state |φ⟩.

A complete set of kets, {|φn⟩}, defines an abstract Hilbert space. Some
usual complete sets of kets for a spinless particle are the following:

(a) The position kets {|r⟩}, where r runs over all positions in the domain Ω;
|r⟩ corresponds to the state where the particle is completely localized at
the point r.
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(b) The momentum kets {|k⟩}; |k⟩ corresponds to the state where the particle
has momentum !k.

(c) The Bloch kets {|k, n⟩}; |k, n⟩ corresponds to the state where the particle
has crystal momentum !k and belongs to the nth band.

(d) The kets {|φℓ⟩}; |φℓ⟩ is an eigenstate of the Hamiltonian. The indexes
fully characterize this eigenstate.

According to the above, the inner product ⟨r |ψ⟩ gives the probability ampli-
tude for a particle being in the state |ψ⟩ to be observed at the point r; but
this probability amplitude is nothing other than ψ (r). Hence

ψ (r) = ⟨r |ψ⟩ . (B.4)

Similarly,
ψ̃ (k) = ⟨k |ψ⟩ . (B.5)

If in (B.4) we choose |ψ⟩ = |k⟩, then we obtain

⟨r |k⟩ =
1√
Ω

eik · r . (B.6)

The rhs is the r-representation of a normalized plane wave; if in (B.4) we
choose |ψ⟩ = |r′⟩, then we have

⟨r | r′⟩ = δ (r − r′) . (B.7)

Equation (B.7) follows from the orthonormality of the set {|r⟩}.
From (B.4) and (B.7) we obtain

ψ (r) = ⟨r |ψ⟩ =
∫

dr′δ (r − r′) ⟨r′ |ψ⟩ =
∫

dr′ ⟨r | r′⟩ ⟨r′ |ψ⟩

= ⟨r|
∫

dr′ |r′⟩ ⟨r′ |ψ⟩ . (B.8)

Since (B.8) is valid for every ⟨r| and every |ψ⟩, we end up with the complete-
ness relation for the set {|r′⟩}:

∫
dr′ |r′⟩ ⟨r′| = 1 . (B.9)

Similarly, we obtain the relation

1 =
∑

k

|k⟩ ⟨k| −→
Ω→∞

Ω

(2π)d

∫
dk |k⟩ ⟨k| . (B.10)

Using (B.9) and (B.10) we can easily transform from ψ(r) to ψ̃ (k) and vice
versa

ψ̃ (k) = ⟨k |ψ⟩ =
∫

dr ⟨k |r⟩ ⟨r |ψ⟩ =
∫

dr
1√
Ω

e−ik · rψ (r)

=
1√
Ω

∫
dre−ik · rψ (r) , (B.11)
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ψ (r) = ⟨r |ψ⟩ =
∑

k

⟨r |k⟩ ⟨k |ψ⟩ =
1√
Ω

∑

k

eik · rψ̃ (k)

=
√

Ω

(2π)d

∫
dkeik · rψ̃ (k) . (B.12)

Notice that the definition of the inner product coincides with the usual defi-
nition in the r-representation:

⟨φ |ψ⟩ =
∫

dr ⟨φ | r⟩ ⟨r |ψ⟩ =
∫

drφ∗ (r)ψ (r) . (B.13)

The form of any operator in the Dirac notation follows by calculating its
matrix elements. For example, taking into account that the position opera-
tor, r̂, satisfies by definition the relation ⟨r| r̂ = ⟨r| r and that the momentum
operator, p̂, satisfies the relation ⟨k| p̂ = ⟨k|!k, we have

⟨r | r̂ |ψ⟩ = r ⟨r |ψ⟩ = rψ (r) , (B.14)

⟨k | p̂ |ψ⟩ = !k ⟨k |ψ⟩ = !kψ̃ (k) . (B.15)

Using (B.10) and (B.15) we obtain the matrix element ⟨r | p̂ |ψ⟩:

⟨r | p̂ |ψ⟩ =
∑

k

⟨r |k⟩ ⟨k | p̂ |ψ⟩ =
∑

k

1√
Ω

eik · r!kψ̃ (k)

=
∑

k

−i! ∂

∂r
eik · r 1√

Ω
ψ̃ (k) = −i! ∂

∂r

∑

k

1√
Ω

eik · rψ̃ (k)

= −i! ∂

∂r
ψ (r) . (B.16)

The last relation follows from (B.12). In a similar way one can show that

⟨k | r̂ |ψ⟩ = i
∂

∂k
ψ̃ (k) . (B.17)

The relations (B.14)–(B.17) can be generalized for operators that are func-
tions of r̂ or p̂. Since by definition the function f

(
Â

)
of any operator Â is

an operator with the same eigenstates as Â and eigenvalues f (Ai), where Ai

are the eigenvalues of Â, we have

⟨r | f (r̂) |ψ⟩ = f∗ (r)ψ (r) , (B.18)

⟨k | g (p̂) |ψ⟩ = g∗ (!k) ψ̃ (k) , (B.19)

⟨r | g (p̂) |ψ⟩ = g∗
(
−i! ∂

∂r

)
ψ (r) , (B.20)

⟨k | f (r̂) |ψ⟩ = f∗
(

i
∂

∂k

)
ψ̃ (k) . (B.21)
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For hermitian operators f∗ (r) = f (r) and g∗ (!k) = g (!k). As an application
of (B.18) and (B.20) we have

〈
r

∣∣∣∣∣
p̂2

2m
+ V (r̂)

∣∣∣∣∣ ψ

〉
=

[
− !2

2m
∇2

r + V (r)
]

ψ (r) . (B.22)

For particles with spin 1/2 we have to specify whether the spin is up (↑) or
down (↓). Thus a complete set is {|r, ↑⟩ , |r, ↓⟩} or {|k, ↑⟩ , |k, ↓⟩}. Assuming
that the spin quantization axis is the z-axis, we have for the spin operator
s = x0sx + y0sy + z0sz:

sz |r, σ⟩ =
1
2
σ |r, σ⟩ ,

σ = +1 for spin up ,
σ = −1 for spin down , (B.23)

∣∣∣∣
⟨r, ↑ | s |ψ⟩
⟨r, ↓ | s |ψ⟩

∣∣∣∣ =
1
2
σ

∣∣∣∣
⟨r, ↑ |ψ⟩
⟨r, ↓ |ψ⟩

∣∣∣∣ , (B.24)

where σ is the vector defined by the three Pauli matrices

σ =
(

0 1
1 0

)
x0 +

(
0 −i
i 0

)
y0 +

(
1 0
0 −1

)
z0 . (B.25)



C

Solutions of Laplace and Helmholtz Equations
in Various Coordinate Systems1

C.1 Helmholtz Equation (∇2 + k2) ψ (r) = 0

C.1.1 Cartesian Coordinates x, y, z

ψ (r) =
∑

ℓm

{
Aℓm [sin (ℓx1) + bℓ cos (ℓx1)]

×
[
sinh

(√
ℓ2 + m2x2

)
+ cℓm cosh

(√
ℓ2 + m2x2

)]

×
[
sin

(√
m2 + k2x3

)
+ dm cos

(√
m2 + k2x3

)]}
. (C.1)

The set {x1, x2, x3} represents any permutation of the set {x, y, z}. Bound-
ary conditions (BCs) and normalization may fully determine the various
eigensolutions and eigenvalues. Instead of sin (ℓx1) + bℓ cos (ℓx1), one can use
exp (iℓx1)+ b′ℓ exp (−iℓx1); similar replacements can be employed in the other
factors of (C.1).

The solution of the Laplace equation ∇2φ = 0 is obtained immediately by
setting k = 0 in (C.1).

C.1.2 Cylindrical Coordinates z, φ, ϱ

ψ (r) =
∑

m,n

Amn [sinh(mz) + bm cosh(mz)] [sin(nφ) + cn cos(nφ)]

×
[
Jn

(√
m2 + k2ϱ

)
+ dnmYn

(√
m2 + k2ϱ

)]
. (C.2)

In the first factor of the rhs of (C.2) one can use instead of sinh(mz) +
bm cosh(mz) the sum emz + b′me−mz. Similarly, in the second factor one can
use einφ + c′ne−inφ. Finally, in the last factor one may use

H(1)
n (w) = Jn(w) + iYn(w)

1 For the definition and properties of the most common special functions see [1].
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and/or
H(2)

n (w) = Jn(w) − iYn(w)

instead of Jn and Yn, where w =
√

m2 + k2ϱ. Recall that

Jn(w) → (w/2)n

Γ (n + 1)
, w → 0 , n ̸= −1,−2, . . . , (C.3a)

Yn(w) → − 1
π

Γ (n)(w/2)−n , w → 0 , Re {n} > 0 , (C.3b)

Y0(w) → 2
π

lnw + const. , w → 0 , (C.3c)

H(1)
n (w) →

√
2

πw
ei(w−nπ/2−π/4) , w → ∞ , (C.3d)

H(2)
n (w) →

√
2

πw
e−i(w−nπ/2−π/4) , w → ∞ . (C.3e)

Thus, Yn(w) blows up for w → 0; H(1)
n (w) and H(2)

n (w) represent for w → ∞
outgoing and ingoing waves, respectively, while for Im {w} > 0, H(1)

n (w) and
H(2)

n (w) blow up as w → 0.
The solution of the Laplace equation, ∇2φ = 0, is obtained by setting k = 0

in (C.2). The solutions of the Helmholtz equation in 2-d polar coordinates, φ
and ϱ, are produced by setting m = 0 in (C.2). Finally, for the solution of the
Laplace equation in 2-d polar coordinates, we must take m = 0 and k → 0 so
that

φ (r) =
∑

n̸=0

An [sin(nφ) + cn cos(nφ)]
(
ϱn + dnϱ−n

)

+A0 (1 + d0 ln ϱ) . (C.4)

C.1.3 Spherical coordinates r, θ, φ

ψ (r) =
∑

ℓm

Aℓm

(
eimφ + bme−imφ

)
[Pm

ℓ (cos θ) + cℓmQm
ℓ (cos θ)]

× [jℓ(kr) + dℓyℓ(kr)] . (C.5)

Qm
ℓ (cos θ) is singular for θ = 0 and θ = π; similarly, Pm

ℓ (cos θ) is singular for
θ = 0 and θ = π unless ℓ is a nonnegative integer. Thus, cℓm must be zero
and ℓ must a nonnegative integer if θ = 0 or π is included in the problem.

The spherical Bessel functions, jℓ(w) and yℓ(w), are defined by the rela-
tions

jℓ(w) =
√

π

2w
Jℓ+ 1

2
(w)

→ wℓ

1 × 3 × · · ·× (2ℓ + 1)
as w → 0 , (C.6a)
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yℓ(w) =
√

π

2w
Yℓ+ 1

2
(w)

→ −1 × 3 × · · ·× (2ℓ − 1)
wℓ+1

as w → 0 . (C.7a)

In a similar way we define the spherical Hankel functions h(1)
ℓ (w) = jℓ(w)+

iyℓ(w) and h(2)
ℓ (w) = jℓ(w) − iyℓ(w), which represent outgoing and ingoing

spherical waves, respectively.
For problems covering the full range of values of φ (0 ≤ φ ≤ 2π) and

θ (0 ≤ θ ≤ π), cℓm must be set equal to zero, ℓ must be a nonnegative integer
for the reasons explained above, m must be an integer running from −ℓ to +ℓ,
and the first two factors in brackets on the rhs of (C.5) are then represented by
the spherical harmonic Yℓm(θ, φ) [not to be confused with the Bessel function
Yn(w)] given by (A.11) in Appendix A. The set {Yℓm(θ, φ)} is an orthonormal
complete set of functions over the whole surface of the 3-d unit sphere.

The solution of the Laplace equation, ∇2φ = 0, is obtained by taking the
limit k → 0 in (C.5) and using (C.6a) and (C.7a):

φ (r) =
∑

ℓm

Aℓm

[
eimφ + bme−imφ

]

× [Pm
ℓ (cos θ) + cℓmQm

ℓ (cos θ)]
(
rℓ + d′ℓ/rℓ+1

)
. (C.8)

If φ and θ cover the full range of their values, then the first two factors in
brackets on the rhs of (C.8) must be replaced by Yℓm(θ, φ), as given by (A.11).

C.2 Vector Derivatives

We shall conclude this Appendix by giving the formulae for some vector deriva-
tives in spherical and cylindrical coordinates.

C.2.1 Spherical Coordinates r, θ, φ

gradψ (r) ≡ ∇ψ (r) =
∂ψ

∂θ
ir +

1
r

∂ψ

∂θ
iθ +

1
r sin θ

∂ψ

∂φ
iφ . (C.9)

divA (r) ≡ ∇ ·A (r)

=
1
r2

∂

∂r

(
r2Ar

)
+

1
r sin θ

∂

∂θ
(sin θAθ) +

1
r sin θ

∂Aφ

∂φ
. (C.10)

∇2ψ (r) =
1
r2

∂

∂r

(
r2 ∂ψ

∂r

)
+

1
r2 sin θ

∂

∂θ

(
sin θ

∂ψ

∂θ

)
+

1
r2 sin2 θ

∂2ψ

∂φ2
. (C.11)
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C.2.2 Cylindrical Coordinates z, ϱ, φ

gradψ (r) ≡ ∇ψ (r) =
∂ψ

∂z
iz +

∂ψ

∂ϱ
iϱ +

1
ϱ

∂ψ

∂φ
iφ . (C.12)

divA (r) ≡ ∇ ·A (r) =
∂Az

∂z
+

1
ϱ

∂

∂ϱ
(ϱAϱ) +

1
ϱ

∂Aφ

∂φ
. (C.13)

∇2ψ (r) =
∂2ψ

∂z2
+

1
ϱ

∂

∂ϱ

(
ϱ
∂ψ

∂ϱ

)
+

1
ϱ2

∂2ψ

∂φ2
. (C.14)

C.3 Schrödinger Equation in Centrally Symmetric
3- and 2-Dimensional Potential V

− !2

2m
∇2ψ + V ψ = Eψ . (C.15)

For the 3-d case we write

ψ (r) =
u(r)

r
Yℓm(θ, φ), (C.16)

and we obtain

− !2

2m

d2u

dr2
+

[
V (r) +

!2ℓ(ℓ + 1)
2mr2

]
u = Eu , (C.17a)

(r × p)2 = −!2 (r ×∇)2

= −!2

[
1

sin2 θ

∂2

∂φ2
+

1
sin θ

∂

∂θ

(
sin θ

∂

∂θ

)]
, (C.17b)

(r × p)2 Yℓm (θ, φ) = !2ℓ(ℓ + 1)Yℓm(θ, φ) , (C.17c)

where Yℓm(θ, φ) is given by (A.11); in particular,

Yℓ0(θ, φ) = iℓ
√

2ℓ + 1
4π

Pℓ(cos θ) . (C.17d)

Equation (C.17a) is a 1-d Schrödinger equation with an effective potential
consisting of the actual potential V (r) plus the centrifugal part; the latter
equals the eigenvalue, !2ℓ(ℓ + 1), of the square of the angular momentum,
r × p, over twice the “moment of inertia” mr2.

For the 2-d polar coordinates we write

ψ (r) = R(ϱ)Φ(φ) , (C.18)

and we obtain
Φ(φ) = einφ + bne−inφ (C.19a)



C.3 Schrödinger Equation 349

and

ϱ2 d2R

dϱ2
+ ϱ

dR

dϱ
+ R

[(
2mE

!2
− 2mV (ϱ)

!2

)
ϱ2 − n2

]
= 0 . (C.19b)

If V (ϱ) is a constant such that E − V > 0, we define k2 = 2m(E − V )/!2

and (C.19b) becomes the ordinary Bessel equation with solutions Jn(kϱ) and
Yn(kϱ) [see (C.2) for m = 0].

If V (ϱ) is a constant such that E − V < 0, then we define −k2 =
2m(E −V )/!2, and (C.19b) becomes the modified Bessel equation with solu-
tions In(kϱ) and Kn(kϱ) satisfying the following relations:

In(w) =

{
e−inπ/2Jn(iw), −π < argw ≤ π/2 ,
e3inπ/2Jn(iw), π/2 < arg w ≤ π ; (C.20)

Kn(w) =

⎧
⎪⎨

⎪⎩

iπ
2

einπ/2H(1)
n (iw), −π < argw ≤ π/2 ,

− iπ
2

e−inπ/2H(2)
n (−iw), π/2 < arg w ≤ π . (C.21)

Other useful properties of In(w) and Kn(w) are given in [1].



D

Analytic Behavior of G(z) Near a Band Edge

The Green’s function G(z) can be expressed in terms of the discontinuity
G̃(E) ≡ G+(E) − G−(E) as follows:

G(z) =
i

2π

∫ ∞

−∞
dE

G̃(E)
z − E

. (D.1)

The derivative of G(z) is obtained by differentiation under the integral. Inte-
grating by parts we obtain

G′(z) =
i

2π

∫ ∞

−∞
dE

G̃′(E)
z − E

, (D.2)

where the prime denotes differentiation with respect to the argument. In ob-
taining (D.2) we have assumed that G̃′(E) exists and is integrable and that
G̃(E)/E → 0 as |E| → ∞. By taking the limits Im {z} → 0± and using (1.20)
we obtain

G±(E) =
i

2π
P

∫ ∞

−∞
dE′ G̃(E′)

E − E′ ±
1
2
G̃(E) , (D.3)

d
dE

G±(E) =
i

2π
P

∫ ∞

−∞
dE′ G̃

′(E′)
E − E′ ±

1
2
G̃′(E) , (D.4)

where one can show under the above assumptions that

G′(z) −→
Im{z}→0±

d
dE

G±(E) .

We would like to connect the behavior of G(z) and G′(z) as z → E0 with
the behavior of G̃(E) around E0. One can prove the following theorems [15]
about F (z) given by

F (z) =
i

2π

∫ ∞

−∞
dx

f(x)
z − x

=
1

2πi

∫ ∞

−∞

f(x)
x − z

dx . (D.5)
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Theorem 1. If f(x) satisfies the condition

|f (x1) − f (x2)| ≤ A |x1 − x2|µ (D.6)

for all x1 and x2 in the neighborhood of x0, where A and µ are positive con-
stants, then

|F (z1) − F (z2)| ≤ A′ |z1 − z2|µ when µ < 1 , (D.7)

and
|F (z1) − F (z2)| ≤ A′ |z1 − z2|1−ε when µ = 1 , (D.8)

for all z1 and z2 in the neighborhood of x0 and Im {z1} Im {z2} > 0; A′ is
a positive constant and ε is an arbitrary positive number.

Inequalities (D.7) and (D.8) are valid as one or both of z1 and z2 reach the
real axis either from above or from below. Thus, e.g.,

∣∣F+ (x1) − F+ (x2)
∣∣ ≤ A′ |x1 − x2|µ when µ < 1 , (D.9)

with a similar relation for F−(x1) − F−(x2).

Theorem 2. If f(x) is discontinuous at x = x0, i.e.,

f
(
x+

0

)
− f

(
x−

0

)
= D ̸= 0 , (D.10)

but otherwise f(x) satisfies condition (D.6) for both x1 and x2 being either to
the left or to the right of x0, then

F (z) =
D

2πi
ln

(
1

x0 − z

)
+ F0(z) , (D.11)

where F0(z) satisfies (D.7) or (D.8).

Theorem 3. If f(x) behaves around x0 as

f(x) = f0(x) + f1(x)θ (±x ∓ x0) [±x ∓ x0]
−γ , (D.12)

where f0(x) and f1(x) satisfy condition (D.6) and 0 < γ < 1, then

F (z) = ± e±γπi

2i sin(γπ)
f1(x0)

(±z ∓ x0)
γ + F0(z) , (D.13)

where (±z ∓ x0)
−γ is the branch that coincides with the branch (±x ∓ x0)

−γ

in (D.12) as z approaches x from the upper half-plane and

|F0(z)| <
C

|z − x0|γ0 , (D.14)

where C and γ0 are positive constants such that γ0 < γ.
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The above theorems allow us to obtain the analytic behavior of G(z) near
a band edge. Thus:

(a) When G(E) goes to zero as (E − EB)µ (µ > 0) near the band edge EB ,
then, according to Theorem 1 above, G(z) and G±(E) are bounded in the
neighborhood of EB. The derivatives G′(z) and G±′

(E) can be obtained
using (D.2). Since G̃′(E) behaves as (E − EB)µ−1 inside the band and
near the band edge, then, according to Theorem 3 above, the quantities
G′(z) and G±′

(E) behave as (z − EB)µ−1 and (E − EB)µ−1 as z and E
approach EB. For a free particle in 3-d, µ = 1/2.

(b) When G̃(E) goes to zero in a discontinuous way at the band edge (as in
the 2-d free-particle case), one can apply Theorem 2 above. Consequently,
G(z) and G±(E) exhibit a logarithmic singularity as shown in (D.11).

(c) When G̃(E) behaves as |E − EB|−γ with 0 < γ < 1 in the interior of the
band and near the band edge EB, then, according to Theorem 3 above,
G(z) and G±(E) behave as (z−EB)−γ and (E−EB)−γ , respectively. For
a free particle in 1-d, γ = 1/2.



E

Wannier Functions

For many purposes it is useful to introduce the Wannier functions. The Wan-
nier function associated with the band index n and the lattice site ℓ is defined
as [27, 28, 30]

wn (r − ℓ) =
1√
N

∑

k

e−ik · ℓψnk (r) , (E.1)

where ψnk (r) are the Bloch eigenfunctions given by (5.2). The Wannier func-
tions wn (r − ℓ) are localized around the lattice site ℓ.

The functions wn (r − ℓ) for all n and ℓ form a complete orthonormal
set; thus any operator, e.g., the Hamiltonian, can be expressed in a Wannier
representation. It may happen that the eigenenergies associated with a par-
ticular band index n0 are well separated from all the other eigenenergies. In
this case the matrix elements of the Hamiltonian H between wn0 (r − ℓ) and
wn (r − m), where n ̸= n0, may be much smaller than |εn − εn0 |. Then these
small matrix elements to a first approximation can be omitted, and the sub-
space spanned by the states wn0 (r − ℓ), where ℓ runs over all lattice vectors,
becomes decoupled from the rest. Let us assume that the band n0 is associated
with a single atomic orbital φ (r − ℓ) per atom; then, the set {wn0 (r − ℓ)} is
nothing other than an orthonormalized version of the set {φ (r − ℓ)}. If the
latter is assumed to be orthonormal, then the Wannier functions wn0 (r − ℓ)
and the atomic orbitals φ (r − ℓ) coincide. However, in general, the Wannier
functions are hybridized atomiclike orbitals that possess two important fea-
tures: completeness and orthonormality.
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Renormalized Perturbation Expansion (RPE)

Consider the tight-binding Hamiltonian H = H0 + H1, where

H0 =
∑

ℓ

|ℓ⟩ εℓ ⟨ℓ| , (F.1)

H1 = V
∑

ℓm

′
|ℓ⟩ ⟨m| , (F.2)

and the summation in (F.2) extends over nearest-neighbor sites only. If we
consider H0 as the unperturbed Hamiltonian and H1 as a perturbation, we can
apply the formalism developed in Chap. 4. Thus we have for G(z) ≡ (z−H)−1

G = G0 + G0H1G0 + G0H1G0H1G0 + · · ·

or

G (ℓ, m) = G0 (ℓ, m) +
∑

n1n2

G0 (ℓ, n1) ⟨n1 | H1 |n2⟩G0 (n2, m)

+
∑

n1...n4

G0 (ℓ, n1) ⟨n1 | H1 |n2⟩G0 (n2, n3)

× ⟨n3 | H1 |n4⟩G0 (n4, m)
+ · · · . (F.3)

It is clear from (F.1) that G0 (n1, n2) = δn1n2G0 (n1), where G0 (n) is

G0 (n) =
1

z − εn
. (F.4)

Similarly, ⟨n1 | H1 |n2⟩ is different from zero only when n1 and n2 are nearest
neighbors. Hence (F.3) can be simplified as follows:

G (ℓ, m) = δℓ,mG0 (ℓ) + G0(ℓ)V G0 (m) δℓ,m+1

+
∑

n1

G0 (ℓ)V G0 (n1)V G0 (m) + · · · . (F.5)
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One way of keeping track of the various terms in the expansion (F.5) is to
consider all possible paths in the lattice starting from site ℓ and ending at
site m with steps connecting one lattice site with a nearest-neighbor site.
There is a one-to-one correspondence between the terms in (F.5) and the set
of all such paths. Each term in (F.5) can be obtained from the corresponding
path by calculating a product according to the following rules. (1) For each
lattice site n (including the initial ℓ and the final m) visited by the path,
include a factor G0(n). (2) For each step from one site to a nearest-neighbor
site, include a factor V . Thus, the contribution to G (ℓ, m) corresponding to
the path shown in Fig. F.1 is

G0 (ℓ) V G0 (n1)V G0 (n2)V G0 (n1)V G0 (n2)V G0 (m) .

The most general path starting from ℓ and ending at m can be con-
structed by “decorating” a “skeleton” path. The latter is a self-avoiding (no
site is visited more than once) path starting from ℓ and ending at m; the
“decorations” consist of closed paths starting from and ending at sites visited
by the self-avoiding path. The skeleton path in Fig. F.1 is the self-avoiding
path ℓ → n1 → n2 → m. There is one decoration n1 → n2 → n1 at site n1

giving an extra factor G (n1)V 2G (n2); the same decoration can be consid-
ered as associated with site n2 [being n2 → n1 → n2 and giving an extra
factor G (n1)V 2G (n2)]. Because of this ambiguity one must be careful not
to count the same decoration twice. The above remarks allow us to perform
a partial summation. Consider the subset of all paths whose only difference
is the decorations starting and ending at site ℓ. The contribution of all these
paths is

V G0 (n1) · · ·V G0 (m)
∑

ℓ

,

where
∑

ℓ is the sum of all the decorations of site ℓ, i.e., the sum of the
contributions of all paths starting from and ending at ℓ, which equals the
Green’s function G(ℓ, ℓ). Thus, one can omit all decorations of site ℓ if at
the same time one replaces G0(ℓ) by G(ℓ, ℓ). The same is true for the next

Fig. F.1. A path starting from site ℓ and ending at site m involving five steps
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site n1, but with one difference: decorations of site n1 that visit site ℓ must be
omitted because these decorations have been included already as decorations
associated with site ℓ. The decorations at site n1 can be omitted if G0(n1)
is replaced by G (n1, n1 [ℓ]), where the symbol [ℓ] denotes that in evaluating
G (n1, n1 [ℓ]) the paths visiting site ℓ must be excluded. This exclusion is
obtained automatically if one assumes that εℓ = ∞ [because then G0(ℓ) = 0].
Hence, G (n1, n1 [ℓ]) is the n1, n1 matrix element of H with εℓ = ∞. Similarly,
all the decorations at site n2 can be omitted if at the same time one replaces
G0(n2) by G (n2, n2 [ℓ, n1]), where the symbol [ℓ, n1] denotes that both εℓ

and εn1 are infinite. This way one avoids double counting decorations passing
through n2 that have been already counted as decorations associated with
site ℓ or site n1. As a result of these partial summations one can write for
G (ℓ, m)

G (ℓ, m) =
∑

G(ℓ, ℓ)V G (n1, n1 [ℓ])V

× G (n2, n2 [ℓ, n1]) V · · ·V G (m, m [ℓ, n1, n2, . . .]) , (F.6)

where the summation is over all self-avoiding paths starting from ℓ and ending
at m, ℓ → n1 → n2 → · · · → m. In particular, for the diagonal matrix
elements G(ℓ, ℓ) we have

G(ℓ, ℓ) = G0 (ℓ) +
∑

G(ℓ, ℓ)V G (n1, n1 [ℓ])V · · ·G0 (ℓ) , (F.7)

where again the summation extends over all closed self-avoiding paths starting
from and ending at ℓ. The last factor is G0 (ℓ) because all decorations of the
final site ℓ have already been counted as decorations of the initial site ℓ.
Equation (F.7) can be rewritten as

G(ℓ, ℓ) = G0 (ℓ) + G(ℓ, ℓ)∆ (ℓ)G0 (ℓ) , (F.8)

where ∆ (ℓ) is called the self-energy1 and is given by

∆ (ℓ) =
∑

V G (n1, n1 [ℓ])V · · ·V . (F.9)

Equation (F.8) can be solved for G(ℓ, ℓ) to give

G(ℓ, ℓ; z) =
G0 (ℓ)

1 − G0 (ℓ)∆ (ℓ; z)
=

1
z − εℓ − ∆ (ℓ; z)

. (F.10)

The last step follows from (F.4). Equation (F.10) justifies the name self-
energy for ∆ (ℓ). The expansions (F.6), (F.7), and (F.9) for G (ℓ, m), G(ℓ, ℓ),
and ∆ (ℓ), respectively, are called the renormalized perturbation expansions
(RPEs), [388,445,446]. Their characteristic property is that they involve sum-
mation over terms that are in one-to-one correspondence with the self-avoiding
1 The name self-energy is used in the literature for different quantities depending

on the forms of H0 and H1.



