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Fractional dynamics in nonlinear magnetic metamaterials e

ABSTRACT

We examine the existence of nonlinear modes and their temporal dynamics, in arrays of split-ring resonators, using a fractional extension of the Laplacian in the
evolution equation. We find a closed-form expression for the dispersion relation as a function of the fractional exponent as well as an exact expression for the critical
coupling between rings, beyond which no fractional magnetoinductive waves can exist. We also find the low-lying families of bulk and surface nonlinear modes and
their bifurcation diagrams. Here the phenomenology is similar for all exponents and resembles what has been observed in other discrete evolution equations, such as
the DNLS equation. The propagation of an initially localized magnetic excitation is always ballistic, with a ‘speed’ that is computed in exact form as a function of the
fractional exponent. For a given exponent, it increases with an increase in coupling up to a critical coupling value, beyond which the ballistic speed could diverge
inside the fractional interval [0,1]. Examination of the modulational instability shows that it tends to increase with an increase in the fractional exponent, where the
decay proceeds via the formation of filamentary structures that merge eventually and form pure radiation. The dynamical selftrapping around an initially localized
excitation increases with the fractional exponent, but it also shows a degree of trapping in the linear limit. This trapping increases with a decrease in the exponent and

can be explained by near-degeneracy arguments.

1. Introduction

Metamaterials constitute a class of man-made materials that are
characterized by having enhanced thermal, optical, and transport
properties that make them attractive candidates for current and future
technologies. Among them, we have magnetic metamaterials (MMs) that
consist of artificial structures whose magnetic response can be tailored
to a certain extent. A simple realization of such a system consists of an
array of metallic split-ring resonators (SRRs) coupled inductively [1-3].
This type of system can, for instance, feature negative magnetic response
in some frequency window, making them attractive for use as a con-
stituent in negative refraction index materials [4]. In order for SRRs to
be practical, one must overcome the problem of ohmmic and radiative
loss. A possible solution that has been considered is to endow the SRRs
with external gain, such as tunnel (Esaki) diodes [5,6] to compensate for
such losses. The theoretical treatment of such structures relies mainly on
the effective-medium approximation where the composite is treated as a
homogeneous and isotropic medium, characterized by effective macro-
scopic parameters. The approach is valid, as long as the wavelength of
the electromagnetic field is much larger than the linear dimensions of
the MM constituents. The simplest model uses an array of split-ring
resonators (Fig. 1), with each resonator consisting of a small, con-
ducting ring with a slit. Each SRR unit in the array can be mapped to a
resistor-inductor-capacitor (RLC) circuit featuring self-inductance L,
ohmic resistance R, and capacitance C built across the slit. In our case,
we will consider the case of negligible resistance R, and thus each unit
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will possess a resonant frequency wo ~ 1/v/LC. We insert a nonlinear
dielectric (Kerr) inside the slits with permittivity e = ¢, + a|E|?, where
E is the electric field inside the slit [7], and ¢ is the linear permittivity.
Positive (negative) values of a corresponds to focussing (defocussing)
nonlinearity. Thus, the charge Q, on the capacitor of the nth SRR has the
form Q, = Gy(1 +bU,21)Un where U, is the voltage across the nth capac-
itor. In the weak nonlinear limit, we can express this voltage in terms of
the charge as U, =~ (1/C)Q, —(b/C})Q3.

To keep things simple, we assume that the magnetic component of
the incident electromagnetic wave is perpendicular to the SRRs plane. In
that case, E originates from the oscillations of the magnetic field only
and is parallel to the slit. In addition, the configuration shown in Fig. 1
with alternating orientations of the slits serves to decrease electrical
dipole—dipole effects.

Under these conditions, and in the absence of driving and ohmic
losses, the dimensionless evolution equations for the charge g, residing
at the nth ring are [8]

2

W(Qn‘i‘l(fhﬂ +qu1))+ gty g =0 (€]
where g, is the dimensionless charge of the nth ring, 4 is the coupling
between neighboring rings which originates from the dipole-dipole
interaction, and y is the nonlinear parameter that originates from the
Kerr nonlinearity of the permittivity of the medium inside the slits. Even
though model (1) is quite simple, it still retains the main physics while
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Fig. 1. One-dimensional split-ring resonator arrays. Top: All SRRs lying on a
common plane (1 < 0). Bottom: All SRRs parallel but centered around a com-
mon axis (4 > 0).
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making possible to obtain analytical results.

