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Nonlinear impurity in a square lattice
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We use the Green’s-function formalism for an exact, numerical calculation of the stationary states of an
electron propagating in a square lattice in the presence of a single, Holstein-type, impurity of arbitrary non-
linearity exponent. We find that two bound states exist above a certain exponent-dependent critical nonlinearity
strength. The localization length of the lower (higher) energy bound state increases (decreases) with nonlin-
earity strength. The dynamics of an electron, initially placed on the impurity site, reveals a sharp, self-trapping
transition for any nonzero nonlinearity exponent: below a certain nonlinearity threshold, the electron escapes
from the impurity site ballistically; above the threshold, there is partial trapping at the impurity site while the
untrapped fraction escapes to infinity, also ballistically. The self-trapping features are sharper in time and space
than for its one-dimensional analogue. [S0163-1829(99)07027-7]

The effects of nonlinear impurities on the electronic prop-
erties of solids is an old topic in solid-state physics, whose
importance has not diminished throughout the years. As is
well known,! in one and two dimensions, a linear impurity
embedded in a lattice has always a bound state no matter
how small the strength of the impurity. When the lattice
contains a finite fraction of these (linear) impurities, distrib-
uted randomly, it gives rise to the interesting phenomenon of
““‘Anderson localization’” where all the eigenstates are local-
ized, no matter how weak the disorder is. This, in turn, pre-
cludes any electronic transport.

Recently, attention has been given to the problem of non-
linear impurities. They appear in problems where strong
electron-phonon interactions are considered. In that case, the
lattice vibrations have the ability to adapt to the presence of
the electron and give rise to polaronic effects. Under certain
assumptions, the ‘‘effective’’ equation for the electronic am-
plitude turns into that of an electron moving inside a lattice
that contains nonlinear impurities, i.e., where the local site
energy at an impurity site depends on the electronic probabil-
ity at that site. The electronic evolution equation, known as
the discrete nonlinear Schrodinger (DNLS) equation has the
form

dc
dtn:VE Cm_Xn|Cn|aCn’ (1)

i

where n is a site of a d-dimensional lattice, V is the transfer-
matrix element, x,, is the nonlinearity parameter, and « is the
nonlinearity exponent. The summation in Eq. (1) is restricted
to nearest neighbors (nn) only. In the conventional DNLS
case, «=2 and y is proportional to the square of the
electron-phonon coupling at site n (Ref. 2). A previous study
of Eq. (1) for the one-dimensional nonlinear random binary
alloy,” revealed marked deviations from Anderson localiza-
tion: it was found that the disorder is completely overcome
by the presence of nonlinearity, leading to a partial trapping
of an initially localized electron (for nonlinearity above a
certain threshold) and a ballistic propagation of the un-
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trapped fraction. The transmittance of plane waves through
the medium displayed a power-law decay as a function of
system size.

An interesting mathematical equivalence was found by
Economou and coworkers® between the property that all
states are localized in a disordered d-dimensional system
(where d<?2) and the property that a potential well always
traps a particle in d dimensions (also for d<2). From this
perspective, it is interesting to pursue the examination of
various types of impurity problems since they might ulti-
mately contain all the information needed to understand
Anderson localization in several kind of disordered systems.
For the case of a single nonlinear impurity, we have exam-
ined in previous works the one-dimensional case in detail.
By using the Green’s-function formalism in a self-consistent
way, we obtained the stationary states analytically and ob-
tained a phase diagram showing the number of bound states
as a function of nonlinearity exponent and nonlinearity
strength. We also examined the transmission of plane waves
across the nonlinear impurity and the self-trapping dynamics
of an electron (or excitation) initially located at the impurity
site.””

In the present paper, we extend these previous studies to
two dimensions and consider the stationary states and self-
trapping dynamics of a nonlinear impurity embedded in a
square lattice. A recent work considers the calculation of the
bound states for this problem by using an approximate
Green’s-function approach.® We will pursue the bound state
problem using the exact Green’s functions and will solve the
relevant equations numerically. Then, we will examine the
self-trapping properties of the impurity by following the time
evolution of an electron (or excitation) initially located on
the nonlinear impurity.