360 F Renormalized Perturbation Expansion (RPE)

paths in the lattice. The price for the simplification of having self-avoiding
paths is that the factors associated with lattice sites are complicated Green’s
functions of the type G (n, n [ℓ, n1, . . .]). These Green’s functions can be eval-
uated by using again the RPE. One can iterate this procedure. Note that for
a system involving only a finite number of sites, the summations associated
with the RPE involve only a finite number of terms. The iteration procedure
terminates also, since with every new step in the iteration at least one ad-
ditional site is excluded. Thus, the RPE iterated as indicated above gives a
closed expression for the Green’s functions of a system involving a finite num-
ber of sites. For a system having an infinite number of sites the terms in each
summation and the steps in the iteration procedure are infinite; thus for an
infinite system the question of the convergence of the RPE arises.

The RPE can be used very successfully to calculate Green’s functions for
Bethe lattices. For the double periodic case shown in Fig. 5.11, we have for
the self-energy ∆(ℓ)

∆(ℓ) = (K + 1)V 2G(ℓ + 1, ℓ + 1[ℓ]) , (F.11)

since there are only K + 1 self-avoiding paths starting from and ending at
site ℓ (each one visiting a nearest neighbor). The quantity G(ℓ + 1, ℓ + 1[ℓ])
can be written according to (F.10) as

G(ℓ + 1, ℓ + 1[ℓ]) =
1

z − εℓ+1 − ∆(ℓ + 1[ℓ])
. (F.12)

Using the RPE, the self-energy ∆(ℓ + 1[ℓ]) can be written as

∆(ℓ + 1[ℓ]) = KV 2G(ℓ + 2, ℓ + 2[ℓ + 1]) . (F.13)

We use K and not (K + 1) since the self-avoiding path involving site ℓ is
excluded. By combining (F.12) and (F.13), we have

G(ℓ + 1, ℓ + 1[ℓ]) =
1

z − εℓ+1 − KV 2G(ℓ + 2, ℓ + 2[ℓ + 1])
. (F.14)

Similarly,

G(ℓ + 2, ℓ + 2[ℓ + 1]) =
1

z − εℓ+2 − KV 2G(ℓ + 3, ℓ + 3[ℓ + 2])
. (F.15)

Because of the periodicity shown in Fig. 5.11, G(ℓ + 3, ℓ + 3[ℓ + 2]) = G(ℓ +
1, ℓ + 1[ℓ]). Thus (F.14) and (F.15) become a set of two equations for the two
unknown quantities G(ℓ+1, ℓ+1[ℓ]) and G(ℓ+2, ℓ+2[ℓ+1]) = G(ℓ, ℓ[ℓ+1]).
By solving this system we obtain

G(ℓ + 1, ℓ + 1[ℓ])

=
(z − ε1) (z − ε2) −

√
(z − ε1) (z − ε2) [(z − ε1) (z − ε2) − 4KV 2]

2K (z − εℓ+1)V 2
, (F.16)

G(ℓ, ℓ[ℓ + 1])

=
(z − ε1) (z − ε2) −

√
(z − ε1) (z − ε2) [(z − ε1) (z − ε2) − 4KV 2]

2K (z − εℓ)V 2
. (F.17)
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Substituting in (F.11) and (F.10) we obtain for G(ℓ, ℓ) the expression given
in (5.57) and (5.58).

For the calculation of the off-diagonal matrix element, G(ℓ, m), one can
apply (F.6). For a Bethe lattice there is just one self-avoiding diagram con-
necting site ℓ with site m; G(ℓ + 1, ℓ + 1[ℓ]) has already been calculated, and
G(ℓ + 2, ℓ + 2[ℓ, ℓ+ 1]) equals G(ℓ + 2, ℓ + 2[ℓ + 1]), which has been evaluated.
These two quantities alternate as we proceed along the sites of the unique
path connecting ℓ with m. Thus one obtains the expressions (5.59a), (5.59b),
and (5.60) for G(ℓ, m).

We mention without proof two theorems concerning products of the form

P = G(ℓ, ℓ, z)G (n1, n1 [ℓ] ; z)
×G (n2, n2 [ℓ, n1] ; z) · · ·G (m, m [ℓ, n1, n2 . . .] ; z) .

The first states that

P =

∏

i

(z − Ea
i )

∏

j

(z − Ej)
, (F.18)

where {Ea
i } is the eigenenergies of H with sites ℓ, n1, n2, . . . ,m removed, i.e.,

εℓ = εn1 = εn2 = · · · = εm = ∞, and {Ej} is the eigenenergies of H. The
second theorem states that

P = det{G} , (F.19)

where G is a matrix with matrix elements G(s, r, z), where both s and r
belong to the set {ℓ, n1, n2, . . .m}.



G

Boltzmann’s Equation

The function to be determined by employing Boltzmann’s equation (BE) is
the density, f (r, k; t), of particles in phase space, defined by the relation

dN ≡ (2s + 1)
ddr ddk

(2π)d
f (r, k; t) ,

where dN is the number of particles in the phase space volume element ddr ddk
around the point r, k at time t. In what follows, we shall assume that the spin
s = 1/2. Since we specify both the position, r, and the (crystal) momen-
tum, !k, it is clear that we work within the framework of the semiclassical
approximation.

If there were no interactions among the particles or collisions with defects
and other departures from periodicity, the total time derivative, df/dt, would
be equal to zero according to Liouville’s theorem

df

dt
≡ ∂f

∂t
+

∂f

∂r
· dr

dt
+

∂f

∂k
· dk

dt
= 0 . (G.1)

However, because of collisions with defects and particle interactions, the rhs
of (G.1) is not zero but equal to (∂f/∂t)c, where the subscript c indicates any
kind of collision or interaction.

The simplest expression of (∂f/∂t)c is through the introduction of a phe-
nomenological relaxation time τ :

(
∂f

∂t

)

c

≃ −f − f0

τ
≡ −f1

τ
, (G.2)

where f0 is the form of f in a state of thermodynamic equilibrium,

f0 (εk) =
1

exp [β (εk − µ)] + 1
, (G.3)
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the chemical potential µ is determined by the condition

2
∫

dr dk
f0 (εk)
(2π)d

= N ,

and f1 ≡ f − f0. More realistic choices for (∂f/∂t)c do exist. For example, if
the particles are fermions and if the only collisions are elastic scatterings by
static short-range defect potentials, then we have

(
∂f (r, k; t)

∂t

)

c

= Ω

∫
dk′

(2π)d

× {f (r, k′; t) [1 − f (r, k; t)] − f (r, k; t) [1 − f (r, k′; t)]}Q (k, k′) , (G.4)

where Q (k, k′) is the probability per unit time that a particle of initial
wavevector k will find itself with a wavevector k′ after a collision. We as-
sume that Q (k, k′) = Q (k′, k) as a result of time reversal. According to
(4.48)

Q (k, k′) = NimpWk,k′ = Ωnimp (2π/!) |⟨k |T |k′⟩|2 δ (εk − ε′k) ,

where nimp ≡ Nimp/Ω is the concentration of the scattering centers and T is
the t-matrix for each of those centers. The rate for the process k′ → k is also
proportional to the occupation, f ′, of the state k′ and to the availability, 1−f ,
of the state k; the same is true for the rate of the inverse process, k → k′,
which enters with a minus sign since it reduces the magnitude of f (r, k; t).

In (G.1), dr/dt = v and dk/dt = !−1q (E + v × B/c), where E and B
are the imposed electric and magnetic fields, respectively, and q is the charge
of the carrier (−e for electrons). Hence

∂f

∂k
· dk

dt
=

(
∂f0

∂k
+

∂f1

∂k

)
·
(
E +

v

c
× B

)
!−1q

=
(

∂f0

∂εk

∂εk

∂k
+

∂f1

∂k

)
·
(
E +

v

c
× B

)
!−1q

= q
∂f0

∂εk
vk ·E +

q

c!
∂f1

∂k
· (v × B) . (G.5)

In the last relation we have used the fact that (∂εk/∂k) · (v × B) = 0, since
∂εk/∂k = !v, and we have omitted the term (∂f1/∂k) ·E!−1q, since it is
of second order in E (taking into account that f1 is of first order in E). In
calculating quantities as the conductivity that represent linear response to E,
there is no need to keep terms of higher order than the first in E.

If we take into account that εk = ε′k (since the collisions are elastic) and,
consequently, f0 (εk) = f0 (εk′), (G.4) becomes

(
∂f (r, k; t)

∂t

)

c

= Ω

∫
dk′

(2π)d
[f1 (r, k′; t) − f1 (r, k; t)] Q (k, k′) . (G.6)
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If the fields E and B are taken as constant, the density f(r, k; t) does not
depend on r and t and the linearized BE takes the form

q

c!
∂f1

∂k
· (vk × B) +

f1

τ
= −q

∂f0

∂εk
vk ·E (G.7)

[if we make the simplest assumption (G.2) for the collision term], and the
form

q

c!
∂f1

∂k
· (v × B) + Ω

∫
dk′

(2π)d
[f1 (k) − f1 (k′)] Q (k, k′)

= −q
∂f0

∂εk
vk ·E (G.8)

if we use the more realistic expression (G.6).
We examine first the case of no magnetic field, B = 0. Equation (G.7)

gives immediately the solution

f1 (k) = −qτ
∂f0

∂εk
vk ·E , (G.9)

while the more realistic case (G.8) may again admit a solution of the form
(G.9) [in view of the rhs of (G.8)] with an energy-dependent τ , τ (εk), which
can be obtained in terms of Q (k, k′). Indeed, taking into account the form of
f1 (k) and that the direction of E is arbitrary, we find

τ(εk)Ω
{

vk

∫
dk′

(2π)d
Q (k, k′) −

∫
dk′

(2π)d
Q (k, k′)vk′

}
= vk . (G.10)

Since two of the three terms in (G.10) are proportional to vk, the third term,∫ (
dk′/(2π)d

)
Q (k, k′)vk′ , must be proportional to vk. Hence, by analyzing

vk′ to vk′∥ = (vk/vk) vk′ cos θ and to vk′⊥, we see that only vk′∥ makes
a contribution to the third term; the angle θ is between k and k′. Furthermore,
if εk is isotropic, then vk = vk′ and

τ (εk)Ω

∫
dk′

(2π)d
Q (k, k′) (1 − cos θ) = 1 . (G.11)

Taking into account the expression for Q (k, k′) and the fact that

dk′

(2π)3
=

dεkϱ (ε′k) dO
4π

,

we find

1
τ (εk)

=
2π

! ϱ (εk)
nimpΩ2

4π

∫
dO |⟨k |T (εk) |k′⟩|2 (1 − cos θ) , (G.12)

which coincides with (8.22) by setting εk = EF and T ′ = ΩT .
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Assuming that ε(k) = !2k2/2m∗, we have that

ϱ (εk) =
m∗2v

2π2!3

and
|⟨k |T ′ (εk) |k′⟩|2 =

4π2!4

m∗2
dσ

dO .

Substituting these expressions into (G.12) we can recast it as follows:

1
τtr

= vnimpσtr

or
1
ℓtr

= nimpσtr , (G.12′)

where v = ∂ε(k)/!∂k and ℓtr = vτtr.
We return now to the case where there is a nonzero magnetic field, B,

whose direction is taken as the z-axis. We assume further that the collision
term is given by (G.2) and (G.12). Instead of the triad kx, ky, kz, we shall
use the triad φ, εk, kz, where the phase φ = φ(t) + φ0 is given by the formula

φ = φ(t) + φ0 = ωct + φ0 ,

and ωc is the cyclotron frequency, ωc = |q|B/m∗c (in SI ωc = |q|B/m∗).
In the new variables only φ changes with B:

∂f

∂k
·
(

dk

dt

)

B

=
∂f1

∂φ

(
∂φ

∂t

)

B

= ωc
∂f1

∂φ
. (G.13)

Substituting (G.13) into (G.7) we have

ωc
∂f1

∂φ
+

f1

τtr
= −q

∂f0

∂εk
v ·E . (G.14)

This equation can be solved by employing Green’s function techniques (Prob-
lem 8.8). The solution is

f1 (φ, εk, kz) =
q

ωc

(
− ∂f0

∂εk

) ∫ φ

−∞
dφ′ exp

(
φ′ − φ

ωcτtr

)
v (φ′, εk, kz) ·E . (G.15)

Assuming that εk = !2k2/2m∗, we have that

d3k =
(

m∗

!2

)
dφdεkdkz .

Substituting this last relation into the expression for the current density,

j = 2q

∫
d3k

(2π)3
vkf1 (k) ,
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and taking into account (G.15), we find for the conductivity tensor in the
presence of magnetic field the following expression:

σij =
q2

4π3!2

∫
dεk

(
− ∂f0

∂εk

) ∫
dkz

m∗

ωc

×
∫ 2π

0
dφ

∫ 0

−∞
dφ′vi(φ)vj(φ′) exp

(
φ′ − φ

ωcτ

)
. (G.16)

Notice that both vi(φ) and vj(φ′) depend also on εk and kz . For metals, where
−∂f0/∂εk = δ (εk − EF ), (G.16) becomes

σij =
q2

4π3!2

∫
dkz

m∗

ωc

∫ 2π

0
dφ

∫ 0

−∞
dφ′vi(φ)vj(φ+φ′) exp (φ′/ωcτ) , (G.17)

where q = −e for electrons.
Equations (G.16) and (G.17) are known as Shockley’s tube-integral formu-

lae and constitute the basis for calculating the magnetoresistance tensor.
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Transfer Matrix, S-Matrix, etc.

We shall consider first a 1-d model described by the hermitian Hamiltonian
H = H0 + H1, where

H0 = − !2

2m

d2

dx2
(H.1a)

and

H1 =

⎧
⎨

⎩

0 , x < 0 ,
V (x) , 0 < x < L , (H.1b)
V0 , L < x ,

with V0 being constant and V (x) an arbitrary real function of x.
The eigenfunction(s) corresponding to the eigenenergy E (where E > 0

and E > V0) is (are) of the form

ψ(x) =
{

A1 exp (ik1x) + B1 exp (−ik1x) , x < 0 , (H.2a)
A2 exp (ik2x) + B2 exp (−ik2x) , L < x , (H.2b)

where k1 > 0, k2 > 0, E = !2k1/2m, and E = V0 + !2k2
2/2m.

If we know the solution in the region x < 0, we can obtain, in principle,
the solution everywhere (since ψ obeys Schrödinger equation). Hence, both A2

and B2 are linear functions of A1 and B1:

A2 = αA1 + βB1 , (H.3)

where the coefficients α and β are functions of E, V0, and L and functionals
of V (x).

Since the Hamiltonian is hermitian, there is time-reversal symmetry, which
means that ψ∗(x) is also an eigensolution with the same eigenenergy as that
of ψ(x):

ψ∗(x) =
{

A∗
1 exp (−ik1x) + B∗

1 exp (ik1x) , x < 0 , (H.4a)
A∗

2 exp (−ik2x) + B∗
2 exp (ik2x) , L < x . (H.4b)
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Comparing (H.4) with (H.2) we see that the former results from the latter by
the substitutions A1 → B∗

1 , B1 → A∗
1, A2 → B∗

2 , and B2 → A∗
2. Hence, (H.3)

with these substitutions is transformed into

B∗
2 = αB∗

1 + βA∗
1 (H.5)

or
B2 = α∗B1 + β∗A1 . (H.5′)

Combining (H.3) and (H.5′) we can write in matrix form
(

A2

B2

)
= M

(
A1

B1

)
, (H.6)

where
M =

(
α β
β∗ α∗

)
; (H.7)

M is the so-called transfer matrix. The advantage of this matrix is that it
allows us to transfer our knowledge of the solution from the region x < 0 to
the region x > L.

Furthermore, in the case of more complicated Hamiltonians consisting of
alternating regions of constant and varying potentials, we can propagate the
solution by repeated applications of relation (H.6), which is equivalent to the
multiplication of consecutive transfer matrices.

The coefficients α and β of the transfer matrix are related to the transmis-
sion and reflection amplitudes. Indeed, if B2 = 0, then we have an incoming
wave coming from the left; then the transmission amplitude, t21 ≡ t2←1, equals
the ratio A2/A1 and the reflection amplitude, r11 = B1/A1. From (H.5′) we
have that

r11 =
(

B1

A1

)
=

B2=0
−β∗

α∗ , (H.8)

since B2 = 0. Using (H.8) and (H.3) we find that

t21 =
(

A2

A1

)
=

B2=0

|α|2 − |β|2

α∗ . (H.9)

Similarly, if the wave is coming from the right, we have that A1 = 0, and then
the reflection amplitude is r22 = A2/B2, while the transmission amplitude
t12 ≡ t1←2 = B1/B2.

From (H.5′) we have

t12 =
(

B1

B2

)
=

A1=0

1
α∗ . (H.10)

Combining (H.10) and (H.3) we find

r22 =
(

A2

B2

)

A1=0

=
β

α∗ . (H.11)



H Transfer Matrix, S-Matrix, etc. 371

We can express α and β in terms of the transmission and reflection am-
plitudes by employing (H.8), (H.9), (H.10), and (H.11):

α =
1

t∗12
=

t21

1 − |r11|2
, (H.12)

β =
r22

t12
= − t21r∗11

1 − |r11|2
. (H.13)

Conservation of probability, i.e., conservation of the number of parti-
cles, provides another relation between α and β, since the flux in the left,
k1

(
|A1|2 − |B1|2

)
, must be the same as the flux in the right, k2

(
|A2|2 −

|B2|2
)
. By setting B2 or A1 equal to zero we have, respectively,

k1

(
1 − |r11|2

)
= k2 |t21|2 , (H.14)

k2

(
1 − |r22|2

)
= k1 |t12|2 . (H.15)

We have

|r11|2 = R11 ,

|r22|2 = R22 ,
(

k2

k1

)
|t21|2 = T21 ,

and (
k1

k2

)
|t12|2 = T12 ,

where R11 and R22 are the reflection coefficients from the left and the right,
respectively, and T21 and T12 are the transmission coefficients from the left and
the right, respectively. Thus (H.14) is equivalent to R11 + T21 = 1 and (H.15)
to R22 + T12 = 1. Comparing (H.8) with (H.11) we find that |r22| = |r11|.
Hence

R11 = R22 and T21 = T12 . (H.16)

Dividing (H.14) by (H.15) we find that

|t21|2

|t12|2
=

k2
1

k2
2

,

which, in view of (H.9) and (H.10), leads to

|α|2 − |β|2 =
k1

k2
. (H.17)
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To simplify the notation, we introduce current amplitudes Âi, B̂i, (i =
1, 2), related to the corresponding wavefunction amplitudes Ai and Bi by the
relations

Âi =
√

viAi and B̂i =
√

viBi, (i = 1, 2) ,

where vi, (i = 1, 2) is the velocity !ki/m in segment i. Then, the current
reflection and transmission amplitudes are defined by ratios of B̂s and Âs,
analogous to (H.8), (H.9), (H.10), and (H.11). As a result, r̂ii = rii, but

t̂ij =
√

vi

vj
tij and tij =

√
vj

vi
t̂ij . (H.18)

In terms of the t̂ij , the transmission coefficient Tij is given by

Tij =
∣∣t̂ij

∣∣2 . (H.19)

Similarly, (H.14) and (H.15) simplify to

1 − |r̂ii|2 =
∣∣t̂ji

∣∣2 . (H.14′)

Furthermore, (H.6) becomes

(
Â2

B̂2

)
= M̂

(
Â1

B̂1

)
, (H.6′)

where

M̂ =
(

α̂ β̂
β̂∗ α̂∗

)
=

√
v2

v1

(
α β
β∗ α∗

)
, (H.20)

i.e.,

α̂ =
√

v2

v1
α , β̂ =

√
v2

v1
β . (H.20′)

Then, in terms of the hatted quantities, (H.8)–(H.11) remain valid. Finally,
matrix M̂ is unitary, M̂M̂ † = 1, which implies that

|α̂|2 −
∣∣∣β̂

∣∣∣
2

= 1 . (H.17′)

We shall define another matrix, called the S-matrix, which relates the
outgoing waves to the incoming waves. As we shall see, the S-matrix is the
1-d analog of the S-matrix we defined in Chap. 4:

(
B̂1

Â2

)
≡ Ŝ

(
Â1

B̂2

)
. (H.21)
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It follows immediately (by setting either B̂2 or Â1 equal to zero) that

Ŝ =
(

r̂11 t̂12
t̂21 r̂22

)
(H.22a)

=
1
α̂∗

⎛

⎝
−β̂∗ 1(

|α̂|2 −
∣∣∣β̂

∣∣∣
2
)

β̂

⎞

⎠ . (H.22b)

Of special interest is the case where V0 = 0; then the ratios of current am-
plitudes and wavefunction amplitudes are identical. Since the perturbation H1

is confined within the finite region (0, L), the reflection and transmission am-
plitudes can be found by employing (4.31)

⟨x |ψ⟩ = ⟨x | k⟩ +
〈
x

∣∣ G+
0 T +

∣∣ k
〉

=
1√
L

eikx +
∑

k′

〈
x

∣∣ G+
0

∣∣ k′〉 〈
k′ ∣∣ T +

∣∣ k
〉

, k > 0 , (H.23)

where, taking into account (3.32), we have

〈
x

∣∣ G+
0

∣∣ k′〉 =
∫

dx′ 〈x
∣∣ G+

0

∣∣x′〉 ⟨x′ | k′⟩ =
1√
L

∫
dx′G+

0 (x, x′) exp (ik′x′)

=
1√
L

−im
!2k

∫
dx′ exp (ik |x − x′|) exp (ik′x′) . (H.24)

For the transmission amplitude, we must choose x > L, which implies
x > x′. Then, substituting (H.24) into (H.23), multiplying by

√
L, and per-

forming the integration over x′ [which gives 2πδ (k − k′)], we find

√
Lψ(x) = eikx

(
1 +

−im
!2k

〈
k

∣∣T ′+ ∣∣ k
〉)

, T ′ = LT . (H.25)

Hence
t21 = 1 + G+

0 (x, x)
〈
k

∣∣T ′+ ∣∣ k
〉

, (H.26)

where G+
0 (x, x) = −im/!2k = −i/!vk (vk is the velocity) and

〈
k

∣∣ T ′+ ∣∣ k
〉

=
∫

dx′dx′′ exp [ik (x′ − x′′)]
〈
x′′ ∣∣T +

∣∣ x′〉 . (H.27)

Choosing x < 0, which implies |x − x′| = x′ − x, we find for the reflection
amplitude, r11, the following expression:

r11 = G+
0 (x, x)

〈
−k

∣∣ T ′+ ∣∣ k
〉

, (H.28)

where
〈
−k

∣∣T ′+ ∣∣ k
〉

=
∫

dx′dx′′ exp [ik (x′ + x′′)]
〈
x′′ ∣∣T +

∣∣ x′〉 . (H.29)
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Similarly, we find

t12 = 1 + G+
0 (x, x)

〈
−k

∣∣T ′+ ∣∣−k
〉

, k > 0 , (H.30)

r22 = G+
0 (x, x)

〈
k

∣∣ T ′+ ∣∣−k
〉

, k > 0 . (H.31)

Equations (H.26), (H.28), (H.30), and (H.31) are the 1-d analog of (4.46).
Quite similar expressions to those in (H.26)–(H.31) for t21, r11, t12, r22,

and S are valid for a 1-d TBM with

⟨ℓ | H0 |m⟩ = ε0δℓm + V (1 − δℓm)

and

H1 =
ℓ0∑

ℓ=1

|ℓ⟩ εℓ ⟨ℓ|

(ℓ0a being equal to the length L). Combining (5.31) and (5.17), and taking
into account that vk = ∂Ek/!∂k, instead of

G+
0 (x, x) = − im

!2k
= − i

!vk
,

we must set
G+

0 (ℓ, ℓ) = − i
B |sin(ka)| = − i

!vk
.

In the limit k → 0, vk → !k/m∗, where m∗ = !2/Ba2, B = 2 |V |. Further-
more, we have

〈
k

∣∣T ′+ ∣∣ k
〉

=
∑

ℓ,m

eika(ℓ−m)
〈
m

∣∣T +
∣∣ ℓ

〉
, k > 0 , (H.32)

〈
−k

∣∣T ′+ ∣∣ k
〉

=
∑

ℓ,m

eika(ℓ+m)
〈
m

∣∣T +
∣∣ ℓ

〉
, k > 0 , (H.33)

〈
−k

∣∣ T ′+ ∣∣−k
〉

=
∑

ℓ,m

e−ika(ℓ−m)
〈
m

∣∣T +
∣∣ ℓ

〉
, k > 0 , (H.34)

〈
k

∣∣ T ′+ ∣∣−k
〉

=
∑

ℓ,m

e−ika(ℓ+m)
〈
m

∣∣T +
∣∣ ℓ

〉
, k > 0 . (H.35)

The transfer matrix for V0 = 0,

M̂ = M = M(0) =
(

α β
β∗ α∗

)
,

was associated with the potential V (x) placed between 0 and L. If the same
potential is rigidly transposed by a length L0 so as to be located between L0

and L0 + L, then the transfer matrix would be M (L0). To find the relation
between M (L0) and M(0), it is sufficient to introduce a new coordinate x′ =
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x − L0; then A1eikx would become A1 exp (ikL0) exp (ikx′), B1e−ikx would
become B1 exp (−ikL0) exp (−ikx′), and so on.