On the other hand, the subject of fractional derivatives has gained
increased attention in the last years. It all started with the observation
that the usual, integer-order derivative can be extended to a fractional-
order derivative, that is, (d"/dx")—(d*/dx’), for real s. The sth order
derivative of a function f(x) can be formally expressed as [9-11]

(gaﬂﬂzfutnéélﬂﬁr” @

where 0 <s < 1. For the one-dimensional Laplacian operator A =

d2/dx?, its fractional form (—A)s can be expressed as [12]

( / ‘ /1+2: (3)

where,

#T(s+ (1/2))

S

I'(x) is the gamma function and 0 < s < 1 is called the fractional order of
the Laplacian. This fractional Laplacian operator has found useful ap-
plications to fluid mechanics [13], fractional kinetics and anomalous
diffusion [14-16], strange kinetics [17], fractional quantum mechanics
[18,19], Levy processes in quantum mechanics [20], plasmas [21],
electrical propagation in cardiac tissue [22] and biological invasions
[23].

The term A(gn+1 +gn-1) in Eq. (1) is essentially a discrete laplacian
AnGn = Qn+1 —2qn + qn-1. Thus, we can rewrite Eq. (1) as

% (@n + 229, + A8,q,) +qu + 2, =0 4
In this paper we examine the effects of a general fractional exponent s on
the nonlinear modes, trapping, and transport of magnetic excitations of
a coupled SRR array described by a discrete, fractional Laplacian. The
idea is to ascertain the degree of ‘robustness’ of the SRR phenomenology
when confronted with a perturbation not of its parameters, but of its
underlying mathematical description, in the form of a nontrivial math-
ematical change in the form of the discrete laplacian.

2. The model

We now proceed to replace A, by its fractional form (A,)* in Eq. (4).
The discrete fractional laplacian is given by [24]

5,2 +s,e7*
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ZK n—m)(q. —qm), 0<s<l1 (5)
m#n
where,
T(jm| —s)
K’ =Ly ——————. 6
(m) T(lm[+1+s) ©
Eq. (1) becomes
4> N
w+24q, + 1) K¥( m—qn)) +qn+ =0. 7
200+ 23 K (m =) (@ —an) +an+ 7 4, %)

mn

The equation of motion Eq. (7) can be derived from the dimensionless
Hamiltonian

H=3" (%) (q (14200 + 4,3 K (m = n) (4, em) +r / 4)q;
(8

and q, = 0H/0pn,p, = —0H/0qn, and the definition p, = dH/dq,. This
implies that H is a constant of motion: dH/dt= 0. Since in all of our
dynamical computations later on, we will choose g,(0) = 6n0,3,(0) =0,
this implies H = (1/2) + (y/4).

Now we look for stationary modes gn(t) = gncos(Qt + ¢). After
replacing this form into Eq. (7) and after using Eq. (5), one obtains the
following system of nonlinear difference equations for {g,}:

(C)]
—Q(g, +24q, + 2y _K*(m—
m#n

n)(qmqn))+qn+(3/4))( g =0

where we have also made use of the rotating wave approximation
(RWA): cos(x)® ~ (3/4)cos(x). This is necessary in order to obtain
closed-form expressions later on. Numerically, the RWA has proven
accurate in many cases [25].