Bound States. Let us consider the problem of determining
the existence of bound states for an electron (or an excita-
tion) moving on a square lattice that contains a single gen-
eralized nonlinear impurity at the origin n=0. The Hamil-
tonian is

H=H,+H,, ()
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where 2.0
Hy=V>, (In)(m|+hc.) (3) 161 =91
" 11y
and 12 """ o ety
a=1
H,=x|Cy|*10)(0], (4) 08| w2
where the {|n)} represent Wannier electronic states, V is the
nearest-neighbor transfer-matrix element, and y is the non- 0.4 -
linearity parameter. The {C,} are the electronic probability =3 =4
amplitudes at site n and >0 is the nonlinearity exponent. 0.0 ‘ ‘ ‘ ‘
The sum in Eq. (3) is restricted to nearest neighbors only. 00 02 04 06 08 10
To get a preliminary feeling on our problem, let us con- 2
4V/Ep)

sider a simple estimate of the existence of bound states
around a single generalized nonlinear impurity of strength y
and exponent a embedded in a d-dimensional linear lattice,
with lattice spacing a. If we assume an electronic bound state
W with localization length X\, then on normalization grounds
we have |W|>~1/A. Now, in order to have a bound state,
the decrease in potential energy must overcome the increase
in kinetic energy due to localization. The decrease of poten-
tial energy is, in magnitude

Av:fddrV(r)|‘I'(r)|2=fal“rxl‘lf(r)l“l‘lf(r)|2

xa’ 5
N1+ (al2)]” )
While the increase in kinetic energy is
h2
AK~ .
N2 (6)
Potential energy dominates over kinetic energy if
h2
}\d[1+(a/2)]—2<1- (7)
2mya’

Now, if we let y—0, then we should have A—. To be
consistent with Eq. (7) we must have

d(2+a)<A4. (®)

For a two-dimensional lattice (d=2), Eq. (8) predicts that as
soon as a>0, a minimum nonlinearity strength is needed to
create a bound state. The borderline case a=0, i.e., the lin-
ear impurity, is well known and always displays a bound
state.!

The above prediction will be confirmed indeed by the
formal solution, based on lattice Green’s Functions. For con-
venience, we normalize all energies to a half bandwidth, 4V

and define: z=E/4V, H=H/4V, and y= y/4V. The dimen-
sionless lattice Green’s function G=1/(z—H) can be for-
mally expanded as'

G=G"9+ G(O)H1 GO+ G(O)HIG(O)H] GO ... , (9)

where G'*) is the unperturbed (y=0) Green’s function and
H,=vy|Cy|%/0){0|. The sum in Eq. (9) can be carried out
exactly to yield

FIG. 1. Solid lines: Real part of the right-hand side of Eq. (13)
vz(4V/E,,)2, for different « values. Dashed line: 1/7. Intersec-
tion(s) of these two curves outside the band determine the ener-
gy(ies) of the bound state(s).

Y Col“GiuoGln

Gan=GO+ ——
= e G

(10)

where Gp,=(m|G|n). The energy of the bound state(s), z,,
is obtained from the poles of Gp,, i.e., by solving 1
=y|CP|“G) . The bound state amplitudes C'” are ob-
tained from the residues of G,,(z) at z=z, . In particular,

2
Gy (zp)

G(,)(()O)(Zb) '

Inserting this in the bound state energy equation leads to

€y 1> =Res{Goo(2)};=z, = — (11)

a+1
96w ()
[~ G (21

Now, for the square lattice, Gf,%)(z) =(2/m)\mK [m], where
we have defined m=1/z> and K[m] is the complete elliptic
integral of the first kind K[m]=[T[1—m sin*(¢)] "?d .
Inserting this into Eq. (12), and using K'[m]=(1/2m)((1
—m) 'E[m]—K[m]) where E[m] is the complete elliptical
integral  of  the second  kind:  E[m]=[T71
—m sin’(¢)]"*d ¢, we finally obtain the following nonlinear
equation for the bound state energies

a+1
_ACm) mKmlyt (1)

1
- al2
7 [(Z/W)(%>E[m]]

Analysis of Eq. (13) reveals that, for m=<1 (i.e., outside the
band), its right-hand side is real and positive. Figure 1 shows
the shape of the right-hand side of Eq. (13) for several dif-
ferent « values. For a given a>0, there exists a critical
nonlinearity threshold 7y, below which, there is no root (no
bound state). At y= 7, there is exactly one root (one bound
state), while above threshold, y> vy, , there are two roots
(two bound states). The value of 7y, increases with the non-
linear exponent, . Figure 2 displays a phase diagram in
nonlinearity strength—nonlinearity exponent space showing
the critical curve above which two bound states exist, while

(12)
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FIG. 2. Phase diagram showing the number of bound states as a
function of the normalized nonlinearity parameter y and the expo-
nent a. The solid line is the critical line where only one bound state
exists.