The potential between L0 and L0 + L expressed in terms of x′ is exactly
equivalent to the potential between 0 and L expressed in terms of x. Hence, the
quantities A2 exp (ikL0), B2 exp (−ikL0) and A1 exp (ikL0), B1 exp (−ikL0)
are connected through M(0):

(
A2 exp (ikL0)

B2 exp (−ikL0)

)
= M(0)

(
A1 exp (ikL0)

B1 exp (−ikL0)

)
. (H.36)

By introducing the V = 0 transfer matrix for length L0:

M0 (L0) =
(

exp (ikL0) 0
0 exp (−ikL0)

)
, (H.37)

(H.36) becomes (
A2

B2

)
= M (L0)

(
A1

B1

)
,

with
M (L0) = M∗

0 (L0)M(0)M0 (L0) . (H.38)

Equation (H.38) allows us to propagate easily the solution along a linear chain
consisting of alternating segments of V = 0 and V (x) ̸= 0 as shown in Fig. H.1.
Indeed, we have the recursive relation that, by repeated application, connects
An+1, Bn+1 to A1, B1:

(
An+1

Bn+1

)
= M∗

0 (Ln) Mn(0)M0 (Ln)
(

An

Bn

)
≡ Mn (Ln)

(
An

Bn

)

= Mn (Ln)Mn−1 (Ln−1) · · ·M1(0)
(

A1

B1

)

Fig. H.1. A 1-d potential of alternating segments where V (x) ̸= 0 and V (x) = 0
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= M∗
0 (Ln)Mn(0)M0 (Ln)M∗

0 (Ln−1)Mn−1(0)M0 (Ln−1) · · ·

· · ·M∗
0 (L2)M2(0)M0 (L2)M1(0)

(
A1

B1

)

= M∗
0 (Ln)Mn(0)M0 (Ln − Ln−1)Mn−1(0)M0 (Ln−1 − Ln−2) · · ·

· · ·M0 (L3 − L2)M2(0)M0 (L2 − L1)M1(0)
(

A1

B1

)
. (H.39)

If the system is periodic with period a, the result is
(

An+1

Bn+1

)
= M∗

0 ((n − 1)a)
[
M̃

]n−1
M(0)

(
A1

B1

)
, (H.40)

where
M̃ =

(
eika 0
0 e−ika

)
M(0) =

(
eikaα eikaβ

e−ikaβ∗ e−ikaα∗

)
. (H.41)

For piecewise constant potentials it is more convenient to define and em-
ploy an alternative transfer matrix connecting ψ(x) and ψ′(x) at the arbitrary
point x to ψ(0) and ψ′(0). Indeed, if between xn and xn+1 (n = 1, 2, . . .) the
potential is constant, equal to Vn, we have

(
ψ(x)
ψ′(x)

)

=
(

cos [kn (x − xn)] sin [kn (x − xn)] /kn

−kn sin [kn (x − xn)] cos [kn (x − xn)]

) (
ψ (xn)
ψ′ (xn)

)
, (H.42)

where xn ≤ x ≤ xn+1 and !2k2
n/2m = E − Vn.

The continuity of ψ(x) and ψ′(x) and application of (H.42) give
(

ψ(x)
ψ′(x)

)
= Nn (x − xn)Nn−1 (xn − xn−1) × · · ·

· · ·× N1 (x2 − x1)
(

ψ (x1)
ψ′ (x1)

)
, (H.43)

where

Nℓ (xℓ+1 − xℓ)

=
(

cos [kℓ (xℓ+1 − xℓ)] sin [kℓ (xℓ+1 − xℓ)] /kℓ

−kℓ sin [kℓ (xℓ+1 − xℓ)] cos [kℓ (xℓ+1 − xℓ)]

)
,

ℓ = 1, . . . , n − 1 , (H.44)

and xn ≤ x ≤ xn+1.
We can easily connect matrix N(L) with matrix M defined in (H.6), as-

suming that V (x) is a constant, V (x) = V . Indeed, since

A2 exp (ik2L) + B2 exp (−ik2L) = ψ(L) ,

ik2A2 exp (ik2L) − ik2B2 exp (−ik2L) = ψ′(L)
A1 + B1 = ψ(0) ,
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and
ik1A1 − ik1B1 = ψ′(0) ,

we have
(

A2 exp (ik2L) + B2 exp (−ik2L)
ik2A2 exp (ik2L) − ik2B2 exp (−ik2L)

)

=
(

exp (ik2L) exp (−ik2L)
ik2 exp (ik2L) −ik2 exp (−ik2L)

) (
A2

B2

)

=
(

cos(qL) sin(qL)/q
−q sin(qL) cos(qL)

) (
1 1

ik1 −ik1

) (
A1

B1

)
,

where
E =

!2k2
1

2m
=

!2k2
2

2m
+ V0 =

!2q2

2m
+ V .

Hence

M =
i

2k2

(
−ik2 exp (−ik2L) − exp (−ik2L)
−ik2 exp (ik2L) exp (ik2L)

)
N(L)

(
1 1

ik1 −ik1

)
. (H.45)

In electromagnetism, a transfer matrix analogous to that in (H.42) is quite
widespread (see, e.g., the book by Born and Wolf [447], pp. 5–70). For a wave
propagating in the x-direction normal to consecutive films each of constant
permittivity ε and permeability µ, the role of ψ(x) is played by Ey(x) (as-
suming that the EM wave is linearly polarized with the y-axis chosen in the
direction of the electric field) and the role of ψ′(x) by Hz(x), since

∂Ey

∂x
=

iµω

c
Hz

and
∂Hz

∂x
=

iωε

c
Ey .

Then, the electromagnetic analog of (H.42) is
(

Ey(x)
Hz(x)

)
= N (x − xn)

(
Ey (xn)
Hz (xn)

)
, (H.46)

where

N (x − xn) =

⎛

⎝
cos [kn (x − xn)] izn sin [kn (x − xn)]
i

zn
sin [kn (x − xn)] cos [kn (x − xn)]

⎞

⎠ . (H.47)

In (H.46) and (H.47) xn ≤ x ≤ xn+1, zn =
√

µn/εn is the surface impedance
of a film of constant permittivity and permeability bounded by the planes
x = xn and x = xn+1, and kn = ω

√
εnµn/c.
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Equation (H.47) can be easily generalized to the case where the angle of
incidence is θ and not zero as in (H.47). Then for a TE wave (i.e., one with
Ez = Ex = 0), (H.47) is still valid if kn is replaced by qn = kn cos θ and zn

by tn = zn/ cos θ; for a TM wave (i.e., one with Hz = Hx = 0), the relation
between Hy(x), −Ez(x) and Hy (xn), −Ez (xn) is still given by (H.47) with
the replacements kn → qn = kn cos θ and zn → sn = 1/zn cos θ (see the book
by Born and Wolf [447], pp. 51–70).

Further Reading

Because of its wide applicability, the subject of transfer matrix is treated
in several books, starting from an elementary level and extending to various
generalizations. For an introduction similar to the one presented here see the
books by Landau and Lifshitz [12], Merzbacher [13], and Born and Wolf [447].

For a more advanced level see the review paper by Kramer and MacKinnon
[376] and the recent book edited by Brandes and Kettermann [381], especially
pp. 21–30.



I

Second Quantization

There are several ways to introduce the formalism of second quantization. Here
we shall follow a field-theoretical approach that unifies both the Schrödinger
and the classical wave case. For the latter case, second quantization is of
critical importance, since it introduces the particle aspect of the wave/particle
duality; for both cases this formalism is very convenient for treating systems
of many interacting or noninteracting wave-particles, because it incorporates
naturally, among other advantages, the generalized Pauli principle.

We consider first the Schrödinger equation describing the motion of a single
particle in an external potential,

(
i! ∂

∂t
+

!2

2m
∇2 − V

)
ψ (r, t) = 0 , (I.1)

and the wave equation
(
∇2 − 1

c2

∂2

∂t2

)
u (r, t) = 0 , (I.2)

where u (r, t) is a real field.
Equations (I.1) and (I.2) can be derived, respectively, from the Lagrangian

densities [19, 29]

ℓ = i!ψ∗ψ̇ − !2

2m
∇ψ∗ ·∇ψ − V ψ∗ψ , (I.3)

ℓ =
1

2c2
u̇2 − 1

2
(∇u)2 , (I.4)

by applying the principle of least action, which leads to the basic equation

∂ℓ

∂φ
− ∂

∂t

∂ℓ

∂φ̇
−

3∑

ν=1

∂

∂xν

∂ℓ

∂ (∂φ/∂xν)
= 0 , (I.5)

where the dot denotes differentiation with respect to t and φ stands for ψ, ψ∗

or for u; x1, x2, and x3 are the three cartesian coordinates of r.
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Substituting (I.3) and (I.4) into (I.5) we obtain (I.1) (or its complex con-
jugate) and (I.2), respectively.

The field momentum conjugate to the field variable φ (φ = ψ, ψ∗ or u) is
obtained from the general relation

π =
∂ℓ

∂φ̇
. (I.6)

We obtain for the field momenta conjugate to ψ and u, respectively,

π = i!ψ∗ , (I.7)

π =
u̇

c2
. (I.8)

The Hamiltonian densities are obtained from the general relation

h =
∑

πφ̇ − ℓ ; (I.9)

the summation in (I.9) is over all independent fields φ [ψ, ψ∗ in case (I.3),
or u in case (I.4)]. We obtain by substituting in (I.9) from (I.7), (I.8) and
(I.3), (I.4), respectively,

h = − i!
2m

(∇π) · (∇ψ) − i
!V πψ , (I.10)

h =
1
2
c2π2 +

1
2

(∇u)2 . (I.11)

The most general solution of (I.1) and (I.2) can be written as a linear
superposition of the corresponding eigensolutions. Thus we have

ψ (r, t) =
∑

n

anψn (r) exp (−iEnt/!) , (I.12)

u (r, t) =
1√
Ω

∑

k

{Pk exp [i (ωkt − k · r)]

+Nk exp [−i (ωkt − k · r)]} , (I.13)

where (
− !2

2m
∇2 + V

)
ψn = Enψn

and ωk = ck. For V = 0, ψ = eik · r/
√

Ω and En = !2k2/2m. Note that
in (I.13), in contrast to (I.12), there are two terms for each k, one associated
with the positive frequency ωk and the other with the negative frequency −ωk.
This feature is a consequence of the second-order (in time) nature of the wave
equation. Note also that as a consequence of u being real, we have the relation

Pk = N∗
k . (I.14)
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Substituting (I.12) and (I.13) into (I.10) and (I.11), taking into account (I.7)
and (I.8), and integrating over the whole volume Ω, we obtain the total energy
of the system in terms of the coefficients an or Pk, and Nk, respectively. We
have explicitly

H =
∑

n

a∗
nanEn , (I.15)

H =
∑

k

ω2
k

c2
(N∗

kNk + NkN∗
k) . (I.16)

We can rewrite (I.16) by introducing the quantities

bk =
√

2ωk

!c2
Nk (I.17)

as follows:
H =

1
2

∑

k

!ωk (b∗kbk + bkb∗k) . (I.18)

A general way to quantize a field φ is to replace φ(r, t) by an operator
φ(r, t) that satisfies the commutation relation

φ(r, t)π(r′, t) ∓ π(r′, t)φ(r, t) = i!δ(r − r′) , (I.19)

where the upper sign corresponds to the case where φ describes bosons (i.e.,
particles with integer spin) and the lower sign corresponds to the case where φ
describes fermions (i.e., particles with integer plus 1/2 spin).

The field u, being a classical field, corresponds to integer spin and as
such is associated with the upper sign in (I.19). The field ψ may describe
either fermions (e.g., electrons) or bosons (e.g., He4 atoms). The operator
φ(r, t) commutes (anticommutes) with φ(r′, t); similarly, π(r, t) commutes
(anticommutes) with π(r′, t). Combining this last statement with (I.19) and
expressing everything in terms of ψ or u, we have the equal time commutation
(anticommutation) relation

ψ(r, t)ψ†(r′, t) ∓ ψ†(r′, t)ψ(r, t) = δ (r − r′) ,

ψ(r, t)ψ(r′, t) ∓ ψ(r′, t)ψ(r, t) = 0 ,

ψ†(r, t)ψ†(r′, t) ∓ ψ†(r′, t)ψ†(r, t) = 0 , (I.20)

u(r, t)u̇(r′, t) − u̇(r′, t)u(r, t) = i!c2δ (r − r′) ,

u(r, t)u(r′, t) − u(r′, t)u(r, t) = 0 ,

u̇(r, t)u̇(r′, t) − u̇(r′, t)u̇(r, t) = 0 , (I.21)

where the quantity ψ∗, which is the complex conjugate of ψ, has been re-
placed by the operator ψ†, which is the adjoint of the operator ψ. Since ψ
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and u became operators, the coefficients an and bk are operators obeying cer-
tain commutation (or anticommutation) relations. To find these relations we
substitute (I.12), (I.13), and (I.17) into (I.20) and (I.21). After some straight-
forward algebra we obtain

ana†
n′ ∓ a†

n′an = δnn′ ,

anan′ ∓ an′an = 0 ,

a†
na†

n′ ∓ a†
n′a†

n = 0 , (I.22)

bkb†q − b†qbk = δkq ,

bkbq − bqbk = 0 ,

b†kb†q − b†qb†k = 0 . (I.23)

By right-multiplying the first of equations (I.22) by an, setting n′ = n, and
taking into account that the operators a†

nan are nonnegative, we find that a†
nan

has the eigenvalues 0, 1, 2,. . . if the upper sign is taken and the eigenvalues 0, 1
if the lower sign is taken. Similarly, the operator b†kbk takes the eigenvalues 0, 1,
2,. . . . For this reason the operator a†

nan or b†kbk is called the number operator
and is symbolized by nn or nk; its eigenvalues show how many particles we
have in the state ψn(r) or how many quanta have been excited in the mode k.
The previous proof implies that the operator an or bk annihilates a particle or
quantum from the state |ψn⟩ or |k⟩; similarly, we can show that a†

n or b†k creates
a particle in this state. These operators can be used to create a complete set
of states starting from the vacuum state |0⟩, i.e., from the state that has no
particle or quanta. Obviously,

an |0⟩ = 0 , (I.24)
bk |0⟩ = 0 . (I.25)

All the one-particle states can be obtained by applying the operator a†
n (or b†k)

to |0⟩, i.e., a†
n |0⟩ (or b†k |0⟩), where the index n (or k) takes all possible values.

By applying two creation operators we can construct the two-particle states,
and so on. Note that the correct symmetry or antisymmetry of the state is
automatically included in this formalism.

We can define different sets of operators {an} and {a†
n} depending on

which complete set of one-particle states {ψn} we choose. Let us have another
complete orthonormal set {ψm} to which a different set of operators {am}
and {a†

m} corresponds. Taking into account that

|m⟩ =
∑

n

⟨n |m⟩ |n⟩ ,

and that |m⟩ = a†
m |0⟩ and |n⟩ = a†

n |0⟩, we obtain

a†
m =

∑

n

⟨n |m⟩ a†
n , (I.26)
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from which it follows that

am =
∑

n

⟨m |n⟩ an . (I.27)

Usually, the set {ψn} is: (1) The position eigenstates |r⟩; (2) The momentum
eigenstates |k⟩; (3) The eigenstates of the Hamiltonian −!2∇2/2m + V . Of
course, when V = 0, set (2) is identical to (3). Let us apply (I.27) when the
set {|m⟩} is the set {|r⟩} and the set {|n⟩} is set (3) above. We obtain

ar =
∑

n

⟨r |n⟩an =
∑

n

ψn (r) an ;

comparing with (I.12), we see that ar = ψ(r, 0), i.e., ψ(r, 0) [ψ†(r, 0)] is an
annihilation (creation) operator annihilating (creating) a particle at point r.
Similarly, ψ†(r, 0)ψ(r, 0) is the number operator at point r, i.e., the number
density operator (or concentration) ϱ(r)

ϱ(r) = ψ†(r, 0)ψ(r, 0) . (I.28)

The relation between the operators ψ(r), ψ†(r) and ak, a†
k is, according to

(I.26) and (I.27),

ψ(r) =
∑

k

⟨r |k⟩ ak =
1√
Ω

∑

k

eik · rak , (I.29)

ak =
∫

d3r ⟨k | r⟩ψ (r) =
1√
Ω

∫
d3r e−ik · rψ (r) . (I.30)

All the operators can be expressed in terms of creation and annihilation op-
erators. We have already seen that

ϱ (r) = ψ† (r)ψ (r) .

Hence, the total number operator is

N =
∫

d3rψ† (r)ψ (r) =
∑

k

a†
kak . (I.31)

The last relation follows with the help of (I.29). The kinetic energy operator
is obtained by setting V = 0 in (I.10) and integrating over r:

T =
!2

2m

∫
∇ψ†∇ψd3r = − !2

2m

∫
d3rψ†∇2ψ =

∑

k

!2k2

2m
a†

kak . (I.32)

The second step follows by integrating by parts the first expression; the last
expression is obtained with the help of (I.29).

The potential energy in the presence of an external potential V (r) is ob-
tained by integrating over r the second term on the rhs of (I.10). We have

Ve =
∫

V (r)ψ† (r)ψ (r) d3r =
∫

V (r) ϱ (r) d3r , (I.33)
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as was expected. The operators ϱ, N , T , and Ve involve the product of one
creation and one annihilation operator. This is a general feature for operators
that correspond to additive quantities. On the other hand, operators involving
summation over pairs of particles (such as the Coulomb interaction energy of
a system of particles) contain a product of two creation and two annihilation
operators. For example, we consider the interaction energy

Vi =
1
2

∑

ij

v (ri, rj) .

This expression can be written in terms of the density ϱ as follows:

Vi =
1
2

∫
ϱ(r)v(r, r′)ϱ(r′)d3rd3r′ ; (I.34)

using (I.28) we obtain

Vi =
1
2

∫
d3rd3r′ψ† (r)ψ† (r′) v (r, r′)ψ (r′)ψ (r) . (I.35)

Note that in our derivation of (I.35) there is an uncertainty in the ordering of
the four creation and annihilation operators. One can verify that the ordering
in (I.35) is the correct one by evaluating the matrix elements of Vi among
states with a fixed total number of particles [20, 448].

The total Hamiltonian of a system of particles interacting with each other
via the pairwise potential v(r, r′) and placed in an external potential V (r) is
given by

H = T + Ve + Vi , (I.36)

where the quantities T , Ve, and Vi are given by (I.32), (I.33), and (I.35),
respectively.

Note that the Hamiltonian (I.36) cannot be brought to the form (I.15)
because of the presence of the interaction term Vi. Furthermore, the field
operator ψ(r, t) does not satisfy the simple equation (I.1). There are two
ways to find the equation obeyed by ψ: (1) by applying the general equation
(I.5) with ℓ containing an extra term −Vi or (2) using the general equation

i!∂ψ

∂t
= [ψ,H] ,

which leads to
[
i! ∂

∂t
+

!2∇2

2m
− V (r)

]
ψ (r, t)

=
∫

d3r′v (r, r′)ψ† (r′, t)ψ (r′, t)ψ (r, t) , (I.37)

with a similar equation for ψ†(r, t). For the particular but important case
of a system of electrons moving in a positive background (to ensure overall
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electrical neutrality) and repelling each other through v(r, r′) = e2/ |r − r′|,
the total Hamiltonian H can be expressed in terms of a†

k, ak as follows:

H =
∑

k

!2k2

2m
a†

kak +
e2

2Ω

∑

k,p,q ̸=0

4π

q2
a†

k+qa†
p−qapak . (I.38)

We can also express various operators associated with the field u(r, t) in terms
of the field operator u(r, t) or in terms of the operators bk and b†k. To be more
specific, we consider the particular case of the longitudinal vibrations of an
isotropic continuous solid. In this case, each operator b†k creates a quantum
of a plane wave longitudinal oscillation that carries a momentum equal to !k
and an energy equal to !ωk. This quantum is called a longitudinal acoustic
(LA) phonon.

The theory we have presented for the field u(r, t) requires some modifica-
tions to be applicable to the longitudinal vibrations of a continuum; the reason
is that the latter are described by a vector field, namely, the displacement,
d(r, t), from the equilibrium position; since we are dealing with longitudi-
nal vibrations, it follows that ∇ × d = 0. The various quantities of physical
interest can be expressed in terms of LA phonon creation and annihilation
operators as follows (for detailed derivations see [20]). The displacement op-
erator, d(r, t), is

d(r, t) = −i
∑

k

√
!

2ωkϱΩ

k

k

[
bke−i(ωkt−k · r) − b†kei(ωkt−k · r)

]
, (I.39)

where ϱ is the constant equilibrium mass density. The conjugate momentum,
π(r, t), is

π (r, t) = ϱ
∂d

∂t
= −

∑

k

√
!ωkϱ

2Ω

k

k

×
(
bk exp [−i (ωkt − k · r)] + b†k exp [i (ωkt − k · r)]

)
. (I.40)

The Lagrangian and Hamiltonian densities are

ℓ =
1
2
ϱḋ2 − 1

2
B (∇ ·d)2 , (I.41)

h =
1
2ϱ

π2 +
1
2
B (∇ ·d)2 , (I.42)

where
B = ϱc2 (I.43)

is the adiabatic bulk modulus, B = −Ω(∂P/∂Ω)S , and c is the speed of sound
in the medium. The Hamiltonian expressed in terms of b†k, bk has exactly the
form (I.18), which can be rewritten as

H =
∑

k

!ωk

(
b†kbk +

1
2

)
(I.44)
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by taking into account (I.23). Equation (I.44) means that the phonons are non-
interacting. If the harmonic approximation is relaxed, the Lagrangian (I.41)
will contain extra terms involving powers of ∇ ·d higher than the second.
Since d is a linear combination of b†k and bk, these third- and higher-order
terms will add to the Hamiltonian (I.44) an Hi that will involve terms of
the form bkbqbp, b†kbqbp, b†kb†qbp, and b†kb†qb†p and terms involving four, five,
etc. creation and annihilation operators. Thus the term Hi represents compli-
cated interactions among the phonons, and as a result the equation of motion
(I.2) is modified; the new equation can be found from (I.5) with ℓ containing
whatever anharmonic terms are present.

In a solid there are interactions between the electrons [which are described
by the field ψ(r, t)] and the longitudinal phonons [which are described by
the field d(r, t)]. It is customary and convenient to describe the longitudinal
phonons through the scalar field φ(r, t), which is defined as

φ(r, t) = c
√

ϱ∇ ·d . (I.45)

Substituting in (I.45) from (I.39), we obtain for the phonon field φ(r, 0) the
following expression:

φ(r, 0) =
∑

k

√
!ωk

2Ω

(
b†ke−ik · r + bkeik · r

)
; (I.46)

the summation over k is restricted by the condition k ≤ kD, where kD is the
Debye wave number : kD = (6π2Na/Ω)1/3, where Na is the total number of
atoms. This restriction ensures that the degrees of freedom in our isotropic
continuum are equal to the vibrational degrees of freedom of a real solid. In
terms of the fields ψ(r) and φ(r) the electron–phonon interaction Hamiltonian
is [20]

He−p = γ

∫
d3rψ† (r) ψ (r)φ (r) , (I.47)

where
γ =

π2!2zϱ

mkF M
√

B
; (I.48)

z is the valence and M is the mass of each ion, m is the mass of the electron,
and kF is the Fermi momentum of the electron gas. If the various interactions
discussed up to now are included, the total Hamiltonian Ht of an electron–
phonon system can be written as follows:

Ht = He + Hp + He−e + Hp−p + He−p , (I.49)

where He, Hp, He−e, and He−p are given by (I.15), (I.44), (I.35), and (I.47), re-
spectively; Hp−p contains terms involving the product of at least three phonon
creation and annihilation operators, as was discussed above; He can be writ-
ten also as the sum of (I.32) and (I.33). The time dependence of the operators
ψ(r, t) and φ(r, t) can be obtained from the general relation
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i!∂ψ (r, t)
∂t

= [ψ (r, t) ,Ht] , (I.50)

i!∂φ (r, t)
∂t

= [φ (r, t) ,Ht] . (I.51)

If the interaction terms were absent, (I.50) would give (I.12) and (I.51) would
give

φ (r, t) =
∑

k

√
!ωk

2Ω

(
b†k exp [i (ωkt − k · r)]

+ bk exp [−i (ωkt − k · r)]
)

. (I.52)

We shall conclude by expressing some common electronic and phononic
operators in second quantization language.

Electronic Hamiltonian Including the Spin Variable σ(σ = ±1)

He + He−e =
∑

σ

∫
drψ†

σ (r)
[
− !2

2m
∇2 + V (r)

]
ψσ (r)

+
1
2

∑

σσ′

∫
dr

∫
dr′ψ†

σ (r)ψ†
σ′ (r′) v (r, r′)ψσ′ (r′)ψσ (r) . (I.53)

Total Electronic Momentum

P =
∑

σ

∫
drψσ (r) (−i!∇)ψ†

σ (r) =
∑

σk

!ka†
kσakσ . (I.54)

Electronic Current Density

j (r) =
!

2mi

∑

σ

[ψ†
σ (r)∇ψσ (r) −

(
∇ψ†

σ (r)
)
ψσ (r)] (I.55a)

=
!

Ωm

∑

k,q,σ

eiq · r
(
k +

q

2

)
a†

k,σak+q,σ . (I.55b)

Total Electronic Spin Density

S(r) =
1
2

∑

σσ′

ψ†
σ(r)(σ)σσ′ψσ′(r) (I.56a)

=
1

2Ω

∑

k,q,σ,σ′

eiq · ra†
kσ(σ)σσ′ak+q,σ′ , (I.56b)

where σ is the vector whose cartesian components are the three Pauli matrices.
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In a discrete periodic lattice, the atomic (or ionic) displacement vector,
dR,ν(t), is characterized by the index R (which determines the primitive cell
in which the atom is located) and the index ν (which specifies the atom
within the primitive cell R). The eigenmodes are characterized by the crystal
momentum q and the branch index s (s = 1, 2, 3, . . . , 3p), where p is the
number of atoms in each primitive cell. By introducing the abbreviations Q ≡
q, s and x ≡ R, ν, i (where i = 1, 2, 3 denote the three cartesian coordinates
of dR,νt), we have

d(x, t) =
1√
N

∑

Q

√
!