Let us first look for linear waves. We set y = 0 and pose a solution of
the form g, = Acos(kn). After simple algebra, one obtains the dispersion
relation for the magnetoinductive waves, in closed form:

Q= (1 +2/174/1in(;11) sinz[(l/Z)k m]))l (10)

The condition Q2 > 0 leads to a constraint on the coupling values:

/1><4ZK sin? /2)km]2>. a1

Since the extremes of the band occurs at k = 0,7, we evaluate Eq. (11) at
these points, obtaining the critical coupling conditions as functions of s:

—1
/1>—1/2 and /1<<4Z1<f(m)—2> 12)
m odd

In particular, for s—1 one recovers the well-known condition |4| < 1/2.
A further reduction on Egs. (10) and (12) is possible, in terms of well-
known special functions:

o (1 +/1<2+2e’”‘1”(1 — 5)[(2s)(—e*(1 +5) + s zFl(}

-
IC(—s)IT(1 + $)T(2 +5)
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Fig. 2. Left: Dispersion relation Q(k,s)* for several different coupling values. Top left: 2 = 0.1, Top right: A = 0.2, Bottom left: 2 = 0.3, Bottom right: 1 = 0.5.

where I'(x) is the gamma function and ,F;(a,b,c;2) is the hypergeo-
metric function. The critical coupling values can be reduced to

1

T2+ 45 sign (T(—s)) 14)

/1>—1/2 and 1<

Examination of this expression reveals that, if we choose to stick to 1] <
1/2 the dispersion will always be real for all values 0 < s < 1. In that
case, we have well-defined ‘fractional magnetoinductive waves’. Fig. 2
shows the dispersion relation Q2 as a function of (k,s) for several
coupling values A. The bandwidth increases with s, while the average
gradient increases with increasing A. Fig. 3 shows density plots for the
mode profiles, for several values of the fractional exponent s. Here, for a
given s, we stack the mode profiles one after the other according to their
eigenvalues. As can be seen, an increase in the fractional exponent, in-
creases the bandwidth. Fig. 4 shows the allowed regions in coupling-
exponent space, for propagation of these fractional magnetoinductive
waves.

3. Root mean square (RMS) displacement

A common way to quantify the degree of mobility of an excitation, is
by means of its mean square displacement (n?). In our case,(n?) measure
the spread of the charge among the rings:

(n*) = anqn(t)z/zqn(t)2

(15)

For a completely localized initial charge g,(0) = A 8po and no currents,
(dg,/dt)(0) = 0, we have formally

=

ga(t (16)

” Y4
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where Q is given by Eq. (13). After replacing this form for g,(t) into Eq.
(15), one obtains after some algebra, a closed form expression for (n?):
i (1/2;:) " dk(d/dk)* (1 — cos(2 @ 1)) £

) = U+ (1/27) |7 dk cos(2 @ 1) a7

As we can see from the structure of Eq. (17), as time t increases, the
contributions from the cosine terms to the integrals decrease and, at long
times, (n?) approaches a ballistic behavior

oy |17 aewN ]
(n*) = ) T dk | t*(t>00), (18)
while at short times,

o [L [ (a2 | o
(n*) = ). Q 7 dk | (t—0 19)

Since the transport exponent is defined as the one corresponding to the
dominant behavior at long times, we can say that the transport in our
system is ballistic: (n?) ~ g(s)t?, where we can identify /g(s) as a kind of
characteristic ‘speed’ for the ballistic propagation.

Results are shown in Fig. 4, which shows g(s) for several coupling
values. We see that a well-defined speed is only possible for exponents
greater that a minimum one, s > 0.253. We also observe for a given s,
this speed increases with the coupling A, which is not surprising since a
larger coupling facilitates the motion between neighboring sites. For
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Fig. 3. Density plots of the spatial profiles 2 of the linear modes ordered according to their eigenvalue, for different fractional exponents. Horizontal axis denotes the
sites of the array, while the vertical axis contains the frequencies in increasing order (N = 133,41 = 0.4).
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Fig. 4. Left: Critical coupling as a function of the fractional exponent. Inside the shaded region, no wave propagation is allowed. Right: Ballistic speed g(s)
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function of the fractional exponent s, for several coupling values A. As A—1/2,g(s) diverges at s—1.

very small 4, the speed seems to converge to a set of closely-spaced
values. Also, for 4 < 1/2,g(s) remains finite throughout the entire frac-
tional domain. However, for A > 1/2, g(s) diverges at some s value.