none (one) bound state exists below (on) the critical curve.
For the conventional (DNLS) case where a=2 the critical
nonlinearity is y,= 1.366, that is, y./V=5.464, substantially
larger than for the one-dimensional case (x,/V=2).° In Fig.
3, we show the normalized bound state energies as a function
of normalized nonlinearity, for several values of the expo-
nent, ranging from a=0 (linear impurity) up to «=4. By
denoting the solution(s) of Eq. (13) by m, , the bound state
probability at the impurity site can be written as
2
|Cgh)|2:(z)w (14)
E[m;]

The electronic probability at the impurity site for the bound
state(s), as a function of nonlinearity, is shown in Fig. 4, for
several exponent values. For a given nonzero exponent, as
nonlinearity is increased beyond threshold value, one of the
bound states ‘‘shrinks’’ quickly around the impurity site,
while the other ‘‘spreads’ increasing its localization length.
This can be seen from the fact that in any dimension d, the
bound state localization length \ for |E,|—ZV<ZV, obeys:*
N~ '=(|E,|/V)—Z, where Z is the coordination number. In

3

FIG. 3. Normalized bound state energy z; as a function of the
normalized nonlinearity parameter 7y, for different values of the
exponent a.
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FIG. 4. Occupation probability of the nonlinear impurity site in
the bound state(s) as a function of the normalized nonlinearity pa-
rameter vy for different exponents «.

our case this implies N '~ +/|z,]— 1. A similar feature was
also observed in the one-dimensional case.® We note, in
passing, that Figs. 2 and 3 are very similar to the ones ob-
tained if one uses a Hubbard-type Green’s function.®

Self-trapping Dynamics. We place the electron at the im-
purity site at #=0 and observe its time evolution [Eq. (1)] for
relatively long times. The numerical scheme is that of a
fourth-order Runge-Kutta, where the accuracy is monitored
through total probability conservation. To avoid undesired
boundary effects, a self-expanding lattice is used.’ To ascer-
tain the presence or absence of a self-trapping transition, we
compute the long-time average probability at the impurity
site, defined by

T
Py= lim(l/T)J [Co()|?dt, |Co(0)|=1. (15)

T— 0
To quantify the electronic propagation, we also examine the

mean-square displacement

2 (16)

(n%)=2 w’|Cy(1)

where the normalization =,|C,(7)|>*=1 has been used. The
increase in the coordination number with respect to the one-
dimensional chain, makes the propagation time scale shorter:
In the absence of any impurity, (n*)=4(Vr)> whereas for
one dimension, (n*)=2(V#)?. The extra dimensionality also
has the effect of making any nontrapped wave-packet decay
faster in space (as O(1/N)?). The square symmetry of this
one-impurity problem reduces the computational demands
considerably with respect to a case with say, many impurities
randomly distributed.

Figure 5 shows P, versus the normalized nonlinearity pa-
rameter 7y for several different nonlinearity exponents «. As
soon as @>0, we observe a self-trapping transition around a
specific y whose value (and the sharpness of the transition)
increases with «. In particular, for the conventional DNLS
case (a=2), the transition occurs at approximately vy
~1.69. This value is substantially higher than for the one-
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FIG. 5. Time-averaged probability at the nonlinear impurity site
as a function of the normalized nonlinearity strength 7 for different
exponents a.

dimensional case (y~0.8) and was first estimated using a
different approach, by Dunlap, Kenkre, and Reineker.’
Figure 6 shows electronic probability snapshots for the
conventional («=2) DNLS case for three different times
and for two different nonlinearity parameter values. One cor-
responds to the linear impurity case (y=0); the other to a
nonlinear strength slightly larger than the critical one. In the
first case, the probability profile spreads quickly away from
the impurity site; in the second case, there is partial selftrap-
ping at the impurity, while the untrapped fraction escapes
away ballistically. This propagation feature is most promi-
nent in Fig. 7, where we plot the electronic mean-square
displacement as a function of time, for the conventional
DNLS case and for several different nonlinearity parameter
values. After a very short transient, the propagation ap-
proaches a ballistic behavior in all cases. The “‘speed’’ of the
propagation gets substantially smaller past the nonlinearity
threshold for selftrapping: the onset of trapping reduces the
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FIG. 7. Electronic mean square displacement as a function of
time V¢ for completely localized initial conditions and @=2, and
for several nonlinearity parameter values.

total probability wave that can escape to infinity. The trapped
electronic fraction at the impurity site displays persistent os-
cillations (not shown), with amplitude (frequency) that de-
creases (increases) with nonlinearity strength. We associate
this oscillations with the breather mode proved by Aubry and
MacKay to exist in the large 7 limit.'°