2M̄ωQ

[
wQ(x)e−iωQtbQ + w∗

Q(x)eiωQtb†Q

]
, (I.57)

p(x, t) =
−i√
N

∑

Q

√
!M2

ν ωQ

2M̄

[
wQ(x)e−iωQtbQ − w∗

Q(x)eiωQtb†Q

]
, (I.58)

bQ =
1√
N

∑

x

[√
M2

ν ωQ

2!M̄
d(x, 0) + i

√
1

2!M̄ωQ
p(x, 0)

]
w∗

Q(x) , (I.59)

b†Q =
1√
N

∑

x

[√
M2

ν ωQ

2!M̄
d(x, 0) − i

√
1

2!M̄ωQ
p(x, 0)

]
wQ(x) ; (I.60)

Hp =
∑

Q

!ωQ

(
b†QbQ +

1
2

)
,

where Mν is the mass of the νth atom, N is the total number of atoms in the
solid, M̄ =

∑p
ν=1 Mν/p, wQ(x) = ενi,Q eiq ·R satisfies the equation

Mνω2
q,swqs (R, ν, i) =

∑

ν′i′

Dνi,ν′i′ (q)wqs (R, ν′, i′) , (I.61)

and p(x, t) = Mν ḋ(x, t) is the ith cartesian component of the momentum of
the atom ν located at the R primitive cell. The harmonic potential energy, U ,
in terms of the displacement dR,ν,i, is given by

U = U0 +
1
2

∑

R,R′

∑

ν,ν′

∑

ii′

dR,ν,iDνi,ν′i′ (R − R′) dR′,ν′,i′ (I.62)

and
Dνi,ν′i′ (q) =

∑

R

Dνi,ν′i′ (R) e−iq ·R . (I.63)

The eigenmodes wQ(x) are orthonormal in the following sense:

∑

x

Mνw∗
Q(x)wQ′ (x) = M0δQQ′ , (I.64)
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where M0 = NM̄ is the total mass of the solid; they satisfy also the complete-
ness relation

Mν

M0

∑

Q

wQ(x)wQ(x′) = δxx′ . (I.65)

If there is only one atom per primitive cell, equation (I.57) simplifies to

d (R, t) =
1√
N

∑

qs

√
!

2Mωqs
[εqs exp[i (q ·R − ωqst)]bqs

+ε∗
qs exp[−i (q ·R − ωqst)]b†qs

]
, (I.66)

which reduces to (I.39) by setting q = k, s =longitudinal only, εq = −ik/ |k|,
and NM = ϱΩ.



Solutions of Selected Problems

Chapter 1

1.1s. We start with the relations

Lφn = λnφn , (1)
Lφm = λmφm , (2)

where λn ̸= λm. We multiply (1) by φ∗
m and (2) by φ∗

n, and we integrate
∫

Ω
φ∗

mLφndr = λn

∫

Ω
φ∗

mφndr , (3)
∫

Ω
φ∗

nLφmdr = λm

∫

Ω
φ∗

nφmdr . (4)

By taking the complex conjugate of (4) and employing the hermitian nature
of L we find

[∫

Ω
φ∗

nLφmdr

]∗
=

∫

Ω
φ∗

mLφndr = λm

∫

Ω
φ∗

mφndr . (5)

In (5) we have used the fact that the eigenvalues of a hermitian operator are
real [for a proof set n = m in (3) and then take its complex conjugate].

Subtracting (5) from (3) we have

(λn − λm)
∫

Ω
φ∗

mφndr = 0 . (6)

Thus, if λn ̸= λm, then φm and φn are orthogonal. By incorporating an
appropriate constant multiplying factor in the definition of φn, φm, we can
always have that ∫

Ω
φ∗

nφndr = 1 (7)

for every n.



392 Solutions of Selected Problems

Now, if λn = λm, while φn ̸= φm with
∫

Ω φ∗
nφmdr ̸= 0, we can always

choose a new eigenfunction φ′
m = α1φn + α2φm associated with the same

eigenvalue λm = λn, such that
∫

Ω
φ∗

nφ′
mdr = α1 + α2

∫

Ω
φ∗

nφmdr = 0 , (8)

and
∫

Ω
φ′∗

mφ′
mdr = |α1|2 + |α2|2 +α∗

1α2

∫

Ω
φ∗

nφmdr+α∗
2α1

∫

Ω
φ∗

mφndr = 1 . (9)

Thus, by appropriate selection of α1 and α2, we can impose orthonormality
even in the case of degenerate eigenvalues. ⊓;

1.2s. By definition, a set of functions {φn} is complete if any well-behaved
function ψ defined on Ω and satisfying proper boundary conditions can be
written as a linear combination of φns:

ψ (r) =
∑

n

cnφn (r) . (1)

By multiplying by φ∗
m, integrating over r, and taking into account the or-

thonormality of the set {φn}, we determine the coefficients {cm}:
∫

Ω
φ∗

mψdr′ =
∑

n

cn

∫

Ω
φ∗

mφndr′ = cm . (2)

Substituting (2) into (1) we have

ψ (r) =
∫

Ω

{
∑

m

φ∗
m (r′)φm (r)

}
ψ (r′) dr′ . (3)

For (3) to be true for any function ψ, the kernel
∑

m

φ∗
m (r′)φm (r)

must be equal to δ (r − r′). ⊓;

1.3s. The true meaning of (1.20) is the following:

lim
y→0+

∫ B

A

f(x)
x ± iy

dx

= lim
α→0+

[∫ −α

A

f(x)
x

dx +
∫ B

α

f(x)
x

dx

]
∓ iπ

∫
dxf(x)δ(x) , (1)

where A < 0 < B, and f(x) is any function well behaved in the interval [A, B].
The limit of the expression in brackets on the rhs of (1) is denoted by
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P
∫ B

A

f(x)
x

dx or by −
∫ B

A

f(x)
x

dx

and is called the principal value of the integral.
The lhs of (1), before taking the limit y → 0+, can be written as follows

by multiplying the numerator and the denominator of the integrand by x∓ iy:
∫ B

A

f(x)
x ± iy

dx =
∫ B

A

xf(x)
x2 + y2

dx ∓ i
∫ B

A

yf(x)
x2 + y2

dx . (2)

According to (A.2a) of Appendix A, the limit of y/
(
x2 + y2

)
as y → 0+ equals

πδ(x). Hence the imaginary part of the lhs of (1) equals the imaginary part
of the rhs of (1). Let us examine now the real part of the lhs of (1). We have

∫ B

A
dxI(x, y) =

∫ −α

A
dxI(x, y) +

∫ α

−α
dxI(x, y) +

∫ B

α
dxI(x, y) , (3)

where I(x, y) = xf(x)/
(
x2 + y2

)
. In the first and third integral of the rhs of

(3) we can take the limit y → 0+ and thus recover the expression in brackets on
the rhs of (1). In the second integral of the rhs of (3) and in the limit α → 0+,
I(x, y) can be replaced by xf(0)/

(
x2 + y2

)
since f(x) is well behaved in the

whole interval (A, B). Hence, we have

lim
α→0+

∫ α

−α
dxI(x, y) = f(0) lim

α→0+

∫ α

−α
dx

x

x2 + y2
= 0 . (4)

Thus the real parts of the two sides of (1) are equal to each other as well. ⊓;

1.5s. The state of a classical point particle moving in a d-dimensional real
space is fully determined by fixing the d-component position vector r and
the d-component momentum vector p, i.e., by giving the corresponding point
in phase space (the latter is the combined r, p space). Thus, the number of
states associated with a region of phase space, although classically infinite,
is proportional to the volume of that region (the dimension of this volume
is action to the dth power). Quantum mechanics, because of Heisenberg’s
uncertainty relation, δxδpx ≥ !/2, sets an absolute minimum, (c!)d, to the
volume of phase space (c is a numerical constant). Hence, to the elementary
volume (c!)d corresponds just one state and to the volume drdp correspond

drdp

(c!)d
(1)

states. To determine the numerical constant c, it is enough to consider a free
particle in a 1-d real space of total length L as L → ∞. Without loss of
generality we can impose periodic boundary conditions:

ψ(0) = ψ(L) , (2)
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where ψ is the eigenfunction,

ψ(x) =
1√
L

eikx , (3)

of momentum p = !k. Because of (2) we have

eikL = 1 ⇒ kL = 2πℓ , ℓ = integer. (4)

Thus, the allowed values of k are

kℓ =
2π

L
ℓ ,

with a spacing between consecutive eigenvalues equal to 2π/L. As a result,
the number of states in an interval δk equals

δk

2π/L
=

L

2π
δk =

Lδp

2π! . (5)

Hence the constant c in (1) equals 2π, and the final formula for the number
of states in the phase space volume element drdp = !ddrdk is the following:

drdp

hd
=

drdk

(2π)d
. (6)

For a uniform |ψ (r)|2, integration over dr gives

Ωdk

(2π)d
(7)

for the number of states associated with the k-space volume element dk and
the whole real space volume, Ω.

Notice that (6) and (7) are valid not only for plane waves but for Bloch
waves as well, i.e., for wavefunctions ψ(x) of the form

ψ(x) = u(x)eikx , (8)

where u(x) is a periodic function with the same period as the potential acting
on the particle. For these wavefunctions, (4) is valid, which implies (5), (6),
and (7). ⊓;

1.6s. The normalized eigenfunctions of the operator, −d2/dx2, in the domain
(0, 1) with BC φn(0) = φn(1) = 0 are obviously

φn(x) =
√

2 sin(nπx) , n = 1, 2, 3, . . . . (1)

Hence, according to (1.13), the Green’s function G(x, x′; z) is given by the
following sum:

G(x, x′; z) = 2
∞∑

n=1

sin(nπx) sin(nπx′)
z − n2π2

. (2)

The second method of calculation gives G as the sum G∞, the Green’s
function satisfying the same inhomogeneous equation in the infinite domain
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(−∞, +∞), plus the general solution, φ, of the corresponding homogeneous
equation (

z +
d2

dx2

)
φ(x) = 0 . (3)

Equation (3) gives for φ(x)

φ(x) = Aei
√

zx + Be−i
√

zx . (4)

Taking into account (1.55) and the BC for G(x, x′; z) = G∞(x, x′; z) + φ(x),
we obtain two linear algebraic equations for A and B:

G(0, x′; z) = 0 ⇒ ei
√

zx′

2i
√

z
+ A + B = 0 , (5)

G(1, x′; z) = 0 ⇒ ei
√

z(1−x′)

2i
√

z
+ Aei

√
z + Be−i

√
z = 0 . (6)

Solving the set of (5) and (6) we find

A = i
sin [

√
z(1 − x′)]

2
√

z sin
√

z
, B = iei

√
z sin(

√
zx′)

2
√

z sin
√

z
. (7)

Substituting A and B from (7) into (4) and adding φ(x) to G∞ we obtain
after some algebra

G(x, x′; z) =

⎧
⎪⎪⎨

⎪⎪⎩

− sin [
√

z(1 − x′)] sin (
√

zx)√
z sin

√
z

−→
z→0

−(1 − x′)x , x < x′ , (8a)

− sin [
√

z(1 − x)] sin (
√

zx′)√
z sin

√
z

−→
z→0

−(1 − x)x′ , x′ < x . (8b)

The reader can easily prove that expression (8) satisfies (3) for 0 ≤ x < x′ and
for x′ < x ≤ 1, exhibits a discontinuity equal to 1 in the derivative (dG/dx)
at x = x′ [which is equivalent to d2G/dx2 = δ(x−x′)], and satisfies the BC at
x, x′ = 0, and x, x′ = 1. Thus (8) gives indeed the requested Green’s function
in closed form.

According to the third method of calculation, we find the Green’s function
separately in the regions 0 ≤ x < x′ and x′ < x ≤ 1 together with the
corresponding BC. In these regions the Green’s function satisfies (3), which
together with the BC gives

G(x, x′; z) =

{
C(x′) sin

(√
zx

)
, x < x′ , (9a)

D(x′) sin
[√

z(1 − x)
]

, x′ < x . (9b)

The unknown quantities C(x′) and D(x′) are determined by the continuity of
G at x = x′, which implies

C(x′) sin
(√

zx′) = D(x′) sin
[√

z(1 − x′)
]

(10)
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and the relation (
dG

dx

)

x=x′+
−

(
dG

dx

)

x=x′−
= 1 . (11)

Equation (11) is obtained by integrating (1.1) over x,
(

z +
d

dx2

)
G(x, x′; z) = δ(x − x′) , (12)

once from x′−α to x′+α as α → 0+; one more integration of (11) leads to (10).
Taking into account that G(x, x′; z) remains invariant under interchanging x
and x′, we conclude that (10) implies that

C(x′) = A sin
[√

z(1 − x′)
]

(13a)

and
D(x′) = A sin

(√
zx′) . (13b)

Substituting (13a) and (13b) into (11) we determine the constant A:

A = − 1√
z sin

√
z

. (14)

Combining (14), (13a, 13b), and (9), we end up again with (8) for G(x, x′; z).
To find the sum

∑∞
n=1

(
α2 + n2

)−1, we equate the two expressions for
G(x, x′; z) [(2) and (8)], set x = x′, and then integrate over x from 0 to 1. We
then find

1
2
√

z
cot

√
z − 1

2z
=

∞∑

n=1

1
z − n2π2

. (15)

Setting z = −π2α2 in (15) we have

∞∑

n=1

1
α2 + n2

=
1

2α2
[−1 + απ coth(απ)] −→

α→0

π2

6
. (16)

If we choose x = x′ = 1/2 in both (2) and (8), we obtain

− sin2 (
√

z/2)√
z sin

√
z

= 2
∞∑

n=1

′ 1
z − n2π2

, (17)

where the prime in the sum indicates that only odd values of n are involved.
Taking the limit z → 0 in (17) we have

∞∑

n=1

′ 1
n2

=
π2

8
. (18)

⊓;
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1.7s. The solutions of the 2-dimensional Helmholtz equation,
(
z + ∇2

)
φ = 0,

in polar coordinates are given by setting m = 0 in (C.2) of Appendix C:

ψ (ϱ) = AneinφJ|n|
(√

zϱ
)

, (1)

where n is an integer, since φ covers the whole range [0, 2π]. The BC of
ψ (ϱ), being finite at the origin, excludes the presence of the other Bessel
function, Yn. The BC at ϱ = a, ψ(a, φ) = 0 implies that

J|n|
(√

za
)

= 0 . (2)

Let us call the roots of J|n|(x) = 0, λnm, m = 1, 2, 3, . . .. It then follows
from (2) that

z =
λ2

nm

a2
.

Hence the eigenfunctions we are looking for are of the form

ψnm (ϱ) = AnmeinφJ|n| (λnmϱ/a) , (3)

where the constant Anm is determined from the normalization condition,
∫

ψ∗
nm (ϱ) ψnm (ϱ) ϱ dϱ dφ = 1 ,

which, in connection with the relation1

∫ 1

0
dxxJ|n|(αx)J|n|(βx) =

1
2

δαβ

[
J|n|+1(α)

]2
, if J|n|(α) = J|n|(β) = 0 ,

(4)
gives

Anm =
√

1
π

1
a Jn+1 (λnm)

. (5)

Taking into account (3) and (5) and combining the ± |n| terms, we have
[according to the basic formula (1.13)]:

G (ϱ, ϱ′; z)

=
2

πa2

∞∑

n=1

∞∑

m=1

Jn (λnmϱ/a)Jn(λnmϱ′/a) cos[n(φ − φ′)]

J2
n+1 (λnm)

[
z − (λnm/a)2

] (6)

+
1

πa2

∞∑

m=1

J0 (λ0mϱ/a)J0 (λ0mϱ′/a)

J2
1 (λ0m)

[
z − (λ0m/a)2

]

1 See the GR table of integrals on p. 672 of [11].
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Combination of the Fourth and Third methods

In 2-dimensional polar coordinates the delta function δ (ϱ − ϱ′) can be written
as

δ (ϱ − ϱ′) =
1
ϱ

δ (ϱ − ϱ′) δ(φ − φ′) =
1
2π

∞∑

m=−∞

1
ϱ

δ (ϱ − ϱ′) eim(φ−φ′) . (7)

We shall express the Green’s function we are trying to determine as

G (ϱ, ϱ′; z) =
1
2π

∞∑

m=−∞
gm (ϱ, ϱ′; z) eim(φ−φ′) . (8)

In the regions 0 ≤ ϱ ≤ ϱ′ and ϱ′ < ϱ ≤ a, G satisfies the homogeneous
equation

(
z + ∇2

)
G = 0, and consequently gm is given by Bessel functions:

gm (ϱ, ϱ′; z) =

{
Am (ϱ′, z)Jm

(√
zϱ

)
, 0 ≤ ϱ < ϱ′ (9a)

Bm (ϱ′, z)Lm

(√
zϱ

)
, ϱ′ < ϱ ≤ a (9b)

where
Lm

(√
zϱ

)
= Jm

(√
zϱ

)
− cmYm

(√
zϱ

)
, (9c)

such that Lm (
√

za) = 0, which implies

cm = Jm

(√
za

)
/Ym

(√
za

)
. (9d)

In (9a) we have excluded Ym (
√

zϱ) because it blows up for ϱ = 0. The invari-
ance under interchanging ϱ and ϱ′ and the continuity of G (ϱ, ϱ′; z) at ϱ = ϱ′

lead to the relations

Am (ϱ′, z) = DmLm

(√
zϱ′

)
, (10a)

Bm (ϱ′, z) = DmJm

(√
zϱ′

)
, (10b)

where Dm is a constant depending only on m. By integrating the singularity
δ (ϱ − ϱ′) /ϱ from ϱ′ − α to ϱ′ + α in the limit α → 0+, we transform it to
a discontinuity 1/ϱ at the point ϱ = ϱ′. Thus

(
dgm

dϱ

)

ϱ=ϱ′+
−

(
dgm

dϱ

)

ϱ=ϱ′−
=

1
ϱ

. (11)

Substituting (9a), (9b), (9c), (9d), (10a), and (10b) into (11), we determine
Dm:

Dm =
1

ϱ [(dLm/dϱ)Jm − (dJm/dϱ)Lm]ϱ=ϱ′

=
1

cmϱ
√

z [J ′
mYm − JmY ′

m]ϱ=ϱ′
=

1

cmϱ
√

z

(
−2

πϱ
√

z

)

= − π

2cm
, (12)
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where
J ′

m =
[

dJm

d (
√

zϱ)

]

ϱ=ϱ′
, Y ′

m =
[

dYm

d (
√

zϱ)

]

ϱ=ϱ′
;

use was made of the fact that the Wronskian

W
{
Jm(

√
zϱ), Ym(

√
zϱ)

}
≡ JmY ′

m − J ′
mYm =

2
π
√

zϱ
.

Thus

gm (ϱ, ϱ′; z) =

{
Jm

(√
zϱ

)
Km

(√
zϱ′

)
, ϱ < ϱ′, (13a)

Jm

(√
zϱ′

)
Km

(√
zϱ

)
, ϱ′ < ϱ, (13b)

where
Km(x) =

π

2

[
Ym(x) − Ym (

√
za)

Jm (
√

za)
Jm(x)

]
. (13c)

The case a = ∞ (meaning that the BC at infinity is such that the Green’s
function describes an outgoing wave) is obtained by replacing Km(x) by
−(iπ/2)H(1)

m (x). Notice that the case a = ∞ cannot be obtained from (13c) by
taking the limit a → ∞ since the BC G (ϱ, ϱ′; z) = 0 implies the existence of
a reflected ingoing wave in addition to the outgoing. Formally the Km(x) can
be transformed to − (iπ/2)H(1)

m (x) by replacing Ym (
√

za) /Jm (
√

za) by i. The
case a = ∞ has already been obtained in closed form in (1.48). Comparing the
two expressions (1.48) and (8) combined with (13a) and Km → (−iπ/2)H(1)

m

we have

− i

4
H(1)

0

(√
z |ϱ − ϱ′|

)
=

− i
4

∞∑

m=−∞
eim(φ−φ′) ×

{
Jm (

√
zϱ)H(1)

m (
√

zϱ′) , ϱ < ϱ′

Jm (
√

zϱ′)H(1)
m (

√
zϱ) , ϱ′ < ϱ

. (14)

Knowing (14) allows us to use the second method for the calculation of
G, i.e., G = G∞ + ψ, where ψ is the general solution of the homogeneous
equation

(
z + ∇2

)
ψ = 0; ψ according to (1) has the following general form:

ψ =
i
4

∞∑

m=−∞
Ameim(φ−φ′)Jm

(√
zϱ

)
. (15)

Hence the Green’s function G is given by [taking into account (14)]

G =
i
4

∑

m

eim(φ−φ′)

×

⎧
⎪⎨

⎪⎩

AmJm (
√

zϱ) − Jm (
√

zϱ)H(1)
m (

√
zϱ′) , ϱ < ϱ′ ,

AmJm (
√

zϱ) − Jm (
√

zϱ′)H(1)
m (

√
zϱ) , ϱ′ < ϱ .

(16)
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To satisfy the BC G = 0 for ϱ = a, we must have

Am = Jm

(√
zϱ′

) H(1)
m (

√
za)

Jm (
√

za)
. (17)

We substitute (17) into (16) and find, taking into account that H(1)
m = Jm +

iYm,

AmJm

(√
zϱ

)
− Jm

(√
zϱ

)
H(1)

(√
zϱ′

)

= −i
[
Ym

(√
zϱ′

)
− Ym (

√
za)

Jm (
√

za)
Jm

(√
zϱ′

)]
Jm

(√
zϱ

)

= −2i
π

Km

(√
zϱ′

)
Jm

(√
zϱ

)
, ϱ < ϱ′ ; (18)

AmJm

(√
zϱ

)
− Jm

(√
zϱ′

)
H(1)

m

(√
zϱ

)

= −2i
π

Km

(√
zϱ

)
Jm

(√
zϱ′

)
, ϱ′ < ϱ . (19)

Substituting (18) and (19) into (16) we find the same expression as the one
obtained by combining (8) with (13a).

The reader may verify, by taking the limit z → 0 in (13a, 13b, 13c) and
using (C.3a-C.3c) of Appendix C, that the Green’s function satisfying the
relation ∇2G = δ (ϱ − ϱ′) and the BC G = 0 for ϱ = a is given by

G =
1
2π

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ln
(

ϱ′

a

)
+

∞∑

m=1

cos [m (φ − φ′)]
m

[(
ϱϱ′

a2

)m

−
(

ϱ

ϱ′

)m]
, ϱ < ϱ′ ,

ln
(ϱ

a

)
+

∞∑

m=1

cos [m (φ − φ′)]
m

[(
ϱϱ′

a2

)m

−
(

ϱ′

ϱ

)m]
, ϱ′ < ϱ .

The above function, multiplied by −4π, gives the electrostatic potential, ψ,
of a line unit charge located at the point (ϱ′,φ′) inside a hollow grounded
metallic circular cylindrical shell of radius a. ⊓;

1.8s.

First method by employing the eigenfunctions of −∇2

The eigenfunctions of −∇2 satisfying the BC at r = 0 and r = a are of the
form

fnℓm = AnℓmYℓm (θ, φ) jℓ

(√
z′r

)
, (1)

where
√

z′a = λℓn and jℓ (λℓn) = 0, i.e., z′ = λ2
ℓn/a2.

The coefficients Anℓm are determined from the normalization condition
∫

f∗
nℓmfnℓmdr = 1 , (2a)
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or

A2
nℓm

∫ a

0
dr r2

[
jℓ

(√
z
′
r
)]2

= A2
nℓma3

∫ 1

0
dxx2 [jℓ (λℓnx)]2 = A2

nℓm
a3

2
[jℓ+1 (λℓn)]2 = 1 . (2b)

Hence, according to (1.13), the Green’s function is given by

G (r, r′; z)

=
2
a3

∞∑

n=1

∞∑

ℓ=0

ℓ∑

m=−ℓ

Yℓm(θ, φ)Y ∗
ℓm (θ′, φ′) jℓ (λℓnr/a) jℓ (λℓnr′/a)

[jℓ+1 (λℓn)]2 [z − (λ2
ℓn/a2)]

. (3)

Combining the Third and Fourth methods

Following the corresponding approach in 1.7s and taking into account that

δ (r − r′) =
δ (r − r′)

r2

∑

ℓm

Yℓm(θ, φ)Y ∗
ℓm (θ′, φ′) , (4)

we expect G (r, r′; z) to be of the form

G (r, r′; z) =
∑

ℓm

Yℓm(θ, φ)Y ∗
ℓm (θ′, φ′)

{
jℓ

(√
zr

)
kℓ

(√
zr′

)
, r < r′, (5a)

jℓ

(√
zr′

)
kℓ

(√
zr

)
, r′ < r, (5b)

where
kℓ(x) = dℓ [jℓ(x) − cℓyℓ(x)] (6a)

and
kℓ

(√
za

)
= 0 . (6b)

Equation (6b) implies that

cℓ =
jℓ (

√
za)

yℓ (
√

za)
. (7)

Using (C.11) with G in the place of ψ in connection with (C.17b) and (C.17c)
we find

(
z + ∇2

)
G =

1
r2

∂

∂r

(
r2 ∂G

∂r

)
+ [zr2 − ℓ(ℓ + 1)]

1
r2

G = δ (r − r′) . (8a)

Substituting in (8a) from (4) and (5) and integrating over r from r′ − s to
r′ + s as s → 0+ we find

√
z [jℓ(x)k′

ℓ(x) − j′ℓ(x)kℓ(x)] =
1
r2

, x =
√

zr . (8b)
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The Wronskian in brackets equals

−dℓcℓW (jℓ, yℓ) = −dℓcℓ

x2
= −dℓcℓ

zr2
.

Thus
dℓ = −

√
z

cℓ
, (9)

and
kℓ(x) =

√
z

[
yℓ(x) − 1

cℓ
jℓ(x)

]
. (10)

The case a = ∞ with no ingoing reflected wave is obtained by replacing 1/cℓ

by i so that
kℓ(x) → −i

√
zh(1)

ℓ (x) . (11)

Equating (5), in conjunction with (11), with expression (1.39) for G (r, r′; z),
we have the following relation:

− ei
√

z|r−r′|

4π |r − r′|

= −i
√

z
∑

ℓm

Yℓm(θ, φ)Y ∗
ℓm (θ′, φ′)

{
jℓ (

√
zr) h(1)

ℓ (
√

zr′) , r < r′

jℓ (
√

zr′)h(1)
ℓ (

√
zr) , r′ < r

= −i
√

z
∞∑

ℓ=0

ℓ∑

m=0

(2 − δm0)
2ℓ + 1

4π

(ℓ − m)!
(ℓ + m)!

Pm
ℓ (cos θ)Pm

ℓ (cos θ′)

× cos [m (φ − φ′)]

{
jℓ (

√
zr) h(1)

ℓ (
√

zr′) , r < r′

jℓ (
√

zr′)h(1)
ℓ (

√
zr) , r′ < r

. (12)

If we choose the z-axis to coincide with the direction θ′, φ′ and we call γ the
angle between θ, φ, and the new z-axis, then the above expression simplifies
because it is symmetric around the new z-axis and consequently m = 0;
furthermore, Pℓ(cos 0) = Pℓ(1) = 1. Thus comparing the two expressions for
G (r, r′; z) in the old and the new z-axis we obtain

Pℓ(cos γ) = Pℓ (n ·n′)

=
ℓ∑

m=0

(2 − δm0)
(ℓ − m)!
(ℓ + m)!