4. Nonlinear modes

We now look at stationary modes when y # 0. Egs. (9) constitute a
system of nonlinear coupled difference equations, of the form F(q) = 0,
where q =(q1,42,...,qn)- The form of the cubic terms originates from the
insertion of a nonlinear (Kerr) dielectric inside the slit of the capacitors,

in the weak nonlinear limit. Numerical solutions are obtained by the use
of a multidimensional Newton-Raphson scheme. This method solves the
system of nonlinear equations using a seed, which is supposed to be an
approximate solution. If the initial guess is close to the real solution, a
convergence to the solution will be quickly reached. For instance, if we
want to find the fundamental solution in the bulk which is localized and
with a single maximum, we use as a guess something like (0,0,...,A,0,0,
...). This extreme guess is indeed a solution in the large Q2 limit where
A% = (4/3y)(1 +22)Q? and is a starting point or seed to find the funda-
mental nonlinear mode for a finite Q2. For a surface mode, we employ
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Fig. 5. Examples of low-lying nonlinear modes of the SRR array for fractional
exponent s = 0.4. On each plot, the vertical axes denotes the mode amplitude,
while the horizontal axis indicate positions along the SRR array. First row: Bulk
modes for A = 0.4 and y = —1. From left to right: ‘odd’ mode, even’ mode and
‘twisted’ modes, respectively. Second row: Bulk modes for 1 = 0.4 and y = 1.
Third row: Modes at and below the surface for 1 = 0.4 and y = 1. Fourth row:
Modes at and below the surface for 1 = 0.4 and y = —1. A reduced portion of
the entire lattice is shown (N = 55).

(A,0,0,...,0) as an initial condition. Other solutions can be reached
starting from different decoupled configurations: (0,0,...,A,A,0,...,0)
for an ‘even’ mode, (0,0, ...,A,—A,0,...,0) for a ‘twisted’ mode, etc.

We employ open boundary conditions and examine two-mode fam-
ilies, “bulk” modes, which are located far from the boundaries, and
“surface modes” when the mode is located at or near one of the ends of
the array. Fig. 5 shows some low-lying nonlinear bulk and surface modes
for s = 0.4, for the two possible signs of the magnetic coupling 4. Fig. 6
shows bifurcation diagrams of the mode families shown in Fig. 5. These
are obtained, by plotting the sum of the electric power content of the
uncoupled rings 3°,,¢2, as a function of the mode frequency. We observe
that the fundamental mode reaches down to the band edge, at low
powers, while the rest of the modes lie outside the band for any amount
of power. The behavior evidenced in Figs. 5, 6 is reminiscent of the
behavior seen in the fractional discrete nonlinear Schrodinger equation
[26]. For surface modes there is a family of fundamental surface solu-
tions located at ever-increasing distances from the boundary. After a few
sites from the boundary, they become indistinguishable from bulk
modes. Also, it should be mentioned that all these surface modes need a
minimum value of power strength to exist. This can be explained from
the observation that when we have a mode at the surface, the concen-
tration of magnetic energy produces an effective surface impurity at the
edge. The rest of the lattice is left with a very small magnetic energy, i.e.,
it becomes an effective linear lattice. As is well-known, a linear lattice
with an impurity at the edge needs a minimum amount of ‘strength’ to
give rise to a localized mode.

The existence of these localized nonlinear modes implies a spatial
concentration of charge and current, which in turn produces a spatial
localization of magnetic energy. This phenomenology of mode locali-
zation seems ‘robust’ against the particular value of a fractional
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Fig. 6. Bifurcation diagram for the power content versus mode frequency for
some families of nonlinear modes, for fractional exponent s = 0.4. Curves
marked "O’, ‘E’ and ‘T" denote odd, even and twisted modes, respectively. The
shaded regions mark the position of the corresponding linear bands.

exponent.
5. Modulational stability

As we have seen, our system is able to support the existence of
localized magnetic energy excitations, which can exist around any ring
in principle. We wonder now about the possible existence and stability
of nonlinear extended uniform excitations. To do that, we consider Eq.
(4) in the form:

2

d
Eﬂ%+ﬂ%+%2}%m—wwm—%ﬁ+%+xq}zo (20)
m#n

Now we pose a solution in the form of a uniform profile g,(t) =
Acos(Qt + ¢). Inserting this solution form into Eq. (20), followed by the
RWA approximation, we obtain
1+ (3/2)xA*

Q= 21

1+22 @
Thus, the uniform profile is possible only if 1+(3/2)y |A[* > 0 (we are
assuming || < 1/2). We compute qn(t)2 numerically from t =0 up to a
t = tmax and examine its numerical stability. The computation is quite
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standard and calls out for an integrator like a fourth-order Runge-Kutta,
or the use of a symbolic operator available in some symbolic mathe-
matics programs, such as Mathematica or Matlab.