Discussion. We have examined the problem of the bound
states for a rather general nonlinear impurity embedded in a
(linear) square lattice, by means of a straightforward gener-
alization of the Green’s-functions formalism. We found that
a nonlinearity threshold exists beyond which, two bound
states are possible. One of them increases its localization
length upon increasing nonlinearity; the other decreases it. A
quantum-mechanical argument shows that, for the nonlinear
impurity, the marginal dimension for the existence of a
bound state decreases with respect to the case of a linear
impurity; in particular, for the conventional («=2) DNLS
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FIG. 6. Electronic probability density snapshots for an electron initially located on a single site (‘‘site zero’’) of a square lattice. Upper
row: y=0 (linear impurity). From left to right V=2, 4, and 6. Lower row: Same as before but for y=1.75. The center peak, which has been
truncated for visualization, extends up to a height of approximately 0.7.
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impurity it is equal to one, whereas for the linear case the
marginal dimension is equal to two. It would seem that the
nonlinear character of the impurity has somehow produced a
sort of ‘‘dimensional reduction.”” If one were to apply the
potential well analogy of Economou et al., it could be pre-
dicted that a two-dimensional nonlinear random binary alloy
would not have all of its eigenstates localized. This is rein-
forced by the observation that one needs a minimum amount
of nonlinearity to dynamically selftrap an initially localized
electron around a nonlinear impurity. However, the useful-
ness of this is severely limited when it comes to predict the
consequences for transport, given that, in the nonlinear sys-
tem the eigenstates constitute just particular solutions and
cannot be superposed to construct the time-dependent wave
function.

The dynamics of an electron, initially localized on the
impurity site, revealed the existence of an exponent-
dependent self-trapping transition at a certain nonlinearity
strength. The situation is qualitatively similar to the one-
dimensional case, although the transition is, in general

PRB 60

sharper and requires higher nonlinearity strength. This dy-
namical self-trapping transition has a higher threshold than
that for the appearance of a bound(s) state(s), suggesting that
the onset of a bound state is in a sense, a precursor for the
onset of dynamical self-trapping. Unlike the case of a linear
impurity though,' the exact connection between stationary
and dynamical quantities is unknown due to the lack of the
superposition principle, as noted above. After a short tran-
sient, the mean-square displacement assumes a ballistic
form, with a ‘‘speed’” that decreases significatively beyond
the threshold for self-trapping. We expect these features to
persist in the case of a two-dimensional nonlinear random
binary alloy, where due to the increased dimensionality and
on normalization grounds, one would expect nonlinear ef-
fects to be strictly local. The propagation of an initially lo-
calized excitation would be affected only by the local envi-
ronment close to the initial site, with the rest of the
impurities playing no role. They might affect though, the
propagation of an extended excitation as they do in the one
dimensional case.’

*Electronic address: mmolina@abello.dic.uchile.cl

'E. N. Economou, Green’s Functions in Quantum Physics,
Springer Series in Solid State Physics Vol. 7 (Springer-Verlag,
Berlin, 1979).

2M. I. Molina and G. P. Tsironis, Int. J. Mod. Phys. B 9, 1899
(1995).

3M. I. Molina and G. P. Tsironis, Phys. Rev. Lett. 73, 464 (1994).

4E. N. Economou and C. M. Soukoulis, Phys. Rev. B 28, 1093
(1983); E. N. Economou, C. M. Soukoulis, and A. D. Zdetsis,
ibid. 30, 1686 (1984).

SM. I. Molina and G. P. Tsironis, Phys. Rev. B 47, 15 330 (1993).

5G. P. Tsironis, M. I. Molina, and D. Hennig, Phys. Rev. E 50,

2365 (1994).

"M. 1. Molina, in Topics in Theoretical Physics, edited by V. C.
Aguilera-Navarro, D. Galletti, B. M. Pimentel, and L. Tomio
(IFT, Sao Paulo, 1996).

8K. M. Ng, Y. Y. Yiu, and P. M. Hui, Solid State Commun. 95,
801 (1995).

°D. Chen, M. I. Molina, and G. P. Tsironis, J. Phys.: Condens.
Matter 5, 8689 (1993); D. H. Dunlap, V. M. Kenkre, and P.
Reineker, Phys. Rev. B 47, 14 842 (1992).

105, Aubry, Physica D 71, 196 (1994); R. S. MacKay and S. Aubry,
Nonlinearity 7, 1623 (1994).