Pm
ℓ (cos θ)Pm

ℓ (cos θ′) cos [m (φ − φ′)] (13a)

=
4π

2ℓ + 1

ℓ∑

m=−ℓ

Yℓm (n)Y ∗
ℓm (n′) , (13b)

where n, n′ are the unit vectors along the directions (θ, φ) and (θ′, φ′), re-
spectively. To obtain (12) and (13a), we used (A.11) in Appendix A.
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Taking the limit z → 0 in (12) we have

1
|r − r′| =

∑

ℓm

4π

2ℓ + 1
Yℓm(θ, φ)Y ∗

ℓm (θ′, φ′)
{

rℓ/r′ℓ+1 , r < r′

r′ℓ/rℓ+1 , r′ < r
(14a)

=
∞∑

ℓ=0

Pℓ (n ·n′)
{

rℓ/r′ℓ+1 , r < r′

r′ℓ/rℓ+1 , r′ < r
(14b)

=
∞∑

ℓ=0

ℓ∑

m=0

(2 − δm0)
(ℓ − m)!
(ℓ + m)!

Pm
ℓ (cos θ)Pm

ℓ (cos θ′)

× cos [m (φ − φ′)]
{

rℓ/r′ℓ+1 , r < r′

r′ℓ/rℓ+1 , r′ < r
. (14c)

Equations (14a), (14b), and (14c) are the basis for the multipole expansions
in electrostatics.

We quote here for completeness the expansion of a plane wave in spherical
harmonics:

eik · r = 4π
∞∑

ℓ=0

ℓ∑

m=−ℓ

iℓY ∗
ℓm (k0)Yℓm (r0) jℓ(kr) (15a)

=
∞∑

ℓ=0

iℓ(2ℓ + 1)Pℓ (k0 · r0) jℓ(kr) , (15b)

where k0 and r0 are the unit vectors along the directions of k and r, respec-
tively. ⊓;

1.9s. We wish to calculate the integral

G(z) =
1
π

∫ B

−B

dE

(z − E)
√

(B2 − E2)
, B = 2 |V | . (1)

We change variables by introducing φ through

E = B cosφ (2)

so that

G(z) =
1
π

∫ 0

−π

−B sinφdφ

(z − B cosφ)B sin φ
= − 1

π

∫ 0

−π

dφ

z − B cosφ
. (3)

We put w = eiφ so that dw = iwdφ and cosφ =
(
w + w−1

)
/2 =

(
w2 + 1

)
/2w.

Hence

G(z) =
i
π

∫ 1

−1

dw

zw − B
2 (w2 + 1)

= − i
π

2
B

∫ 1

−1

dw

w2 − (2z/B)w + 1
(4)

= − 2i
πB

∫ 1

−1

dw

(w − w1) (w − w2)
= − i

πB

∮
dw

(w − w1) (w − w2)
,
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where w1, w2 are the roots of the polynomial w2 − (2z/B)w + 1. Obviously,
w1w2 = 1, w1 + w2 = 2z/B, and w2 − w1 = 2

√
(z/B)2 − 1. The last integral

is over the unit circle; it was obtained by adding to (3) the integral

− 1
π

∫ π

0

dφ

z − B cosφ
= G(z)

and dividing by 2.

Case 1: |w1| ̸= |w2|; then one of the two roots, e.g., |w1|, is less than one
(since w1w2 = 1). By the residue theorem we then have

G(z) =
2

B (w2 − w1)
=

1√
z2 − B2

, (5)

where the square root is the one that has the same sign of the imaginary
part as the sign of Im {z}. Thus Im {z}×Im {G(z)} < 0, unless Im {z} = 0;
in this case G(z) is negative for z < −B and positive for B < z.

Case 2: |w1| = |w2|; this occurs only when z = cosφ, i.e., only when z is
real and in the interval (−B, B). To prove that, take into account that,
since |w1| = |w2| = 1 and w1w2 = 1, w1 = eiφ and w2 = e−iφ; hence
w1 + w2 = 2z/B = 2 cosφ. Thus in this case we must follow a limiting
procedure by setting z = B cosφ+iε and take the limit ε → 0±. Using (5)
and the relation εIm {G(cos φ + iε)} < 0, we obtain, remembering that
E = B cosφ,

G±(B cosφ) = lim
ε→0±

G(E + iε) =
∓i√

B2 − E2
=

∓i
B |sin φ| . (6)

The density of states (DOS) is

ϱ(E) = − 1
π

Im
{
G+(E)

}
=

1
π
√

B2 − E2
, (7)

which coincides, as it should, with the original DOS. ⊓;

1.11s. We have that

ψ (ϱ) =
∫

Ω
u (r)G (r, ϱ) dr +

∫

Ω
ψ (r)LrG (r, ϱ) dr

−
∫

Ω
G (r, ϱ)Lrψ (r) dr . (1)

Equation (1) is valid because the third term cancels the first since Lrψ (r) =
u (r) and the second term is equal to ψ (r) in view of the fact that LrG (r, ϱ) =
δ (r − ϱ). The last two terms in (1) can be transformed as follows, taking into
account that Lr = ∇r (f (r)∇r) + g (r):
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∫

Ω
[ψ (r)LrG (r, ϱ) − G (r, ϱ)Lrψ (r)] dr

=
∫

Ω
ψ (r)∇r [f (r)∇rG (r, ϱ)] dr +

∫

Ω
ψ (r) g (r)G (r, ϱ) dr

−
∫

Ω
G (r, ϱ)∇r [f (r)∇rψ (r)] dr −

∫

Ω
G (r, ϱ) g (r)ψ (r) dr ; (2)

the second and fourth terms on the rhs of (2) cancel each other; the remaining
two terms can be written as follows:

∫

Ω
{ψ (r)∇r [f (r)∇rG (r, ϱ)] − G (r, ϱ)∇r [f (r)∇rψ (r)]}dr

=
∫

Ω
∇r [ψ (r) f (r)∇rG (r, ϱ) − G (r, ϱ) f (r)∇rψ (r)] dr

=
∫

S
[ψ (r) f (r)∇rG (r, ϱ) − G (r, ϱ) f (r)∇rψ (r)] ·dS . (3)

Substituting (3) into (1) we have

ψ (ϱ) =
∫

Ω
G (r, ϱ) u (r) dr

+
∫

S
[ψ (r) f (r)∇rG (r, ϱ) − G (r, ϱ) f (r)∇rψ (r)] · dS . (4)

Thus, if we know that ψ (r) satisfies the BC ψ (r) = u1 (r) for r on the
bounding surface S, we can choose the BC for G (r, ϱ) = 0 on S. Then

ψ (ϱ) =
∫

Ω
G (r, ϱ)u (r) dr +

∫

S
u1 (r) f (r)∇rG (r, ϱ) · dS . (4a)

If, on the other hand, ∇rψ (r) is given for r on S [∇rψ = u2 (r)], we can
choose ∇rG (r, ϱ) = 0 on S; then we have

ψ (ϱ) =
∫

Ω
G (r, ϱ)u (r) dr −

∫

S
G (r, ϱ) f (r)u2 (r) · dS . (4b)

Equations (4a) and (4b) show that the unknown function ψ can be expressed
in terms of a volume and a surface integral involving the Green’s functions
and known functions. If u1∇rG or Gu2 in (4a) and (4b), respectively, is zero
on the surface S, then only the volume integral survives.

In the special case f (r) = 1 and g (r) = z, we have

ψ(ϱ) =
∫

Ω
G (r, ϱ)u (r) dr +

∫

S
u1 (r)∇rG (r, ϱ) · dS (4a′)

or
ψ(ϱ) =

∫

Ω
G (r, ϱ) u (r) dr −

∫

S
G (r, ϱ)u2 (r) · dS . (4b′)

Notice that, in this case, G (r, ϱ) = G (ϱ, r). ⊓;
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Chapter 2

2.2s. Taking into account that

ddk

(2π)d
=

dk1

2π
× · · ·× dkd

2π
(1)

and

exp
(
ik ·ϱ − ick2τ

)
= exp

[
i

d∑

ν=1

(
kνϱν − ck2

ντ
)
]

= exp
[
i
(
k1ϱ1 − ck2

1τ
)]

× · · ·× exp
[
i
(
kdϱd − ck2

dτ
)]

,

we obtain that

g (r, r′; τ) = −ic
∫ ∞

−∞

dk1

2π
exp

[
i
(
k1ϱ1 − ck2

1τ
)]

× · · ·×
∫ ∞

−∞

dkd

2π
exp

[
i
(
kdϱd − ck2

dτ
)]

. (2)

Each of the quantities

kνϱν − ck2
ντ = −cτ

(
k2

ν − ϱν

cτ
kν

)

can be transformed to a perfect square by adding and subtracting ϱ2
ν/4cτ .

Indeed
−cτ

(
k2

ν − ϱν

cτ
kν

)
= −

[(
kν − ϱν

2cτ

)2
− ϱ2

ν

4c2τ2

]
cτ . (3)

In each of the integrands in (2) we take into account (3), and we change
variables by the substitution xν = kν − (ϱν/2cτ). Then each integral becomes

∫ ∞

−∞

dxν

2π
exp

[
−icτx2

ν + i
ϱ2

ν

4cτ

]

=
1
2π

exp
(

i
ϱ2

ν

4cτ

) ∫ ∞

−∞
dxν exp

(
−icτx2

ν

)
=

√
1

4πicτ
exp

(
i
ϱ2

ν

4cτ

)
. (4)

Substituting (4) into (2) and taking into account that

exp
(

i
ϱ2
1

4cτ

)
× · · ·× exp

(
i
ϱ2

d

4cτ

)
= exp

[
i

4cτ

(
ϱ2
1 + · · · + ϱ2

d

)]

= exp
(

iϱ2

4cτ

)
,

we obtain (2.24). ⊓;
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Chapter 3

3.1s. Consider a point r far from the boundaries of the cube of volume Ld

within which the particle is confined. Eventually we shall let L → ∞. The
local DOS is according to (1.25)

ϱ (r, E) =
∑

n

δ (E − En)ψ∗
n (r − rn)ψn (r − rn) . (1)

We can separate the eigenstates ψn (r − rn) (located around rn) into two
groups: the first contains those centered away from the boundary by at least
a length of the order Lc; the second contains those centered close to the
boundary within a distance of the order Lc. The number, N1, of eigenstates
in the first group is proportional to (L − αLc)d → Ld as L → ∞, while the
number, N2, in the second group is proportional to LcLd−1. Thus, in the limit
L → ∞, N2/N1 ∼ Lc/L → 0. Since each of the eigenstates of the first group
is essentially confined within a volume Ld

c around rn, it is not in contact
with the boundary; thus the quantities ψ∗

nψn and En converge as L → ∞ to
nonzero finite values. The average separation between two consecutive levels,
δE, is of the order L−d, while the coefficients ψ∗

nψn in front of the δ functions
remain finite (for the first group), although most of them are quite small. Let
us integrate (1) from E = −∞ to E = E:

R (r, E) =
∑

n

θ (E − En)ψ∗
n (r − rn)ψn (r − rn) . (2)

The function R(r, E) has almost everywhere steps (since their average separa-
tion L−d → 0 as L → ∞) of finite size. Obviously, neither R(r, E) nor ϱ(r, E)
converges to a well-defined function at any point E as L → ∞. Neither of the
side limits

lim
s→0±

lim
L→∞

∑

n

s/π

(E − En)2 + s2
ψ∗

n (r − rn)ψn (r − rn) (3)

exists.
On the other hand, if the eigenstates were extended over the whole volume

Ld, the quantity ψnψn would be on the average equal to L−d, while the average
separation of two consecutive levels would be of the order of L−d. Thus, (2)
would look as in Fig. 1, where both b and b′ → 0 as L → ∞ with b′/b finite.
It is clear that taking the limits as in (3), a smooth, differentiable (except at
some isolated singular points) function will be produced. ⊓;

3.2s. From (3.13′) and (3.20) we have, for d = 1,

ψ(x, t) = i!
∫ ∞

−∞
g̃ (x, x′; t)ψ (x′, 0) dx

=
√

m

2πi!t

1√
δx(2π)1/4

×
∫ ∞

−∞
dx′ exp

[
i
m (x − x′)2

2!t
+ i

p0x′

! − x′2

4δx2

]
. (1)



408 Solutions of Selected Problems

E

R(r, E)

b′

b

Fig. 1. The number of states per unit volume for a finite system

The integral in (1) can be written as

exp
(

i
mx2

2!t

) ∫ ∞

−∞
dx′ exp

(
−a x′2 + bx′) , (2)

where
a =

1
4δx2

− im
2!t

(3a)

and
b = − im

!t
(x − v0t) , v0 =

p0

m
. (3b)

The quantity −a x′2 + bx′ can be written as

−a

(
x′ − b

2a

)2

+
b2

, 4a

and hence the integral in (2) is given by
∫ ∞

−∞
dx′ exp

(
−ax′2 + bx′) =

√
π

a
exp

(
b2

4a

)
, Re {a} > 0 . (4)

Substituting (4) into (2) and taking into account (3a) and (3b) we find

√
π

a
exp

(
i
mx2

2!t

)
exp

⎡

⎢⎢⎣−
m2

!2t2
(x − v0t)

2 1

4
(
− im

2!t

) [
1 + i

!t

2mδx2

]

⎤

⎥⎥⎦

=
√

π

a
exp

⎡

⎢⎢⎣
imx2

2!t
− im(x − v0t)2

2!t

(
1 + i

!t

2mδx2

)

⎤

⎥⎥⎦
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=
√

π

a
exp

⎡

⎢⎣
im
2!t

⎛

⎜⎝x2 − (x − v0t)2

1 + i
!t

2mδx2

⎞

⎟⎠

⎤

⎥⎦

=
√

π

a
exp

⎡

⎢⎢⎣
− x2

4δx2
+ i

mv0

! x − i
mv2

0t

2!
1 + i

!t

2mδx2

⎤

⎥⎥⎦ .

Substituting the last expression for the integral into (1) we obtain finally

ψ(x, t) =
(
2πδx2

)−1/4
[
1 +

i!t

2mδx2

]−1/2

× exp

⎛

⎜⎜⎝
− x2

4δx2
+ i

mv0

! x − i
mv2

0t

2!
1 + i

!t

2mδx2

⎞

⎟⎟⎠ . (5)

The absolute value of the square of ψ(x, t) is

|ψ(x, t)|2 =
1

δx(t)
√

2π
exp

[
− (x − v0t)

2

2 [δx(t)]2

]
, (6)

where
[δx(t)]2 = δx2 +

!2t2

4m2δx2
(7)

is the variance of x that increases with time as shown in (7).
Thus, the free particle with an initial average velocity v0 = p0/m and an

initial Gaussian probability distribution propagates with the same average ve-
locity v0 and preserves its Gaussian probability distribution, but centered now
at x(t) = v0t and with monotonically increasing width δx(t). It is worthwhile
to point out that the coefficient of t2 in (7) is inversely proportional to δx2.
Can you provide a physical explanation of this inverse dependence on δx2?

We define ψ̃(p, t) as the Fourier transform of ψ(x, t):

ψ̃(p, t) ≡
∫ ∞

−∞
dxe−ipx/!ψ(x, t) . (8)

It suffices to calculate ψ̃(p, t) for t = 0, since H |p⟩ = εp |p⟩, where εp = p2/2m,
and consequently

ψ̃(p, t) = ⟨p |ψ(t)⟩ =
〈
p

∣∣∣ eiHt/!
∣∣∣ ψ(0)

〉
= exp

(
−i

εpt

!

)
⟨p |ψ(0)⟩

= exp
(
−i

εpt

!

)
ψ̃(p, 0) . (9)
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To obtain ψ̃(p, 0), we use (4) and find

ψ̃(p, 0) =
√

2δx (2π)1/4 exp

[
− (p − p0)

2 δx2

!2

]
, (10a)

ψ̃(p, t) =
√

2δx (2π)1/4 exp
[
−δx2

!2
(p − p0)

2 − i
εpt

!

]
, (10b)

∣∣∣ψ̃(p, t)
∣∣∣
2

= 2δx
√

2π exp
[
−2δx2

!2
(p − p0)

2
]

. (11)

From the last relation, (11), we see that the variance δp2(t) is given by2

δp2(t) =
!2

4δx2
, (12)

i.e., it does not change with time.
Notice that at t = 0

δxδp =
!
2

, (13)

which means that the initial state, ψ(x, 0), is a minimum uncertainty wave
packet no matter what the value of δx is. However, because of (7), this prop-
erty is not preserved for t ̸= 0 since

δx(t)δp(t) =
!
2

√
1 +

!2t2

4m2δx4
. (14)

It is worthwhile to compare the increase with time of [δx(t)]2 for the diffusion
case (see the solution of Problem 2.3) and the Schrödinger case (7). Can you
provide a physical explanation for the differences? ⊓;

3.4s.

a. For E < ∆,
R(E)
Ωr

=
1

(2π)3
4π

3
k3 =

1
6π2

E3

!3c3
.

b. For E = ∆ + δE (δE ≪ ∆),

R(E)
Ωr

=
1

6π2

E3

!3c3
+

1
(2π)3

4π

3
(
k3
+ − k3

−
)

,

2 Keep in mind that the normalization condition for
˛̨
˛ eψ(p, t)

˛̨
˛
2

is

Z ∞

−∞

dp
2π!

˛̨
˛ eψ(p, t)

˛̨
˛
2

= 1 .
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where
(k± − k0)

2 =
2m0δE

!2

or

k± = k0 ±
√

2m0δE

!2

and

k3
± ≈ k3

0 ± 3k2
0

√
2m0δE

!2
.

Thus,

k3
+ − k3

− = 6k2
0

√
2m0δE

!2

and

R(E)
Ωr

=
1

6π2

E3

!3c3
+

6
6π2

k2
0

√
2m0

!2
(E − ∆)

=
1

6π2

E3

!3c3
+

k2
0

π2

√
2m0

!2
(E − ∆) .

c. For E = ∆′ − δE′ (0 < δE′ ≪ ∆′)

R(E)
Ωr

=
1

6π2
k3 − 1

6π2

(
k′
+

3 − k′
−

3
)

=
1

6π2

(
2mE

!2

)3/2

− 1
6π2

(
k′
+

3 − k′
−

3
)

,

∆′ − !2

2m′
0

(
k′
± − k1

)2 = ∆′ − δE′ ⇒ k′
± = k1 ±

√
2m′

0

!2
δE′ ,

k′3
± = k3

1 ± 3k2
1

√
2m′

0δE′

!2
⇒ k′3

+ − k′3
−

= 6k2
1

√
2m′

0δE′

!2
.

Hence,
R(E)
Ωr

=
1

6π2

(
2mE

!2

)3/2

− k2
1

π2

√
2m′

0

!2
(∆′ − E) .

d. For E > ∆′

R(E)
Ωr

=
1

6π2

(
2mE

!2

)3/2

.

Thus, the number of states per volume and the DOS per volume are as shown
schematically in Fig. 2a,b respectively. ⊓;
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Fig. 2. a The number of states per unit volume, R(E), and b the DOS per unit
volume for E(k) as in Fig. 3.3

Chapter 4

4.3s. According to (4.46) we have
〈
n

∣∣S† ∣∣m
〉

= δnm + 2πiδ (En − Em)
〈
φn

∣∣T− (En)
∣∣ φm

〉
(1)

and
⟨m |S | ℓ⟩ = δmℓ − 2πiδ (Eℓ − Em)

〈
φm

∣∣ T + (Eℓ)
∣∣ φℓ

〉
. (2)

Multiplying (1) by (2) and summing over m (summation over repeated indices
is implied) we have to show that
〈
n

∣∣S† ∣∣m
〉
⟨m |S | ℓ⟩ =

〈
n

∣∣S†S
∣∣ ℓ

〉
= δnℓ

= δnmδmℓ + 2πi
[
δmℓδ (En − Em)

〈
φn

∣∣T− (En)
∣∣ φm

〉

−δnmδ (Eℓ − Em)
〈
φm

∣∣T + (Eℓ)
∣∣φℓ

〉]

−(2πi)2δ (En − Em) δ (Eℓ − Em)
×

〈
φn

∣∣T− (En)
∣∣ φm

〉 〈
φm

∣∣T + (Eℓ)
∣∣ φℓ

〉
. (3)

Now,
∑

m δnmδmℓ = δnℓ, which cancels the δnℓ on the lhs of (3). Because of
the term δmℓ we have Em = Eℓ; because of δnm we have that Em = En;
furthermore, in the last term

δ (En − Em) δ (Eℓ − Em) = δ (Eℓ − En) δ (Em − En) .
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Hence (3) gives
〈
φn

∣∣ T + (En)
∣∣ φℓ

〉
−

〈
φn

∣∣T− (En)
∣∣ φℓ

〉

= −2πi
∑

m

δ (Em − En)
〈
φn

∣∣ T− (En)
∣∣ φm

〉 〈
φm

∣∣ T + (En)
∣∣ φℓ

〉
, (4)

which is (4.50).
If we start from the relation T = H1 + H1GH1, we have

T + − T− = −2πiH1δ (E −H)H1 . (5)

Choosing E = En and taking the ⟨φn|, |φℓ⟩ matrix element of (5) we have
〈
φn

∣∣ T + (En)
∣∣φℓ

〉
−

〈
φn

∣∣ T− (En)
∣∣ φℓ

〉

= −2πi ⟨φn | H1δ (En −H)H1 |φℓ⟩ . (6)

Introducing the unit operator
∑

m |ψ−
m⟩ ⟨ψ−

m|, we have for the rhs of (6)

−2πi
∑

m

〈
φn

∣∣H1δ (En −H)
∣∣ ψ−

m

〉 〈
ψ−

m

∣∣H1

∣∣φℓ

〉

= −2πi
∑

m

δ (En − Em)
〈
φn

∣∣H1

∣∣ψ−
m

〉 〈
ψ−

m

∣∣H1

∣∣ φℓ

〉

= −2πi
∑

m

δ (En − Em)
〈
φn

∣∣ T− (En)
∣∣ φm

〉 〈
φm

∣∣ T + (En)
∣∣ φℓ

〉
. (7)

Substituting in (6) we obtain (4.50). The last relation follows from (4.34). ⊓;

4.6s. Consider a particle of mass m acted upon by a d-dimensional potential
well of depth −V0, and radius a (d = 1, 2, 3). Assume that the ground state
is a smooth function of total linear extent L. Then, the kinetic energy, Ek, of
the particle is

Ek = c1
!2

2mL2
, (1)

where c1 is a numerical constant. The potential energy, Ep, is

Ep = −c2V0

( a

L

)d
, a < L , (2)

assuming that a < L. Hence the total energy, Et, is

Et = c1
!2

2mL2
− c2V0

ad

Ld
, a < L . (3)

By introducing the natural unit of kinetic energy, K0 = !2/2ma2, we have

Et

K0
= c1

a2

L2
− c2

V0

K0

ad

Ld
. (4)
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Assuming that V0 ≪ K0, we plot in Fig. 3 Et/K0 vs. L/a for d < 2 and d > 2.
We see from the plot that for d < 2 there is always a minimum at a finite
L/a ≫ 1 no matter how small the ratio V0/K0 is. On the other hand, for
d > 2 and for a very shallow potential well (V0 ≪ K0) there is no minimum
for L/a and hence no bound state unless c2V0/c1K0 becomes comparable to
unity. Actually, the critical value of V0/K0 is π2/4. (See Problem 4.7s; in that
problem, the critical dimension, d = 2, is also examined). ⊓;

-0.2

-0.1

0

0.1

0.2

0 2 4 6 8 10

L/a

Et/K0

d = 1

d = 3

Fig. 3. Plot of dimensionless energy, Et/K0, vs. linear extent, L/a, of wavefunction
for d-dimensional system (d = 1, 3)

4.7s.

1-dimensional case In Fig. 4 we plot the potential V (x) vs. x: The ground
state is an even function of x without nodes. Thus it is enough to consider
only positive values of x. For 0 ≤ x ≤ a, the solution is of the form

ψ(x) = A cos(λx), 0 ≤ x ≤ a , (1a)

while for a ≤ x
ψ(x) = Be−kx, a ≤ x . (1b)

Substituting in the Schrödinger equation we find that

λ2 =
2mV0

!2
− 2mEd

!2
, d = 1 , (2a)

k2 =
2mEd

!2
, d = 1 . (2b)
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−V0

V (x)

xa−a

−Ed

Fig. 4. A 1-d potential well

The continuity of ψ′(x)/ψ(x) at x = a gives

aλ tan(aλ) = ak , (3a)

or √
b − z tan

(√
b − z

)
=

√
z , (3b)

where b and z are the dimensionless quantities

z ≡ Ed

!2/2ma2
, d = 1 , (4a)

b ≡ V0

!2/2ma2
. (4b)

From (3b) it follows that

z → b2 or E1 → V 2
0

!2/2ma2
as V0 → 0 , (5a)

z → b − π2

4
or E1 → V0 −

π2!2

8ma2
as V0 → ∞ . (5b)

The decay length, 1/k, divided by the radius a is directly related to z:

1
ka

=
1√
z
→

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
b

=
!2/2ma2

V0
as V0 → 0 , (6a)

1√
b

=

√
!2/2ma2

V0
as V0 → ∞ . (6b)

2-dimensional case The general solution of the Schrödinger equation for
ϱ < a has the form [see (C.18–C.19b)]

An [Jn(λϱ) + bnYn(λϱ)]
(
einφ + cne−inφ

)
, ϱ < a , (7a)



416 Solutions of Selected Problems

where λ is given by (2a). For ϱ > a, the general solution, according to
(C.18–C.21), is of the form

Bn [Kn(kϱ) + b′nIn(kϱ)]
(
einφ + cne−inφ

)
, ϱ > a , (7b)

where k is given by (2b).
Since ψ(ϱ) is finite at the origin, we must exclude Yn(λϱ) by setting bn = 0.
Similarly, b′n = 0 since In(kϱ) blows up at infinity. Furthermore, since we
are looking for the ground state, we must take n = 0 (an n ̸= 0 adds to
the Hamiltonian a positive term proportional to !2n2/2mϱ2).
The continuity of the solution and its derivative at ϱ = a gives

λJ ′
0(λa)

J0(λa)
=

kK ′
0(ka)

K0(ka)
, (8)

where the prime denotes differentiation with respect to λa or ka, respec-
tively. In the limit b ≡ V0/

(
!2/2ma2

)
→ 0, we have that both λa and

ka → 0, and consequently

J0(λa) → 1 − 1
4
(λa)2 + O

(
λ4a4

)
, (9a)

J ′
0(λa) → −1

2
λa + O

(
λ3a3

)
, (9b)

K0(ka) → −
[
ln

(
ka

2

)
+ γ

] [
1 +

(ka)2

4

]

+
(ka)2

4
+ O

(
ln

(
ka

2

)
k4a4

)
(9c)

K ′
0(ka) → − 1

ka
+ O(ka ln(ka)) . (9d)

Thus (8) in the limit b → 0 becomes

−λ2a

2
= − 1/a

− ln
(

eγ

2
ka

) as b → 0 (10)

or
ln

(
eγ

2
ka

)
= − 2

λ2a2
≃ −2

b

or
ka =

2
eγ

e−2/b . (11)

Taking into account (2b) we find

E2

!2/2ma2
=

4
e2γ

exp
[
− 4!2

2ma2V0

]
=

4
e2γ

exp
[
− 2!2

ma2V0

]
,
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or, by introducing the area, Ω0 = πa2, of the potential well,

E2 =
2π

e2γ

!2

mΩ0
exp

[
− 2π!2

V0mΩ0

]
, b → 0 . (12)

The dimensionless decay length, 1/ka, is given by inverting (11):

1
ka

=
eγ

2
e2/b =

eγ

2
exp

[
π!2

V0mΩ0

]
, b → 0 . (13)

Notice the nonanalytic behavior of E2 and (ka)−1 as b = V0/
(
!2/

2ma2
)
→ 0.