Fig. 7 shows some examples of results obtained from this procedure,
where we plot the time-evolution of the SRRs spatial profile, for several
fractional exponents. From Fig. 7 we see that the evolution of a uniform
unstable profile consists in the persistence of the initial profile up to
some time, where it decays into radiation, after a very short transient.
The most interesting feature is the decay of the unstable state into fila-
mentary structures that, as time runs, merge and ultimately form un-
differentiated radiation. This contrast with other (no fractional) models
[27,28], where these filaments are also observed that persist in time and
give rise to discrete solitons embedded in radiation. In fact, this has been
proposed as a mechanism for producing discrete solitons
experimentally.

6. Dynamical selftrapping

We now examine the possible presence of magnetic energy self-
trapping of an initially localized excitation. The local nonlinearity favors
an accumulation of all energy at a given position. This in turn, causes an
effective impurity embedded in an effective linear lattice. As is well
known from linear theory, this creates a localized impurity mode which
in our case would correspond to a selftrapped state.

We create an initial magnetic localized excitation by inducing a
single current around one of the rings (at n = ng), by means of an
adequate antenna. We are interested in monitoring the amount of
magnetic energy that remains at long times at the initial ring. To
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quantify the trapping of magnetic energy, we use the long-time average
of the fraction of magnetic energy residing at the initial site:

Wi =1 [ o /1)

where

(22)
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ho = (1 / 2)(g5 + (1+24)d5 + 440y _K(m) (G, — o)) +(){/4)qg7 (23)

and H = (1/2) + (y/4), as shown before. Fig. 8 shows (Up) as a function
of y, for several fractional exponents. For a given value of s, (Up) in-
creases monotonically with y, with a more or less well-defined transition
around some y-value. We also see that all selftrapping curves lie one on
top of the other, with the highest one corresponding to the smallest s
value. In the linear limit (y = 0), we observe a non-zero value for (Up).
This type of ‘linear’ trapping is stronger as s decreases.

7. Conclusions

We have examined the physics of an extended model of a coupled
split-ring resonator array, by using a fractional form for the Laplacian
operator. A closed-form expression for the dispersion of plane waves as a
function of the fractional exponent is found, in terms of well-known
special functions. The critical coupling among rings beyond which no
magnetoinductive waves can exist was also obtained in closed form. The
diffusion of an initially localized excitation was shown analytically to be
ballistic at long time, with the fractional exponent only affecting the
value of the ballistic speed. This result is generic for a whole family of
tight-binding models obeying very general conditions. The selftrapping
of an initial excitation shows the same features found in other nonlinear
models, except for the presence of finite trapping in the linear limit for a
finite fractional exponent. This can be understood as the consequence of
the long-range coupling that is present when s—0. In this limit, the
bandwidth converges to zero, and all sites are coupled to each other with
similar couplings. The near-degenerate spectrum that results, leads to
partial trapping of an initially localized excitation, as shown before in
condensed matter for the simplex model [29].

Interestingly, the nonlinear phenomenology found in this model is
similar for all fractional exponents. It would be interesting to ascertain
whether the same is true in other different, but related models, such as
an array of coupled-waveguide resonators with a Kerr nonlinearity.
Here, the simultaneous coexistence of coherent and incoherent states
and its associated phenomenology [30,31] is indeed an interesting
ground on which to test the idea of a fractional Laplacian. The fact that a
change in fractional exponent changes the effective range of the
coupling -thus changing in this way the effective discreteness of the
system- would suggest that it could have an impact on the stability of
these (chimera) states.
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