3-dimensional case Taking into account that the ground state corresponds
to ℓ = 0, we have from (C.17a)

du2

dr2
− 2m

!2
(V − E)u = 0 (14)

with BC u = 0 for r = 0 [because u(r)/r must be finite at r = 0] and
u → 0 as r → ∞.
By introducing λ2 and k2 from (2a) and (2b), respectively, we obtain for
u(r)

u(r) =
{

A sin(λr) , r < a , (15a)
Be−kr , r > a . (15b)

The continuity of u(r) and du/dr at r = a gives

aλ cos(aλ)
sin(aλ)

= −ka (16)

or √
b − z cot

√
b − z = −

√
z . (16′)

For (16′) to have any solution, the quantity cot
√

b − z must be negative,
which means that

√
b − z must exceed π/2. Thus b = π/2 is the critical

value for the first bound state to appear; then
√

b − z → (π/2)+ as
√

z →
0+. Hence, in order to have a bound state, the following must hold:

b > bc =
π2

4
(17)

or
V0 > V0c =

π2

8
!2

ma2
. (17′)

We write b = bc + δb. As δb → 0 we have
√

b − z →
√

bc + δb − z →
√

bc + δb →
√

bc +
δb

2
√

bc
, (18)

cot
√

b − z → − δb

2
√

bc
. (19)
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In (18) we took into account that z ∼ δb2 as δb → 0. In view of (18) and
(19), (16′) becomes in the limit δb → 0

√
z =

δb

2
, δb → 0+ (20a)

or

z =
1
4

(b − bc)2 =
1
4

(
b − π2

4

)2

, b →
(

π2

4

)+

(20b)

or
E3 =

1
4!2/2ma2

(V0 − V0c)2 , V0 → V +
0c . (20c)

The dimensionless decay length, (ka)−1, is obtained by inverting (20a):

1
ka

=
2

b − (π2/4)
=

!2/ma2

V0 − V0c
. (21)

In the opposite limit of V0 → ∞ we obtain

E3 = V0 −
π2!2

2ma2
= V0 − 4V0c, V0 → ∞ , (22)

and (ka)−1 → 0 as V0 → ∞.

In Fig. 5 we plot z as a function of b2, according to (16′), (8), and (3b) for
3-d, 2-d, and 1-d, respectively (λa =

√
b − z and ka =

√
z). ⊓;

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6

z

b2

1-d

2-d

3-d

Fig. 5. Plot of dimensionless binding energy z ≡ Ed/K0, where K0 = !2/2ma2, vs.
b2, where b ≡ V0/K0 and d = 1, 2, 3
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Chapter 5

5.1s. Since ϱ1ϱ2 = 1 we can write ϱ1 = r1eiθ and ϱ2 = r2e−iθ with r1r2 = 1,
where r1 = |ϱ1| and r2 = |ϱ2|. The equality |ϱ1| = |ϱ2| implies that ϱ1 + ϱ2 =
2 cos θ. But ϱ1 + ϱ2 = −2x. Hence |ϱ1| = |ϱ2| is equivalent to −x = cos θ,
or −1 ≤ x ≤ 1. Given the definition of

√
x2 − 1, we have that the sign of

Im {ϱ2} = −r2 sin θ is the same as the sign of −Im {x}; but the sign of −Im {x}
is the same as the sign of Im {ϱ1}+Im {ϱ2} = r1 sin θ−r2 sin θ = (r1 − r2) sin θ,
since ϱ1 + ϱ2 = −2x. Hence, the sign of (r1 − r2) sin θ is the same as the sign
of −r2 sin θ. For sin θ ̸= 0 this implies that r2 > r1. ⊓;

5.2s. We know that

E (k) = ε0 + 2V (cosφ1 + cosφ2) = ε0 − 2 |V | (cosφ1 + cosφ2) , (1)

where φ1 = kxa, φ2 = kya.

limG (R; z) = G+ (R; E) = lim
a2

(2π)2

∫

1BZ
d2k

eik ·R

z − E (k)
, (2)

as Im {z} → 0+, where R = ma = m1ai + m2aj.
Equation (2) can be rewritten as follows:

G+ (R; E) =
−ia2

(2π)2

∫ ∞

0
dt

∫
d2k exp {i [k ·R + (E − E(k)) t]} . (3)

We shall follow the method of stationary phase for the evaluation of integral
(3) for R ≫ a. For this purpose we expand the exponent in (3) up to the
second order around the points k0 and t0 to be determined shortly:

k = k0 + q, t = t0 + τ ; (4)

we have then

A ≡ k ·R + (E − E (k)) t

= k0 ·R + q ·R + (E − E0) t0 + (E − E0) τ

− ∂E

∂k

∣∣∣∣
0

· qt0 −
∂E

∂k

∣∣∣∣
0

· qτ − 1
2

∑

ij

∂2E

∂ki∂kj

∣∣∣∣
0

qiqjt0 . (5)

To get rid of the first-order terms (so as to make the phase stationary), we
choose

∂E

∂k

∣∣∣∣
0

t0 = R , (6a)

E0 ≡ E (k0) = E . (6b)

Then
A = k0 ·R − ∂E

∂k

∣∣∣∣
0

· qτ − 1
2

∑

ij

∂2E

∂ki∂kj

∣∣∣∣
0

qiqjt0 . (7)
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Using (1) we have

∂E

∂kx

∣∣∣∣
0

≡ β1 = 2 |V | a sin (k0xa) , (8a)

∂E

∂ky

∣∣∣∣
0

≡ β2 = 2 |V | a sin (k0ya) , (8b)

∂2E

∂k2
x

∣∣∣∣
0

≡ α1 = 2 |V | a2 cos (k0xa) , (8c)

∂2E

∂k2
y

∣∣∣∣
0

≡ α2 = 2 |V | a2 cos (k0ya) . (8d)

Then

A = k0 ·R −
2∑

i=1

βiqiτ − 1
2

2∑

i=1

αiq
2
i t0 . (9)

We substitute (9) into (3) and perform the integrations first over qi (i = 1, 2)
and then over τ , keeping in mind that only small values of qi and τ contribute,
since for larger values the strong phase oscillations (due to the very large
value of R) would render the integral zero. Thus we can extend the limits of
integrations to ∓∞ without appreciable error:

Ii ≡
∫ ∞

−∞
dqi exp

[
−i

(
∑

i

βiqiτ +
1
2

∑

i

αiq
2
i t0

)]

=
√

π

|αi| t0
(1 ± i) exp

[
i
β2

i τ2

2t0αi

]
; (10)

the upper sign is for negative αi and the lower for positive αi. We define

λ ≡ β2
1

2t0α1
+

β2
2

2t0α2
=

β2
1α2 + β2

2α1

2t0α1α2
. (11)

Substituting (10) and (11) into (3) we find

G+ (R; E) =
−ia2

(2π)2

∫ ∞

−∞
dτ

π√
|α1α2|t0

(1 ± i)(1 ± i)eiλt2eik0 ·R

=
−ia2

4π

(1 ± i)(1 ± i)√
|α1α2|t0

∫ ∞

−∞
dτeiλτ2

eik ·R

=
−i(1 ± i)(1 ± i)(1 ± i)a2√π

4π
√

2 |λ|
√
|α1α2|t0

eik ·R ; (12)

in the last (1 ± i) factor the upper sign is for positive λ and the lower for
negative λ. Substituting (6a) and (11) into (12) we have

G+ (R; E) =
−i(1 ± i)(1 ± i)(1 ± i)a2

4
√

π

(
β2

1 + β2
2

)1/4

√
|β2

1α2 + β2
2α1|

eik0 ·R

√
R

. (13)
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For α1 > 0 and α2 > 0 the first fraction is equal to −(1 + i)a2/2
√

π, while
for a1 < 0 and a2 < 0 the first fraction is equal to (1− i)a2/2

√
π. Finally, for

α1α2 < 0 the first fraction is equal to (±1− i)a2/2
√

π with the upper sign for
λ > 0 and the lower for λ < 0. The second fraction becomes [by employing
(8a–8d)]:

√
2 |V | a

(
sin2 φ01 + sin2 φ02

)1/4

√
2 |V |2 |V | a2

√∣∣sin2 φ01 cosφ02 + sin2 φ02 cosφ01

∣∣

=
√

a
(
sin2 φ01 + sin2 φ02

)1/4

2 |V | a2
√
|(cosφ01 + cosφ02) (1 − cosφ01 cosφ02)|

=
√

a
(
sin2 φ01 + sin2 φ02

)1/4

2 |V | a2
∣∣∣ε0−E

2|V | (1 − cosφ01 cosφ02)
∣∣∣
1/2

. (14)

Substituting in (13) we have finally

G+ (R; E) =
(±1 − i)

2
√

π

√
a

(
sin2 φ01 + sin2 φ02

)1/4

2 |V |
∣∣∣ε0−E

2|V | (1 − cosφ01 cosφ02)
∣∣∣
1/2

eik0 ·R

√
R

. (15)

Equation (15) must be reduced to the free electron Green’s function, as R →
∞, times a2 by taking the limits ε0 = 4 |V |, |E| / |V | → 0, φ01, φ02 → 0, and
|V | = !2/2ma2. We have then (taking into account that, in these limits, k0 is
parallel to R)

G+ (R; E) =
−(1 + i)

2
√

π

√
a

(
k2
0a

2
)1/4

(!2/ma2)
√

2
√

k2
0a

2/2
eik0R

√
R

=
−(1 + i)

2
√

π

ma2

!2

eik0R

√
k0R

. (16)

Now the free electron G+(R; E) in the limit R → ∞ is

G+(R; E) = lim
R→∞

−im
2!2

H(1)
0 (k0R) , E > 0 ,

=
−im
2!2

√
2

k0Rπ
eik0Re−iπ/4

=
−im(1 − i)√

22!2

√
2

πk0R
eik0R =

−(1 + i)
2
√

π

m

!2

eik0R

√
k0R

. (17)

⊓;
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5.5s. The position vectors of the nearest-neighbor sites in a bcc lattice are:

ℓ1 =
a

2
(i + j + k) = −ℓ

′

1 ,

ℓ2 =
a

2
(−i + j + k) = −ℓ

′

2 ,

ℓ3 =
a

2
(i − j + k) = −ℓ

′

3 ,

ℓ4 =
a

2
(i + j − k) = −ℓ

′

4 , (1)

where a is the linear size of the cubic unit cell (which for bcc has a volume
twice as big as the primitive cell). Substituting (1) into (5.15) we find

E (k) = ε0 + 2V [cos (φ1 + φ2 + φ3) + cos (−φ1 + φ2 + φ3)
+ cos (φ1 − φ2 + φ3) + cos (φ1 + φ2 − φ3)]

= ε0 + 8V cosφ1 cosφ2 cosφ3 , φi =
kia

2
, i = x, y, z , (2)

∂E

∂φi
= −8V sin φi cosφj cosφk . (3)

In the spirit of Fig. 5.3, we plot E (k) as k moves along straight segments
of the 1BZ shown in the insert of Fig. 6.

Thus, the minimum, Em, of E (k) is at the point φ1 = φ2 = φ3 = 0 and
is equal to ε0 − 8 |V |. The maximum, Em = ε0 + 8 |V |, is at point H , φ1 = 0,

ε0 − 8|V |

ε0

ε0 + 8|V |

ΓNHPNΓ

E
(k

)

ε0 − 8|V |

ε0

ε0 + 8|V |

ΓNHPNΓ

E
(k

)

ε0 − 8|V |

ε0

ε0 + 8|V |

ΓNHPNΓ

E
(k

)

ε0 − 8|V |

ε0

ε0 + 8|V |

ΓNHPNΓ

E
(k

)

ε0 − 8|V |

ε0

ε0 + 8|V |
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E
(k

)

ε0 − 8|V |
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Σ

N: 2
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Fig. 6. E vs. k for the 3-d bcc tight-binding case with nearest-neighbor coupling
V (< 0), as k varies along the straight-line segments of the first Brillouin zone (1BZ)
for bcc
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φ2 = π, φ3 = 0 (plus two others resulting from cyclic permutations). Along
the line segment PNP′ (φ1 = π/2, φ2 = π/2, −π/2 ≤ φ3 ≤ π/2) (plus 11 more
resulting from cyclic permutations and changing the signs to ±π/2) E(k) = ε0

and ∂E/∂φi = 0 for all i = x, y, z. Hence the DOS must exhibit a logarithmic
singularity at E = ε0 and be of the form depicted in Fig. 7.

The position vectors for nearest neighbors in an fcc lattice are:

ℓ1± =
a

2
(i ± j) = −ℓ′1± ,

ℓ2± =
a

2
(j ± k) = −ℓ′2± ,

ℓ3± =
a

2
(k ± i) = −ℓ′3± .

Substituting (4) into (5.15) we find after some algebra

E = ε0 − 4 |V | (cosφ1 cosφ2 + cosφ2 cosφ3 + cosφ3 cosφ1) , (4)

where φi = kia/2 and a is the linear size of the cubic unit cell (which for fcc
has a volume four times the volume of the primitive cell).

In Fig. 8 we plot E vs. k in the spirit of Fig. 5.3.
Thus the minimum value, Em = ε0 − 12 |V |, of E (k) is obtained at the

point Γ (φ1 = φ2 = φ3 = 0) and the maximum, EM , along line segment XW
(−π/2 ≤ φ1 ≤ π/2, φ2 = π, φ3 = 0) and five more resulting from symmetry
considerations. The derivatives

∂E

∂φi
= 4 |V | sin φi (cosφj + cosφk) , i ̸= j ̸= k ̸= i , for all i

indeed vanish along XW (and symmetric lines) as well as on the isolated point
L (and points symmetric to it). Point L is a saddle point with two positive As

ε0ε0 − 8 |V | ε0 + 8 |V |

E

DOS

Fig. 7. Schematic plot of DOS for bcc TBM (see text)
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ε0 − 12|V |
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Fig. 8. E vs. k for 3-d fcc tight-binding case with nearest-neighbor coupling V (< 0),
as k varies along straight-line segments of first Brillouin zone (1BZ) for fcc

along directions perpendicular to (1, 1, 1) and one negative along the direction
(1, 1, 1). Thus the DOS for the fcc resembles that in the sketch in Fig. 9. ⊓;

5.7s. Let us call G1, Ḡ1, and Ḡ2 the quantities G(1, 1), G(1, 1[2]), and
G(2, 2[1]), respectively. Combining (F.10) and (F.11) we have

1
G1

= z − ε1 − ∆ = z − ε1 − (K + 1)V 2Ḡ2 . (1)

From (F.12) and (F.13) we find

fcc

Eε0 + 4 |V |ε0 − 12 |V | ε0

DOS

Fig. 9. Schematic plot of DOS for fcc TBM (see text)
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1
Ḡ1

= z − ε1 − KV 2Ḡ2 . (2)

We multiply (1) by K and (2) by K + 1, and we subtract

K + 1
Ḡ1

− K

G1
= (K + 1) (z − ε1) − K (z − ε1) = z − ε1 ,

or
Ḡ1 =

K + 1
z − ε1 + KG−1

1

. (3)

⊓;

Chapter 6

6.3s.
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Fig. 10. Plot of DOS for simple cubic TBM at site of impurity

⊓;
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6.4s. We start from (6.25). The quantity
〈
n

∣∣G+
0

∣∣ ℓ
〉
, according to (5.28), is

given by 〈
n

∣∣G+
0

∣∣ ℓ
〉

= G+
0 (ℓ, ℓ)ϱ|ℓ|1 , (1)

where

ϱ1 = −z − ε0

B
+ i

√

1 −
(

z − ε0

B

)2

= cos(ka) + i
√

1 − cos2(ka)
= cos(ka) + i sin(ka) = eik (2)

since
z = E(k) = ε0 − B cos(ka) . (3)

We then have, by substituting (2) into (6.25),

⟨n|ψE) = ⟨n|k) +
εG+(ℓ, ℓ; E)eik|ℓ−n|eikℓ

√
N

[
1 − εG+

0 (ℓ, ℓ; E)
] . (4)

• For n > ℓ, i.e., for transmission, we have

√
N ⟨n|ψE) = eikn +

εG+
0 (ℓ, ℓ; E)

1 − εG+
0 (ℓ, ℓ; E)

eikn

=
1

1 − εG+
0 (ℓ, ℓ; E)

eikn, n > ℓ . (5)

• For n < ℓ, i.e., for reflection, we have

√
N ⟨n|ψE) = eikn +

εG+
0 (ℓ, ℓ; E)e2ikℓe−ikn

1 − εG+
0 (ℓ, ℓ; E)

= eikn + e−ikne2ikℓ εG+
0 (ℓ, ℓ; E)

1 − εG+
0 (ℓ, ℓ; E)

(6)

=
1

e−ikℓ

×
[
eik(n−ℓ) + e−ik(n−ℓ) εG+

0 (ℓ, ℓ; E)
1 − εG+

0 (ℓ, ℓ; E)

]
, n < ℓ . (7)

Thus
t =

1
1 − εG+

0 (ℓ, ℓ; E)
(8)

and

r =
εG+

0 (ℓ, ℓ; E)
1 − εG+

0 (ℓ, ℓ; E)
. (9)

⊓;
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Fig. 11. Plot of the bound states eigenenergy(ies) vs. the local perturbation for
a two-band (shaded areas) model shown in Fig. 5.12

6.5s. Schematic plot of the bound-state eigenenergies, Ep, vs. the local
perturbation |1⟩ ε ⟨1| for the double spacing periodic Cayley tree with K = 3,
ε1 = −ε2 = B/2. The upper and lower edges of the two subbands are also
shown. Notice that for ε < −0.539B there are two bound eigenenergies (one
in the gap and the other below the lower band); for 0 < ε < 0.206B there is
no bound state; finally, for 0.206B < ε there is only one bound state above
the upper band. ⊓;

6.6s. We introduce the center of mass, K, and the relative, k, by the relations
K = k1 + k2 and k = (k1 − k2) /2 so that

k1 =
1
2
K + k , (1a)

k2 =
1
2
K − k . (1b)

We have the inequalities

k2
1 =

K2

4
+ k2 + K ·k > k2

F , (2a)

k2
2 =

K2

4
+ k2 − K ·k > k2

F . (2b)

Furthermore,

E =
!2

2m

(
k2
1 + k2

2

)
=

!2

m

(
K2

4
+ k2

)
(3)

or
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k =

√
mE

!2
− K2

4
. (4)

From (2a) and (2b) in combination with (3) we have

−
(

mE

!2
− k2

F

)
< K ·k <

mE

!2
− k2

F , (5)

which, in view of (4), becomes

|cos θ| <
mE
!2 − k2

F

K
√

mE
!2 − K2

4

. (6)

The DOS per unit volume, ϱ(E; K), equals (2π)−3dΩk/dE, where dΩk is the
elementary available volume in phase space between E and E + dE. Thus

ϱ(E; K) =
1

(2π)3

∫
dφdθ sin θk2dk

δ

(
k −

√
mE
!2 − K2

4

)

dE
× θ (E − 2EF ) , (7)

where, according to (3), dE/dk = 2!2k/m. If we denote by A the maximum
value of |cos θ| [taking into account (6)] and perform the integrations in (7),
we find

ϱ0(E; K) =
A

4π2

m

!2

√
mE

!2
− K2

4
θ (E − 2EF ) , (8)

where

A = min

⎡

⎣1,
mE
!2 − k2

F

K
√

mE
!2 − K2

4

⎤

⎦ . (8′)

For K = 0 we obtain

ϱ0(E; 0) =
1

4π2

( m

!2

)3/2 √
Eθ (E − 2EF )

=
1

2
√

2π2

( m

!2

)3/2
√

E

2
θ (E − 2EF )

=
1
2
ϱ

(
E

2

)
θ (E − 2EF ) , (9)

where ϱ(E) is the DOS for a single free particle of mass m. For K ̸= 0,
E → 2EF , and taking into account (3), we have for the quantity A

A → E − 2EF

!2Kk/m
,

and consequently

ϱ0(E; K) → 1
4π2

( m

!2

)2 E − 2EF

K
θ (E − 2EF ) , K ̸= 0, E → 2EF .

(10)
⊓;
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6.7s. The DOS is given by

ϱ0(E) = ϱF
1
2

[
1 − 2f

(
E

2

)]
=

ϱF

2
eβ(E/2−EF ) − 1
eβ(E/2−EF ) + 1

=
ϱF

2
tanhx , (1)

where x ≡ β
2

(
E
2 − EF

)
and dE = 4

β dx and the integration limits are x =
−β!ωD/2 and β!ωD/2. Thus we have for G0(E)

G0(z) =
∫ β!ωD/2

−β!ωD/2
dx

ϱF

2
4
β

tanhx

z − (4x/β) − 2EF
, (2)

and the value of G0(z) for z = 2EF is

G0 (2EF ) = −ϱF

2

∫ β!ωD/2

−β!ωD/2

dx tanhx

x
= −ϱF

∫ β!ωD/2

0

dx tanhx

x
. (3)

Integrating by parts we have

G0 (2EF ) = −ϱF

(
lnx tanh x|β!ωD/2

0 −
∫ β!ωD/2

0
dx

lnx

cosh2 x

)

= −ϱF

(
ln

β!ωD

2
tanh

β!ωD

2
−

∫ β!ωD/2

0

dx lnx

cosh2 x

)
. (4)

In the limit β!ωD ≫ 2 or kBT ≪ !ωD/2 we have approximately

G0 (2EF ) = −ϱF

(
ln

β!ωD

2
−

∫ ∞

0
dx

lnx

cosh2 x

)
. (5)

The integral in (5) equals lnπ−ln 4−γ, where γ = 0.577215 . . . is the so-called
Euler’s constant. We can write (5) as follows:

G0 (2EF ) = −ϱF ln
2eγ!ωD

πkBT
, kBT ≪ !ωD . (6)

⊓;

Chapter 7

7.1s. Following a procedure similar to that of Problem 6.4s (and taking
into account that ϱ1 = eika = eiφ) we obtain the following expressions for the
transmission, t, and the reflection, r, amplitudes:

t = 1 + G0Tf , (1a)
r = G0Tb , (1b)
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where G0 is the diagonal matrix element of the unperturbed Green’s function
G0 = G0(ℓ, ℓ), and Tf and Tb are the forward and backward matrix elements
of T , respectively, given by

Tf = Tℓℓ + Tmm + Tℓmeika + Tmℓe−ika , (2a)

Tb = e2ikaℓTℓℓ + e2ikamTmm + eika(ℓ+m)Tℓm + eika(ℓ+m)Tmℓ . (2b)

More generally, if we have impurities at the sites ℓ1,. . . ,ℓp (which are not
necessarily consecutive), the expressions for Tf and Tb are

Tf =
∑

ℓiℓj

exp [ika (ℓi − ℓj)] ⟨ℓj |T | ℓi⟩ , (3a)

Tb =
∑

ℓiℓj

exp [ika (ℓi + ℓj)] ⟨ℓj |T | ℓi⟩ . (3b)

The matrix elements Tℓℓ, Tmm, Tℓm, Tmℓ in (2a) and (2b) are given by em-
ploying (7.12) and (7.13). The result is the following:

Tf = fmℓ [tℓ + tm + 2tℓtmG0(ℓ, m) cos(ka)] (4a)
= fmℓ

[
tℓ + tm + 2tℓtmG0eika cos(ka)

]
, (4b)

where G0 ≡ Go(ℓ, ℓ) and

fmℓ =
[
1 − tℓtmG2

0e
2ika

]−1
. (5)

The reader may calculate numerically and plot |t|2 = |1 + G0Tf |2 vs. x ≡
E/B = − cos(ka) for various values of ε and ε′ (especially for those close to
the boundaries in Fig. 7.3a). ⊓;

7.2s. In matrix notation the unperturbed Hamiltonian, H0, satisfies the
relations

⟨ℓ |H0 | ℓ⟩ =
∣∣∣∣
εs 0
0 εp

∣∣∣∣ , (1)

⟨ℓ |H0 | ℓ ± 1⟩ =
∣∣∣∣
Vss ±Vsp

∓Vsp Vpp

∣∣∣∣ =
∣∣∣∣
V2 ±V ′′

2

∓V ′′
2 V ′

2

∣∣∣∣ . (2)

We define the matrix state |k) = [|ks) , |kp)] by

|k) =
1√
N

∑

ℓ

eikℓa |ℓ⟩ . (3)

The |k) states are orthonormal in the sense that

(k|k′) = δkk′1 , (4)

where 1 is the 2 × 2 unit matrix.
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Let us calculate the matrix elements of H0 in the |k) basis

(k| H0 |k′) =
1
N

∑

ℓm

eik′ma−ikℓa ⟨ℓ | H0 |m⟩ =

=
1
N

∑

m

[
ei(k′−k)ma

∣∣∣∣
εs 0
0 εp

∣∣∣∣ + ei(k′−k)mae−ika

∣∣∣∣
V2 −V ′′

2

V ′′
2 V ′

2

∣∣∣∣

+ ei(k′−k)maeika

∣∣∣∣
V2 V ′′

2

−V ′′
2 V ′

2

∣∣∣∣

]
,

or (taking into account that
∑

m ei(k′−k)ma = Nδkk′ )

(k| H0 |k′) = δkk′

∣∣∣∣
εs + 2V2 cos(ka) 2iV ′′

2 sin(ka)
−2iV ′′

2 sin(ka) εp + 2V ′
2 cos(ka)

∣∣∣∣ . (5)

Now the matrix elements of the Green’s function G0 in the initial {|ℓ⟩} basis
is

〈
ℓ
∣∣ (z −H0)−1

∣∣ m
〉

=
∑

kk′

⟨ℓ|k) (k| (z −H0)−1 |k′) (k′|m⟩

=
1
N

∑

k

eik(ℓ−m)a [z1− E2(k)]−1 , (6)

where E2(k) is the matrix in (5) and 1 is the unit 2× 2 matrix. Thus we have
to find the inverse of the matrix

z1− E2(k) =
∣∣∣∣
z − εs − 2V2 cos(ka) −2iV ′′

2 sin(ka)
2iV ′′

2 sin(ka) z − εp − 2V ′
2 cos(ka)

∣∣∣∣ . (7)

We have

[z1− E2(k)]−1 =
1

D(k)

∣∣∣∣
z − εp − 2V ′

2 cosφ 2iV ′′
2 sin φ

−2iV ′′
2 sinφ z − εs − 2V2 cosφ

∣∣∣∣ , (8)

where φ = ka and

D(k) = (z − εs − 2V2 cosφ) (z − εp − 2V ′
2 cosφ) − 4V ′′

2
2 sin2 φ .

The summation over k from −π/a to π/a and the division by N would be
transformed to an integration over φ from −π to π (over 2π). The off-diagonal
matrix elements in (8) are odd functions of k or φ, and consequently the ℓ = m
matrix element would be diagonal:

(ℓ| (z −H0)−1 |ℓ) =
∣∣∣∣
G0ss(z) 0
0 G0pp(z)

∣∣∣∣ , (9)

where

G0ss(z) =
∫ π

−π

dφ

2π

z − εp − 2V ′
2 cosφ

D(φ)
, (9a)

G0pp(z) =
∫ π

−π

dφ

2π

z − εs − 2V2 cosφ

D(φ)
. (9b)
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The perturbing Hamiltonian corresponding to the impurity at the n-site,
|n⟩ ε′ ⟨n|, where ε′ is a 2 × 2 diagonal matrix with ε′s and ε′p, shall modify
the Green’s function as in (6.8) and (6.10):

G(ℓ, m) − G0(ℓ, m) = G0(ℓ, n)ε′ [1 − G0(n, n)ε′]−1
G0(n, m)

= G0(ℓ, n) [1 − ε′G0(n, n)]−1
ε′G0(n, m) , (10)

where G0(n, n) is a 2× 2 matrix given by (9), (9a), and (9b). Since in general
both ε′ and G0(ℓ, m) are matrices, the ordering is important [not in the present
case since the matrices ε′ and G0(n, n) are both diagonal]. We have for them

[1 − ε′G0(n, n)]−1 = [1 − G0(n, n)ε′]−1

=

∣∣∣∣∣
[1 − ε′sG0ss]

−1 0
0

[
1 − ε′pG0pp

]−1

∣∣∣∣∣ . (11)

Thus, the bound states would appear as solutions to the equations

1
ε′s

= G0ss(E) , (12a)

1
ε′p

= G0pp(E) . (12b)

In particular, for a vacancy (for which ε′s = ε′p = ∞) we have

G0ss(E) = 0 , (13a)
G0pp(E) = 0 . (13b)

The reader may calculate G0ss(E) and G0pp(E) numerically for εs, εp, V2, V ′
2 ,

and V ′′
2 appropriate for Si as given in Problem 5.6. He can compare his result

with those of a more realistic model for Si in [52]. ⊓;

7.5s. We introduce the dimensionless quantities z = E/B, σ = Σ+/B,
a = ε/B, and g = BG+ = BG+

0 (E − Σ+). Then (7.59a) becomes

σ =
1
2

[
a

1 − (a − σ)g
− a

1 + (a + σ)g

]
, (1)

where for the Hubbard Green’s function we have

g = 2
(
z − σ −

√
(z − σ)2 − 1

)
. (2)

Keep in mind that Im {z} → 0+, Im {σ} ≤ 0, Im {g} ≤ 0.
Iterate (1) for each value of a and z until you obtain convergence, which

is facilitated by starting with a nonnegligible value of Im {z} and large values
of Re {z} (Re {z} = 1 + a). Sometimes, convergence is accelerated if, in each
step n, you employ as a starting value of σ half the sum of the input plus the
output value of σ.
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The results are shown in Fig. 12. Note that as ε is increasing, a deep
develops at the center of the band that becomes deeper and deeper, and
eventually the band splits into two subbands separated by a gap. ⊓;

7.6s. The CPA obtains Σ from (7.59a), which can be recast as

Σ(E) =
∫

dεp(ε)
ε

1 − (ε − Σ)G
, G = ⟨n |G0 (E − Σ) |n⟩ . (1)

We shall examine the case of weak disorder, i.e., (w/ |V |) ≤ 1, and we shall
distinguish two subcases (a) |ε| ≤ w, (b) |ε| ≫ w, where w is the standard
deviation of the Gaussian probability function, p(ε).

In subcase (a) we can expand the denominator in (1) in powers of (ε − Σ)G
and keep terms up to third order. We find

Σ ≃ w2G −
(
2w4 − µ4

)
G3 + O

(
w6

)
, (2)

where µ4 ≡
〈
ε4

〉
= 3w4.

In subcase (b), the main contribution to the integral in (1) comes from
the pole of the denominator. Thus

Σ ≃ −i
π

G2
0(E)

p
(
G−1

0

)
, (3)

since |Σ| ≪ |ε| in this case. Hence, in subcase (b) the DOS per unit volume is

ϱ(E) =
1
ad

G′
0(E)

G2
0(E)

p
(
G−1

0 (E)
)

. (4)
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Fig. 12. Density of states for a random binary alloy AxB1−x (x = 0.5) with εA +
εB = 0 and εA − εB = 2ε. The unperturbed bandwidth is 2B; B has been taken as
the unit of energy
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The reader may verify, by using Table 5.2, that for a simple cubic lattice

G−2
0 (E) ≃ 18.6V 2 − 15.76 |V |E , 3V ≤ E ≤ 0.1V , (5)

where E = 0 coincides with the unperturbed lower band edge, and V < 0.
Substituting (5) into (4) we obtain the DOS at the tail, which over the

range shown in (5) is exponential in E

ϱtail ∼ exp
(
− |E|

E0

)
, E0 =

w2

7.88 |V | . (6)

This exponential tailing in the DOS leads to exponential subgap optical ab-
sorption in crystalline and amorphous semiconductors (Urbach tails) with
an E0 of the form E0 = E0s + E0T , where E0s is due to static disorder and
E0T ∼ kBT is due to thermal disorder.

Returning now to subcase (a) and taking into account that G0(E) =
G0(0) + α

√
−E as E → 0− with α = 1/4π |V |3/2 and G0(0) = −0.2527/ |V |,

we have from (2)

Σ = w2G0(0) + αw2
√

Σ − E + w4G3
0(0) . (7)

This is a quadratic equation for Σ. The CPA band “edge,” ECPA, is deter-
mined when Im {Σ} = 0, where Σ is the solution of (7). This condition leads
to

ECPA = G0(0)w2 +
[
α2

4
+ G3

0(0)
]

w4

= −0.2527w2

|V | +
[

1
64π2

− (0.2527)3
]

w4

|V |3
. (8)

The quantity w2G0(0)+w4G3
0(0) in (7) can be replaced by ECPA−

(
α2w4/4

)
,

in view of (8), so that (7) becomes

Σ − E = αw2
√

Σ − E − (E − ECPA) − α2w4

4
. (9)

By introducing the unit of energy

ε0 =
α2w4

4
=

w4

4(4π)2 |V |3
,

(9) is reduced to a dimensionless universal form

Σ̄ − Ē = 2
√

Σ̄ − Ē − x − 1 , (10)

where Σ̄ = Σ/ε0, Ē = E/ε0, and x = (E − ECPA) /ε0. The solution of (10)
is Σ̄ − Ē = 1 − x + 2

√
−x. ⊓;
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7.9s. We introduce the notation

q0 = ω/c0 , c0 =
√

B0/ϱ0 , c =
√

B/ϱ ,
q = ω/c , ∆ = ϱ0/ϱ , M = c0/c .

The incident wave, φi, is

φi = exp (iq0z) =
∞∑

ℓ=0

iℓ(2ℓ + 1)jℓ (q0r) Pℓ(cos θ) . (1)

The scattered wave, φs, and the wave inside the sphere, φins, are of the form

φs = −
∞∑

ℓ=0

iℓ(2ℓ + 1)rℓhℓ (q0r) Pℓ(cos θ) , hℓ ≡ h(1)
ℓ , (2a)

φins =
∞∑

ℓ=0

iℓ(2ℓ + 1)Iℓjℓ(qr)Pℓ(cos θ) . (2b)

The coefficients rℓ and Iℓ are determined from the BC

jℓ0 − rℓ0hℓ0 =
1
∆

Iℓjℓ , (3a)

q0j
′
ℓ0 − rℓq0h

′
ℓ0 = Iℓqj

′
ℓ , (3b)

where the argument of jℓ0 and hℓ0 is q0a, while that of jℓ is qa; prime denotes
differentiation with respect to q0r or qr.

The result for rℓ is

rℓ =
j′ℓ0jℓ − xjℓ0j′ℓ
h′

ℓ0jℓ − xhℓ0j′ℓ
, x =

qϱ0

q0ϱ
. (4)

The equation for the energy flux can be written

j = − 2ϱ0

B0 + B∗
0

Re
{
B∗

0 φ̇∇φ∗
}

. (5)

Substituting φ = φi + φs into (5) we find that

j = ji + js + jis , (6)

where
jis = − 2ϱ0

B0 + B∗
0

Re
{

B∗φ̇i∇φ∗
s + B∗φ̇s∇φ∗

i

}
. (7)

From energy conservation,
∫

r≤a
d3r∇ · j + Q = 0 ,
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where Q is the energy dissipation within the sphere; taking into account (6),
we have

−
∫

jis · dS =
∫

ji · dS +
∫

js · dS + Q . (8)

The first integral on the rhs of (8) is zero, the second one gives the scattering
cross section (times |ji|), while Q gives the absorption cross section (due to
dissipation inside the sphere) times |ji|. Thus, the total cross section (TCS),
which is also called the extinction cross section, is given by minus the integral
of jis over the surface of the sphere divided by |ji|.

Performing the integral of jis over the surface of the sphere we find, after
a lengthy but straightforward calculation, that

TCS = 4π
Im {C}

Re {B0q0}
, (9)

where

C = B0q0a
2

∞∑

ℓ=0

(2ℓ + 1) (j∗ℓ0h
′
ℓ0rℓ + j′ℓ0h

∗
ℓ0r

∗
ℓ ) , (10)

and the subscript zero indicates that the argument of the Bessel and the
Hankel functions is q0a.

It is left to the reader to show that in the absence of losses in the host
material (i.e., when Im {B0} = 0), (9) and (10) reduce to the usual formulae
for the total scattering section

TCS =
4π

q0
Im {f(0)} =

4π

q2
0

∞∑

ℓ=0

(2ℓ + 1)Re {rℓ} . (11)

⊓;

8.1s. In the presence of an electric potential φ, the chemical potential, µ,
becomes

µ = µ0 + qφ , (1)

where µ0 is its expression in the absence of φ and q is the charge of each
particle. Equilibrium demands that µ must be a constant throughout the
system. If this is not the case, a particle current is set up proportional to
−∇µ (for not-so-large values of |∇µ|):

jp = −c∇µ = −c
δµ0

δn
∇n − cq∇φ . (2)

By definition, the diffusion coefficient is the coefficient of −∇n:

D = c
δµ0

δn
; (3)

the coefficient of −∇φ = E is by definition the conductivity divided by q:

σ = cq2 . (4)
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Substituting the linear coefficient c from (3) into (4) we have

σ = q2D
δn

δµ0
. (5)

By making explicit the spatial nonlocal dependencies of σ, D, and δn/δµ0 we
obtain (8.10).

For kBT ≫ EF the relation

n =
∫

dεϱ(ε)
1

eβ(ε−µ) + 1

reduces to
n =

∫
dεϱ(ε)e−β(ε−µ) .

Hence
∂n

∂µ
= βn ,

from which (8.11b) follows. ⊓;

9.1s. The conductance, G, of a wire of cross section A and length L is given
by

G =σ
A

L
, (1)

where σ is the conductivity of the material in the limits L → ∞ and A =
L2 → ∞.

Generalizing (9.42) and (9.43) to a wire we have

G =
e2

2π!
cλA

L
− e2

2π! , (2)

where in the place of ξ (the localization length of a 1-d system) we have
substituted cλA; λA is the localization length of the wire given by λA =
A/4.82ξ′ and c is a numerical factor which, by the method of §9.6.1, turns out
to be about 2. Combining (1) and (2) and the expression for λA we obtain

σ =
c

4.82 × 2π

e2

!
1
ξ′

for L → ∞ . (3)

When L−1 > 0 we have to add to (3) a term proportional to L−1, which,
according to (9.2c), is equal to

1
2
√

2π2

e2

!
1

LM
=

√
c1

2
√

2π2

e2

!
1
L

. (4)

In (4) we took into account (9.5) and assumed that L−1
φ = L−1

ω = L−1
β = 0.

Combining (3) and (4) we obtain

σ =
e2

!

(
0.066

ξ′
+

0.036
√

c1

L

)
. (5)



438 Solutions of Selected Problems

According to the potential well analogy, ξ′ blows up at a critical value
(
Sℓ2

tr

)
c

[see (9.30)] with a critical exponent s = 1 (keep in mind that the correct
critical exponent is larger, s ≃ 1.54). Thus

ξ′ =
C

Sℓ2
tr − (Sℓ2

tr)c

;

from (9.2c), the critical value turns out to be 12c′1, where c′1 = ℓtr/Lm. The
quantity C is determined by going to the weak scattering case, where Sℓ2

tr ≫(
Sℓ2

tr

)
c

and σ =
(
e2/12π3!

)
Sℓtr. Equating this value of σ with the value

0.066e2/!ξ′, where ξ′ = C/Sℓ2
tr, we find

C = 12π3 × 0.066 ≃ 24.56 .

⊓;

9.5s. We shall employ (9.106a) and (9.106b) [for a discrete system √
vpvq

must be divided by the lattice spacing a as in (9.111)]. The Green’s function
will be calculated by the same trick as in Problem 9.9 below, i.e., we shall
introduce a 2 × 2 Hamiltonian of the form

H ≡
(

H0 H01

H01 H1

)
, (1)

where H0 describes an infinite periodic 1-d TBM, H1 a semi-infinite periodic
TBM terminated at point 1d (i.e., the perpendicular leg of T ) and H01 =
V ′ (|0⟩ ⟨1d| + |1d⟩ ⟨0|). Corresponding to H is a 2 × 2 Green’s function that
satisfies the matrix equation

(
E −H0 −H01

−H01 E −H1

) (
G0 G01

G10 G1

)
=

(
1 0
0 1

)
. (2)

More explicitly, (2) is equivalent to the following four equations:

(E −H0)G0 −H01G10 = 1 , (2a)
−H01G0 + (E −H1)G10 = 0 , (2b)
−H01G1 + (E −H0)G01 = 0 , (2c)

(E −H1)G1 −H01G01 = 1 . (2d)

Combining (2a) and (2b) we obtain

G0 = G0 + G0H01G1H01G0 , (3)

where
G0 = (E −H0)

−1 and G1 = (E −H1)
−1 . (4)

Similarly, from (2c) and (2d) we have

G1 = G1 + G1H01G0H01G1 . (5)
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Let us calculate first ⟨0 | G0 |m⟩ = G0(0, m) from (3):

G0(0, m) = G0(0, m) + G0(0, 0)V ′G1 (1d, 1d)V ′G0(0, m) , (6)

or
G0(0, m) =

G0(0, m)
1 − V ′2G0(0, 0)G1 (1d, 1d)

. (6′)

We remind the reader that

G0(n, m) =
−i

2 |V | sin φ
ei|n−m|φ , φ = ka . (7)

From (3), (6′), and (7) we can easily show that

G0(n, m) = G0(n, m) + G0(n, 0)G1 (1d, 1d) V ′2G0(0, m) . (8)

To find the current transmission amplitude from left to right we have from
(9.106a)

t̂rℓ = i!ve−iφ(|n|+|m|)G0(n, m)
a

. (9)

Taking into account that !v = −2V a sinφ, and substituting in (9) from (8),
(7), and (6′) we obtain

t̂rℓ =
[
1 + i

V ′2

2 |V | sin φ
G1 (1d, 1d)

]−1

. (10)

It remains to calculate G1 (1d, 1d); this corresponds to a Hamiltonian where
site 0 is a vacancy. Hence

G1 = G0 − G0
|0⟩ ⟨0|

G0 (1d, 1d)
G0

or

G1 (1d, 1d) = G0 (1d, 1d) − G0 (1d, 1d) e2iφ =
−i

2 |V | sin φ

(
1 − e2iφ

)
. (11)

Substituting in (10) we have

t̂rℓ =
(

1 +
V ′2

V 2

1 − e2iφ

4 sin2 φ

)−1

=
1 − e−2iφ

1 + x2 − e−2iφ
, x2 =

V ′2

V 2
. (12)

The reader may obtain the remaining matrix elements of ŝ by the same ap-
proach. ⊓;

9.6s. Because of the one-parameter scaling assumption we have that

Q = f (L/ξ′) , (1)
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where ξ′ is a function of Q such that ξ′ = c (Q − Qc)−s, as Q → Q+
c . Differ-

entiating this last relation we have

d

dQ

(
1
ξ′

)
=

s

c
(Q − Qc)

s−1 . (2)

By definition of β we obtain from (1)

β =
L

Q

dQ

dL
=

L

Q
ḟ

1
ξ′

, (3)

where the dot over f denotes differentiation with respect to the argument
L/ξ′. Now, using the relation

d
dQ

(
L

ξ′

)
=

[
dQ

d (L/ξ′)

]−1

=
1
ḟ

, (4)

and keeping L constant, we have that

d
dQ

(
1
ξ′

)
=

1
L

1
ḟ

=
1
L

L

Q

1
ξ′

1
β

=
1

Qξ′β
. (5)

In (5) we have replaced ḟ from (3). Substituting in (5) ξ′ by c (Q − Qc)
−s,

d (1/ξ′) /dQ from (2), and setting β = (dβ/dQ)c (Q − Qc) as Q → Qc [since
by definition β (Qc) = 0], we find that

s =
1

Qc (dβ/dQ)c

. (6)

⊓;

9.7s. We have from (9.72)

ξ−1 =
1
2

∫ ∞

−∞
dεp(ε)

∫ ∞

−∞
dxf0(x) ln

∣∣∣1 +
ε

x

∣∣∣

=
1
4

∫ ∞

−∞
dεp(ε)

∫ ∞

−∞
dxf0(x) ln

∣∣∣∣1 − ε2

x2

∣∣∣∣

=
1
2

∫ ∞

−∞
dεp(ε)

∫ ∞

0
dxf0(x) ln

∣∣∣∣1 − ε2

x2

∣∣∣∣ . (1)

Taking into account that f0(x) = C/
√

1 + x4, we have for the integral

I ≡
∫ ∞

0
dx

1√
1 + x4

ln
∣∣∣∣1 − ε2

x2

∣∣∣∣

=
∫ ∞

0
dx

(
1√

1 + x4
− 1

)
ln

∣∣∣∣1 − ε2

x2

∣∣∣∣ , (2)

since ∫ µ

0
dx ln

∣∣∣∣1 − ε2

x2

∣∣∣∣ −→
µ→∞

ε2

µ
→ 0 . (3)
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We split integral (2) from 0 to ε and from ε to ∞. In the first integral we
write

1√
1 + x4

≈ 1 − 1
2
x4

since ε → 0, while in the second we expand the logarithm

ln
∣∣∣∣1 − ε2

x2

∣∣∣∣ = −
∞∑

n=1

1
n

( ε

x

)2n
. (4)

Thus
I = I1 + I2 ,

where

I1 =
∫ ε

0
dx

(
−x4

2

)
ln

∣∣∣∣1 − ε2

x2

∣∣∣∣ → O
(
ε5

)
for ε → 0 , (5)

I2 =
∞∑

n=1

ε2n

n

∫ ∞

ε
dx

(
1 − 1√

1 + x4

)
1

x2n
. (6)

Each term in the series (6) is of order higher than ε2, except for the n = 1,
for which we have

I(1)
2 = ε2

∫ ∞

ε

(
1 − 1√

1 + x4

)
1
x2

. (7)

This integral can be expressed in terms of elliptic functions (see [11], p. 261):

I(1)
2 = −ε2

2
[F(α, r) − 2E(α, r)] + O

(
ε3

)
, (8)

where

α = arccos
(

ε2 − 1
ε2 + 1

)
→ π as ε → 0 ,

r =
1√
2

.

But
F(π, r) = 2K(r) and E(π, r) ≡ 2E(r) . (9)

Thus finally

I = I(1)
2 + O

(
ε3

)
= −ε2 [K(r) − 2E(r)] + O

(
ε3

)
. (10)

Hence the inverse localization length to order σ2 is given by

ξ−1 =
C

2

∫ ∞

−∞
dεp(ε)I(1)

2 , where C =
1

2K(r)
(11)
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according to (9.77). Thus finally

ξ−1 =
2E(r) −K(r)

4K(r)
σ2 ,

where σ is the standard deviation of p(ε). ⊓;

9.10s. From (8.75) we have

s ⟨G (0, 0; E + is)G (0, 0; E − is)⟩ =
s

N

∑

q

A (q)
1 − uA (q)

, (1)

where, according to (8.82),

u (z, z′)A (q; z, z′) → 1 + a1 (z − z′) − a2q
2 (2)

as z → z′ and q → 0; a1 = i/2 |Σ2| and a2 = !D(0)/2 |Σ2| according to (8.83)
and (8.85), respectively. In the present case, z − z′ = 2is.

Substituting in (1) we have

s
〈
G+G−〉

= c
s

N

Ω

(2π)d

∫
dq

(1/u) |Σ2|
s +

(
!D(0)/2

)
q2

=
c

(2π)d

Ω

N
s

∫
dq

πϱ′

s + (!D0/2) q2
, (3)

where we have taken into account that u = |Σ2| /πϱ′ and we have introduced
a numerical factor c to correct for the fact that expansion (2) is valid for small
values of q.

For d = 3 the q2 term in the denominator (in the limit s → 0+) is cancelled
by a q2 phase space factor in the numerator (coming from dq ∼ q2dq), and
hence (3) approaches zero linearly in s, indicating thus the validity of the
perturbation expansion. In contrast, for d = 2 or d = 1 the phase space
factor is q or 1, respectively, and the integral blows up. Although the integral
blows up as s → 0, the quantity s ⟨G+G−⟩ still approaches zero: as

√
s/!D(0)

in one dimension and as
(
s/!D(0)

)
ln

∣∣s/!D(0)
∣∣ in two dimensions. If this

result is accepted, one must conclude that the eigenstates are neither extended
nor normalizable; instead, they decay very slowly to zero. However, we know
that, at least in one dimension, the states are exponentially localized. Hence,
we must conclude that the singularities of the vertex part obtained through
the CPA or the post-CPA, although indicative of localization effects, are not
capable of fully describing the situation at all length scales. It is assumed
that at short length scales, when one does not sample the extreme tails of the
eigenfunctions, the CPA and the post-CPA vertex corrections are satisfactory.

One way of improving the present method is to replace in (3) D(0) by D,
the corrected diffusion coefficient, which in general is ω and q dependent. Since
D(ω) is proportional to iω, then s ⟨G+G−⟩ goes to a nonzero limit as ω → 0
first and then s → 0+, and thus regular localization is recovered. ⊓;
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10.6s. Since the particles do not interact, their Hamiltonian has the form

H =
∑

i

εia
†
iai . (1)

The quantity
〈
a†

iai

〉
to be calculated is by definition

〈
a†

iai

〉
=

Tr
{
a†

iaie−β(H−µN)
}

Tr
{
e−β(H−µN)

} . (2)

We have that
ai exp

(
−xa†

iai

)
= e−x exp

(
−xa†

iai

)
ai . (3)

Equation (3) can be proved by acting on any eigenfunction of a†
iai (a†

iai |φ⟩ =
ni |φ⟩) and taking into account that f

(
a†

iai

)
ai |φ⟩ = f (ni − 1) ai |φ⟩. Then

we write
H− µN = (εi − µ) a†

iai +
∑

j ̸=i

(εj − µ) a†
jaj ,

and we have

Tr
{
a†

iaie−β(H−µN)
}

= Tr

⎧
⎨

⎩a†
iai exp

[
−β (εi − µ) a†

iai

]
exp

⎡

⎣−β
∑

j ̸=i

(εj − µ) a†
jaj

⎤

⎦

⎫
⎬

⎭

= Tr

⎧
⎨

⎩a†
i exp [−β (εi − µ)] exp

⎡

⎣−β
∑

j

(εj − µ) a†
jaj

⎤

⎦ ai

⎫
⎬

⎭

= exp [−β (εi − µ)] Tr

⎧
⎨

⎩aia
†
i exp

⎡

⎣−β
∑

j

(εj − µ) a†
iai

⎤

⎦

⎫
⎬

⎭

= exp [−β (εi − µ)]
{
Tr

[
e−β(H−µN)

]
± Tr

[
a†

iaie−β(H−µN)
]}

. (4)

From (4) and definition (2) we obtain the desired result
〈
a†

iai

〉
=

1
exp [β (εi − µ)] ∓ 1

. (5)

⊓;

11.4s. From (11.36) we have

∂

∂a
(lnZGa) = −β ⟨Vi⟩ = −β

1
a
⟨Via⟩ . (1)

We integrate (1) from a = 0 to a = 1:

lnZG = lnZG0 − β

∫ 1

0

da

a
⟨Via⟩ . (2)
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The quantity ⟨Via⟩ is given by (11.29):

⟨Via⟩ =
∑

k

∫
dω

2π

1
2

(
ω − k2

2m

)
Aa (k, ω) f∓(ω) . (3)

Substituting (3) into (2) we obtain (11.37). The integration over ω can be
transformed to a sum over zν according to (11.47) and (11.53). We have

βPΩ = βP0Ω ±
∫ 1

0

da

a

∑

k

∑

ν

1
2

(
zν − k2

2m

)
Ga (k, zν) . (4)

⊓;

12.4s. From Figs. 12.11) and (12.8, and rules I′ to VII′ on p. 299, we have
for the proper self-energy Σ∗

Σ∗ (k, zν) = ∓ 1
β

∑

ν′

∫
d3k′

(2π)3
v(0)G (k′, z′ν) exp (−z′νσ)

− 1
β

∑

ν′

∫
d3k′

(2π)3
v (k − k′)G (k′, z′ν) exp (−z′νσ) , (1)

where the first term on the rhs corresponds to the loop diagram in Fig. 12.11
and the last term in the last diagram.

Now, by employing (11.47) and (11.53) we can rewrite (1) as follows:

Σ∗ (k) =
∫

dω′

2π

∫
d3k′

(2π)3
v(0)A (k′, ω′) f∓ (ω′)

±
∫

dω′

2π

∫
d3k′

(2π)3
v (k − k′)A (k′, ω′) f∓ (ω′)

= v(0)n0 ±
∫

d3k′

(2π)3
v (k − k′) ⟨n (k′)⟩ . (2)

The bottom line in (2) was obtained from (11.24) and (11.25) by taking into
account that the particle density, ⟨n (k′)⟩, is independent of r and equal to
n0.

Since
G (k, ω) =

[
ω − ε0

k − Σ∗(k, ω)
]−1

,

we have that the quantity εk in (12.19) equals

εk = ε0
k + v(0)n0 ±

∫
d3k′

(2π)3
v (k − k′) ⟨n (k′)⟩ , (3)

which coincides with (12.20) since ε0
k = k2/2m. ⊓;
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13.5s. We shall outline here the proof:
(a) We first do the integral over the angles, and we have

δϱ (r) = −Z |e|
2π2r

∫ ∞

0
dqq sin(qr)F (q) , (1)

where
F (q) =

q2
TF f (q/kF )

q2 + q2
TF f (q/kF )

. (2)

We integrate (1) twice by parts

δϱ (r) =
Z |e|
2π2r3

∫ ∞

0
dq sin(qr)

d2

dq2
[qF (q)]

=
Z |e|
(2π)2i

1
r3

∫ ∞

−∞
dqeiqr d2

dq2
[qF (q)] . (3)

The function qF (q) has a singularity at q = ±2kF of the form
(q ∓ 2kF ) ln (|q ∓ 2kF |). Thus, the second derivative of qF (q) would produce
two poles, (q ∓ 2kF )−1, which would dominate the integral as r → ∞. ⊓;
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[102] G. A. Baraff and M. Schlüter. Phys. Rev. B, 19:4965, 1979.
[103] G. A. Baraff, E. O. Kane, and M. Schlüter. Phys. Rev. Lett., 43:956, 1979.
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electrical
conductivity, 173, 195, 197
resistivity, 131, 133

electrochemical potential, 217, 218
electromagnetic

equation, 48
theory, 31
wave, 238

electromagnetism, 14, 377
electron

dressed, 132
gas

high-density, 332
pair, 132
quasi, 132

electron–electron interaction, 201, 239
electron–phonon interaction, 131, 132
electronic

current density, 387
density, 273
Hamiltonian, 387
momentum, 387
polarizability, 100
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potential energy, 176
spectrum, 137
spin density, 387
structure, 164
trajectory, 86

electrostatics, 11
elementary excitation, 281
Eliashberg gap equation, 133
elliptic integral, 94, 97

complete, 90, 91
energy

average, 289, 330
binding, 128, 129, 135, 139
conservation of, 128
critical, 235
cutoff, 130, 134, 139
flux, 171
ground-state, 316
interaction, 270
kinetic, 270, 282, 313, 383
mismatch, 219
potential, 282, 313, 383

electronic, 176
resonance, 116, 120
total, 126, 271, 381

ensemble, 150, 199
canonical, 182
grand canonical, 254

equation
Bessel, 349
Bethe–Salpeter, 320
Boltzmann’s, 177, 196, 197, 363

linearized, 365
diffusion, 25, 37
diffusion type, 33
Dyson’s, 300, 304
electromagnetic, 48
Helmholtz, 345, 397

in cartesian coordinates, 345
in cylindrical coordinates, 345
in polar coordinates, 346
in spherical coordinates, 346

homogeneous, 9, 14–16, 22, 24, 28,
29, 35

inhomogeneous, 9, 16, 17, 24, 27, 30,
35, 59

integral, 320
Klein–Gordon, 31, 47, 48, 51
Laplace, 11, 12, 345–347

Lippman–Schwinger, 59
Newton’s, 176
of motion, 135
of state, 289
Poisson’s, 11, 13, 126, 273
relativistic, 33
Schrödinger, 41, 43, 44, 46, 52, 58,

69, 75, 158, 159, 251, 348
time-dependent, 60

Schrödinger type, 33
time-evolution, 325
weak localization, 201

equation of motion approach, 324
equation of motion method, 307
equations

hierarchy of, 256
Euler’s constant, 69, 130
excitation

elementary, 281
expansion

asymptotic, 97, 103
power series, 314

exponent, 212
critical, 50, 223
Lyapunov, 214, 215

external static point charge
response to, 317

extinction
cross section, 162

face-centered cubic (fcc) lattice, 103
fcc (face-centered cubic), 103
Fermi

distribution, 127, 129, 139, 178, 183
energy, 127
function, 257
level, 219, 310
momentum, 278, 281, 311, 332
sea, 127, 129
surface, 131, 210, 278, 278, 280
system

low-density, 333
normal, 309, 332

thermal equilibrium distribution, 263
Fermi’s golden rule, 62, 75, 178
Fermi–Dirac distribution, 262
fermion, 252, 254, 278, 381

closed loop, 296, 299
ferromagnetic
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ordering, 328
phase, 329, 330

ferromagnetism, 327
Feynman diagram, 293, 297, 298, 300
Feynman’s path integral, 203
field

elastic wave, 162
electric, 8, 173, 364
electromagnetic, 162
EM, 163, 171
magnetic, 86, 202, 239, 364, 366

external, 223
momentum, 380
operator, 35, 36, 250

for noninteracting quantum fields,
36

transverse, 162
vector classical, 162

film, 196, 238
metallic, 212

first Brillouin zone, 78, 84–87, 90, 94,
102, 105

fluctuation–dissipation theorem, 182,
273

flux
average, 206
magnetic, 206, 208, 241

quantum, 206
force

Coulomb, 313
friction, 176
magnetic, 212
restoring harmonic, 177
short-range, 311

formalism
second quantization, 249

formula
Kubo–Greenwood, 180, 195

four probe, 218
Fourier

function, 337
series, 287
transform, 5, 21, 25, 27, 33, 34, 57,

58, 174, 176, 255, 258
frequency

Debye, 131
mismatch, 200
natural, 177
phonon, 131

plasma, 318
friction force, 176
Friedel oscillation, 317
fullerene, 131
function

analytic, 5, 9, 22
Bessel, 12, 45, 118

modified, 45, 349
spherical, 346

Bloch, 78, 138
Bose, 257
delta, 337

derivative, 337
in cartesian variables, 338

dielectric, 283, 305, 334
retarded, 305

diffusion, 174
digamma, 207
Dirichlet, 337
Fermi, 257
Fourier, 337
gamma, 67, 207
gap, 333
Gaussian, 337
grand partition, 271, 282
Hankel, 12, 45

spherical, 163, 347
Hubbard dielectric, 132
linear response, 263, 272
longitudinal dielectric, 273
Lorentzian, 337
orthogonal to, 9, 16
response, 273
step, 23
theta, 338
Wannier, 79, 355

Furstenberg’s theorem, 215

gamma function, 67, 207
gap, 78, 100, 104, 120, 126, 325, 326

function, 333
level, 111

Gauss’ theorem, 11
Gaussian, 157

distribution, 170
function, 337

generalized DOS-like, 265
geometric

average, 150
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optics, 159
grand partition function, 271, 282
Green’s function, 250, 255, 265, 325

n-particle, 256
1-d, 227
advanced, 27, 35
causal, 27, 35

imaginary time, 287, 288
perturbative expansion, 292

diffusion, 37
for noninteracting particles, 257
for the LA phonon field, 258
Hubbard, 97, 101, 120, 122, 170
retarded, 27, 35, 272
two-particle, 256
wave, 37

ground state, 281
ground-state

energy, 316
group velocity, 85, 155

of sound, 85

Hall
conductance, 239
effect

integral quantum, 213, 239
voltage, 239

Hamiltonian, 384, 385
density, 380
electron–phonon, 386

total, 386
electronic, 387
Heisenberg type, 333
Kondo, 134
periodic, 47, 77, 78

eigenfunction of, 78
eigenvalue of, 78

tight-binding, 77, 80, 83, 87, 101,
111

total, 282
Hankel function, 12, 45

spherical, 163, 347
harmonic

approximation, 386
interaction, 135
oscillator, 78
potential energy, 388

Hartree
approximation, 285, 288, 328–331

Hartree–Fock
approximation, 289, 303, 307, 334

heat
specific, 334

Heisenberg
model, 328
picture, 250, 290

Helmholtz equation, 345, 397
in cartesian coordinates, 345
in cylindrical coordinates, 345
in polar coordinates, 346
in spherical coordinates, 346

hermitian operator, 3, 5, 14, 15, 17, 19,
33, 391

hierarchy of equations, 256, 285
high Tc superconductivity, 131
Hilbert space, 80, 341
hole, 129
Hubbard

dielectric function, 132
Green’s function, 97, 101, 120, 122,

170
model, 327–331, 333

hyperbola, 107, 145

imaginary time, 299
imperfection, 77, 78
impurity, 113, 115, 136, 137, 141, 144,

145, 169
band, 202
single-isotope, 136
substitutional, 111

independent-particle approximation,
183

inequality, 352
inertia, 176
inner product, 341, 343
instability

numerical, 91
insulator, 126
integral, 17

elliptic, 94, 97
complete, 90, 91

equation, 56, 57, 59, 227, 229, 320
inhomogeneous, 72

integral quantum Hall effect (IQHE),
213, 239

interaction
effective, 307, 317



Index 469

electron–electron, 196, 201, 239
electron–phonon, 131, 132
energy, 270
harmonic, 135
on-site, 327
picture, 290
repulsive, 333
screened Coulomb, 176
short-range

repulsive, 319
spin-orbit, 223

interface, 196, 212, 213, 238
interference, 203, 204

constructive, 199
destructive, 199
quantum, 240

ionic
crystal, 99
motion, 78, 82
solid, 79

jellium model, 312
high-density, 313

kernel, 56
KKR method, 70
Klein–Gordon

case, 47, 50
equation, 31, 47, 48, 51

Kondo
effect, 111, 129, 135, 139
Hamiltonian, 134
problem, 133, 139

Kramers–Krönig relation, 174
Kubo–Greenwood

formalism, 217
formula, 180, 195

LA (longitudinal acoustic), 385
ladder

approximation, 319, 321, 322
diagram, 319

Lagrangian, 203
density, 379

Lamé coefficient, 158
Landau’s theory, 332
Laplace

equation, 11, 12, 345–347
transform, 25

lattice, 77, 101
bcc, 422
Bethe, 98–102, 145, 147, 360, 361
body-centered, 97
body-centered cubic (bcc, 103
constant, 84, 90
diced, 94
face-centered, 97
face-centered cubic (fcc), 103
fcc, 423
honeycomb, 94
path in, 358
relaxation, 126
simple cubic, 94, 96, 97, 119–121,

147, 170
square, 84, 89, 92, 95, 124
triangular, 94
vector, 78
vibration, 100, 131, 136, 137, 164, 165

LCAO, 79, 102
Legendre polynomial, 339
length

localization, 212
screening, 317
Thomas–Fermi, 317

level
bound, 119, 120, 122, 124–126, 129,

209
discrete, 66, 68, 69, 73, 74, 120, 122,

123, 138, 145–147
Fermi, 310
non-degenerate, 138
repulsion, 226
resonance, 122, 123, 139
spacing, 226

statistics, 225
LiF, 100
lifetime, 118, 276, 277, 283, 318, 332
line, 301
line of singularity, 6
linear

chain, 375
density, 85
response, 283

function, 263, 272
theory, 180

linear combination of atomic orbitals
(LCAO), 79, 102

Liouville’s theorem, 363
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Lippman–Schwinger equation, 59
liquid, 313

Luttinger, 281, 283
liquid He-4, 52
local

conductivity, 179
moment, 133, 134, 139
oscillation, 136

localization, 192, 197, 209, 219, 224, 230
Anderson, 240, 243
effect

weak, 213
function, 234
in disordered system, 209
length, 209, 210, 213–215, 221, 225,

229, 240, 241
inverse, 227

problem, 201
regime

strong, 210
weak, 216, 240

theory, 238
weak, 205

locator, 144
expansion, 165

logarithmic
derivative, 220
divergence, 69, 314

longitudinal, 163
dielectric function, 273

Lorentzian, 150, 168, 170
distribution, 201
function, 337
shape, 277

Luttinger
liquid, 281, 283
model, 281

Lyapunov exponent, 214, 215

magnetic
coupling, 330
excitation, 164, 165
field, 86, 192, 202, 239, 364, 366

external, 223
flux, 206, 208, 241

quantum, 206
force, 212
moment, 329, 331
ordering, 327, 328

phase, 333
susceptibility, 134

magnetoresistance
negative, 202, 213, 241
tensor, 367

magnon, 333
mass

center of, 127
effective, 120, 310, 311, 312, 332

material, 238
superconducting, 312

mathematical data, 17
matrix, 148

Pauli, 344, 387
matrix element, 61, 79, 80, 101, 150

diagonal, 7–9, 42, 80, 81, 87, 89, 92,
95, 96, 111, 231

of current operator, 179
off-diagonal, 80, 81, 89, 99, 101, 103,

151, 155, 165
maximally crossed diagram, 191, 192
mean

arithmetic, 184
geometric, 184

mean free path, 155, 155, 156, 159, 210,
230, 240

elastic, 194
scattering, 178, 229
transport, 180, 204, 229

medium
effective, 166
homogeneous, 49
periodic, 49
polarizable, 130
random, 163
strongly scattering, 158

disordered, 158
periodic, 158

metal, 80, 312
transition, 80

metal–insulator transition, 173
metallic

conductivity, 199
regime, 221

method
continued fraction, 166
equation of motion, 307
of residues, 88
of stationary phase, 92
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pseudopotential, 79
recursion, 166, 224

mobility
averaged, 175
edge, 201, 210, 211, 235
microscopic, 175

model
XY , 224
Anderson, 201
Heisenberg, 328
Hubbard, 327–331, 333
Luttinger, 281
nearly-free electron, 78
tight-binding, 79, 80

moment
local, 133, 134, 139
magnetic, 329, 331
of inertia, 348

momentum, 18, 46, 388
angular, 348
conjugate, 385
conservation of, 128
eigenstate, 383
electronic, 387
Fermi, 278, 281, 311, 332
ket, 342
operator, 343
total, 127

motion
ballistic, 205
equation of, 135
ionic, 78, 82

multichannel case, 237

NaCl, 100
nanoelectronics, 240
nanotube

carbon, 240
nearly-free electron model, 78
negative energy solution, 48
network topology, 158
Newton’s equation, 176
NFE, 78, 79
nonanalyticity, 165
nonmagnetic

phase, 329, 330
normal state, 280
normalized eigenstate, 6
number density operator, 383

number of states, 7, 18, 49–52, 104, 394
number operator, 382
numerical technique, 224

occupation number, 175
one-dimensional

quasi, 217
operator, 18, 23, 61

adjoint, 19, 381
annihilation, 250, 252, 255, 383

phonon, 258
bosonic density, 306
chronological, 251
creation, 250, 252, 255, 383

phonon, 258
differential, 14
displacement, 385
field, 250
hermitian, 3, 5, 14, 15, 17, 19, 33, 391
linear, 3, 14, 33
momentum, 343
number, 382
number density, 383
position, 4, 343
positive definite, 8
slave boson, 306
spin, 344
time-evolution, 23, 43
time-independent, 33
unit, 5

optical
absorption, 100, 210
theorem, 63, 66, 73, 161

orbital, 77
d-like, 79
p-like, 79
s-like, 79
antibonding, 104
atomic, 79

hybrid, 79, 104
atomiclike, 101, 126
bonding, 104
local, 163
tube, 204

order
short-range, 151, 168

ordering
anti-ferromagnetic, 328
chronological, 63
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ferromagnetic, 328
magnetic, 328

orthonormal, 388
orthonormality, 79, 355, 392
oscillation

charge
longitudinal, 176

collective
transverse, 176

collective (plasma), 318
Friedel, 317
local, 136
small, 135

oscillator
harmonic, 78

oxide superconductor, 80

pair
bound, 281
electron, 132
of equations, 326

partial differential equation
first-order, 33
homogeneous

first-order, 21
inhomogeneous

first-order, 21
partial summation, 301
particle

dressed, 276, 283
number, 279

particles
interacting, 253

path, 142
integral, 203
self-avoiding, 358, 360
skeleton, 358

Pauli matrix, 344, 387
Pauli principle, 127, 129, 313, 379
permeability, 158, 163, 377
permittivity, 158, 175, 176, 195, 377
perturbation, 55, 64, 70, 142

expansion, 14, 285
series, 55
theory, 55

second-order, 133
time-dependent, 61

perturbative approach, 36
phase, 42, 83

antiferromagnetic, 329, 330
diagram, 327, 330
ferromagnetic, 329, 330
incoherence, 214, 230

inelastic length, 204
inelastic time, 204, 205, 240
length, 204
time, 200

magnetic, 333
nonmagnetic, 329, 330
shift, 162
space, 18, 280, 363
velocity, 85, 156

of sound, 85
phonon, 48, 132, 333, 386

frequency, 131
longitudinal acoustic (LA), 255, 385

photoconductivity, 100
photon, 48
plane wave

expansion of, 403
normalized, 342

plasma frequency, 131, 318
plasmon, 128, 281, 318, 332
Poisson’s equation, 11, 13, 126, 273
polarizability, 176

electronic, 100
polarization, 162, 304, 306

part, 307
proper, 304, 306, 313

part, 307
pole, 9, 10, 16, 22, 42, 57, 66–69, 72, 73,

117, 145, 277, 310, 332
simple, 5, 15

polynomial
Legendre, 339

position
eigenstate, 383
ket, 341
operator, 4, 343

positive energy solution, 48
post-CPA, 222

contribution to σ, 196
correction, 194
correction to conductivity, 192
vertex inclusion, 195

potential
attractive, 145
centrifugal, 348
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chemical, 175, 219, 242, 364, 436
Coulomb

attractive, 66, 67
disordered, 51
electrochemical, 217, 218
thermodynamic, 307
vector, 206
well, 69, 209

analogy, 210, 212, 244
circular, 69
shallow, 67, 68, 73

power, 178
power series expansion, 314
pressure, 159, 171, 271
primitive cell, 87
primitive crystal cell, 79
principal

axis, 106
value, 393

principle of least action, 379
probability, 150

amplitude, 60, 61, 73, 117, 203, 231,
341

conservation of, 371
distribution, 150, 226

joint, 229
reflection, 216
transmission, 216, 218

process
direct, 322
indirect, 129, 322

propagation constant, 161, 162
propagator, 23, 133, 144, 280

bare, 322
dressed, 322

proper self-energy, 132
property

optical, 176
pseudopotential method, 79
PWA (potential well analogy), 216

quantized sound wave, 128
quantum

condensation, 128
dot, 239
field theory, 35
interference, 240

quantum-mechanical, 14
quasihole, 278

quasiparticle, 263, 276, 278, 280, 283,
312, 316, 332

radius
Bohr, 313
cyclotron, 200, 240

random
1-d system, 214
matrix, 214
medium, 163
variable, 156

Gaussian, 180
random phase approximation (RPA),

316
random walk problem, 224
randomness

off-diagonal, 164
ray approximation, 159
Rayleigh scattering, 159
reciprocity relation, 9
rectangular

case, 157
distribution, 150, 201

recurrence relation, 90, 91, 93, 103
recursion method, 166, 224
recursion relation, 93
reflection

amplitude, 237, 370, 373, 429
current, 372

coefficient, 125, 170, 215, 371
regime

critical, 239
extended, 239
strong localization, 210
weak localization, 216, 240

relation
anticommutation, 252
commutation, 252
Einstein’s, 174, 175
Kramers–Krönig, 174

relaxation time, 156, 156, 159, 196, 363
transport, 176, 196

renormalized perturbation expansion
(RPE), 98, 230, 234, 359

representation, 341
diagrammatic, 169

residue, 9, 16, 42, 72, 112, 277, 283
theorem, 10

resistance, 213, 216
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contact, 217
total, 217

resistivity, 134, 135, 139
electrical, 131, 133
tensor, 174

resonance, 66, 121, 122, 125, 146
eigenenergy, 120, 140
eigenstate, 117, 118, 136
energy, 116, 120
level, 139
state, 212
tunneling, 239

response, 9, 24
function, 273
linear, 283

ring, 208
role, 173
RPA

(random phase approximation), 316,
318, 319

RPE (renormalized perturbation
expansion), 98, 227

rule, 295, 299
final, 294

saddle point, 91, 106, 107
scaling, 133

approach, 219, 223, 224, 243
one-parameter, 223, 439

scattered wave, 163
scattering, 64, 144, 176

amplitude, 46, 65, 67, 73, 159, 161,
171, 319, 320

forward, 66
backward, 229
cross section, 115, 118, 125, 159, 162,

171
elastic, 173
forward, 229
inelastic, 173
length, 319
limit

strong, 156
mean free path, 178, 229
multiple, 144, 157, 165, 169, 199, 217,

322
probability, 131
process, 239
Rayleigh, 159

regime
weak, 222

spin flip, 133
spin-orbit, 223
theory, 57, 63
weak, 134

Schrödinger
case, 49
equation, 41, 43, 44, 46, 52, 58, 69,

75, 158, 159, 251, 348
time-dependent, 60

picture, 290
second quantization, 379

formalism, 249
self-consistency, 126
self-energy, 153, 154–156, 160, 166, 169,

185, 190, 240, 243, 301, 301, 307,
359, 360

proper, 132, 301, 302, 307, 314, 315
semiconductor, 103, 126, 210

amorphous, 151
doped, 126
heavily doped, 202

set
complete, 355
orthonormal, 341, 355

set of eigenfunctions
complete, 3, 15, 17, 33, 41
orthonormal, 3, 15, 17, 41

Shockley’s tube-integral formula, 367
Si, 103, 104, 127
simple cubic, 84, 108

lattice, 119–121, 147, 170
single-isotope impurity, 136
singlet state, 128
singular point, 93, 94
singularity, 23, 26–28, 34, 42, 52, 57,

104, 133
δ-function, 114
logarithmic, 47, 50, 91, 94
square root, 89
Van Hove, 94, 96, 97

skeleton
diagram, 301, 303
path, 358

slave boson operator, 306
small oscillation, 83, 135
solid

covalent, 79
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crystalline, 77, 78
ionic, 79
periodic, 70
tetrahedral, 79
Wigner, 313

solid-state physics, 46
solution

normal, 310
outgoing, 115

sound
propagation, 171
velocity, 159
wave, 48, 312

quantized, 128
source, 9, 24

unit point, 9
spacing

interparticle, 313
specific heat, 25, 334
spectrum, 4, 78, 136

band, 84
continuous, 8–10, 15, 42, 44, 57–59,

64, 72, 113, 120, 122, 200
discrete, 8, 200
electronic, 137

speed of sound, 385
spherical harmonic, 339, 347
spin, 127

flip, 134, 139
scattering, 133

operator, 344
part, 128

spring constant, 83, 164
state

bound, 74, 75, 111, 114, 118, 120,
124, 128, 134, 135, 139, 170, 323,
427

extended, 210, 226, 233
ground, 128, 281
localized, 209–211, 226
normal, 332
propagating, 52
resonance, 111, 212
scattering, 111
singlet, 128
superconducting, 334
triplet, 128

step function, 23
strip case, 225

strong coupling, 130, 132
limit, 318

subband, 99
width, 100

sublattice, 80, 81
substitutional impurity, 111
sum rule, 114, 265
supercell, 166
superconducting system, 129
superconductivity, 124, 139, 322, 333

high Tc, 131
theory of, 69

superconductor, 129, 283
superfluid, 312

system, 129
superlattice, 166
surface impedance, 377
susceptibility, 176

electric, 175, 182
magnetic, 134

symmetry
of time reversal, 192
time reversal, 204

system
disordered, 6, 15, 141, 150, 167, 169,

209, 221, 240
Fermi

low-density, 333
normal, 332

many-body, 249
normal, 278, 283, 311
quasi one-dimensional, 223
quasi-1-d, 215, 242
quasi-one-dimensional, 225
random, 150, 151, 169

1-d, 214
superconducting, 129
superfluid, 129
TB

2-d, 238
three-dimensional, 223
two-dimensional, 223

tail
in DOS, 210, 434
Urbach, 210, 434

TBH, 81, 101, 111, 137, 327
TBM, 79, 80, 83, 103, 136, 141, 151,

186, 201, 210, 220, 238, 374
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TCS (total cross section), 436
technique

transfer matrix, 214
temperature

critical, 130, 327
finite, 219

tensor
conductivity, 174, 367
magnetoresistance, 367
resistivity, 174

tetrahedral solid, 79
theorem

Bloch’s, 70
Cauchy’s, 114
fluctuation–dissipation, 182, 273
Furstenberg’s, 215
Gauss’, 11
Liouville’s, 363
optical, 63, 66, 73, 161
residue, 10
Wick’s, 293, 298

theory
electromagnetic, 31
Landau’s, 332
linear response, 180
of superconductivity, 69
perturbation, 55, 133
scattering, 57, 63

thermal
average, 254, 324
conductivity, 25

thermodynamic
potential, 307
property, 45
quantity, 263, 275
relation, 271

theta function, 338
Thomas–Fermi screening length, 317
tight-binding, 84

bcc, 422
for fcc, 424
Hamiltonian, 77, 83, 87, 101, 111

coupled pendulum analog of, 82
coupled pendulum double spacing

analog of, 82
Hamiltonian (TBH), 80
model (TBM), 79, 80
simple cubic, 85

time

imaginary, 299
time-evolution

equation, 325
operator, 23, 43

time-reversal symmetry, 369
topology

cermet, 158
network, 158

total
cross section, 66, 73, 75, 161, 162,

171, 436
energy, 271, 381

trajectory
classical, 204

transfer matrix, 214, 370, 376, 377
element, 81, 83, 220
technique, 214

transformation
canonical, 276, 306

transition
metal, 79, 80
metal compound, 80
metal–insulator, 173
metal-insulator, 327, 333
probability, 46, 75

rate of, 62
transmission, 239, 242

amplitude, 237, 370, 373, 429
current, 372

coefficient, 125, 170, 215, 371, 372
in quasi-1-d system, 235

transport
mean free path, 180, 204, 229
property, 173, 186, 226, 238
relaxation time, 176, 196

transverse, 163
triplet state, 128
tunneling, 132
two-band model, 427

unitarity
of S, 63

unitary, 63, 372
Urbach tail, 210, 434

vacancy, 170
vacuum state, 382
valence

band, 126, 210
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tail, 210
value

critical, 138, 222, 223
values

continuous, 4
discrete, 4

van der Waals, 289
Van Hove singularity, 94, 96, 97
VCA, 151, 152, 168
vector

classical field, 162
derivative

in cylindrical coordinates, 347
in spherical coordinates, 347

displacement, 388
potential, 206
space, 4

velocity, 158, 159, 161, 310, 318
longitudinal, 158
of light, 48
of sound, 48
sound, 159
transverse, 158

vertex, 301
correction, 184, 186, 188–193, 196,

208, 222
inclusion

post-CPA, 195
part, 187, 188, 302, 307, 311, 319,

320, 322, 332
vibration

longitudinal, 385
Virtual Crystal Approximation (VCA),

151
voltage, 219

critical, 239
probe, 218

Wannier function, 79, 355
wave

acoustic, 161, 163

classical, 158, 159, 238
acoustic, 158
elastic, 158
electromagnetic, 158

elastic, 163
electromagnetic, 238

scattering of, 169
equation, 31, 33, 49, 51, 171

2-d, 31
homogeneous, 36
inhomogeneous, 30, 36
scalar, 37

function, 41
ingoing, 12, 65
outgoing, 12
packet

free quantum-mechanical, 25
minimum uncertainty, 25

plane, 4
propagating, 83
reflected, 145
spherical, 65
TE, 378
TM, 378
transmitted, 145

wavelength, 155, 156, 158
wavevector, 49, 52

crystal, 104
weak coupling limit, 318
weak localization equation, 201
weak scattering limit, 156, 221
Wick’s theorem, 293, 298
Wigner solid, 313
wire, 196

case, 225
thin, 238

zero sound, 281, 312, 318, 332
zone

first Brillouin, 78, 84–87, 90, 94, 102,
105


