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Abstract

CrossMark

In this work we study analytically and numerically the spectrum and localization properties
of three quasi-one-dimensional (ribbons) split-ring resonator arrays which possess magnetic
flatbands, namely, the stub, Lieb and kagome lattices, and how their spectra are affected by

the presence of perturbations that break the delicate geometrical interference needed for a

magnetic flatband to exist. We find that the stub and Lieb ribbons are stable against the three
types of perturbations considered here, while the kagome ribbon is, in general, unstable. When
losses are incorporated, all flatbands remain dispersionless but become complex, with the
kagome ribbon exhibiting the highest loss rate. The stability of flatband modes of certain split-
ring resonator arrays suggests that they could be used as components of future stable magnetic

storage devices.
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1. Introduction

Magnetic metamaterials (MMs) constitute a class of novel
artificial materials characterized for having a negative magn-
etic permeability over a frequency range. A usual realization
of such a system consists of an array of metallic split-ring
resonators (SSRs) that are coupled inductively [1]. One of the
most attractive features of SRRs is the possibility of a negative
magnetic response over a given frequency region, which might
overlap the frequency region where the dielectric constant of
the material is negative. This gives rise to a negative index
of refraction inside that frequency interval and thus, makes
SRRs attractive for use as a constituent in negative refraction
index materials [2]. Their magnetic response can be tailored
to certain extent, although there are heavy Ohmmic and radia-
tive loses. A possible solution that is to endow the SRRs with
some sort of external gain, such as tunnel (Esaki) diodes [3] to
compensate for such loses.

A periodic array of SRRs has, in principle, an energy spec-
trum composed of a number of bands. The breaking of the
translational invariance, by means of impurities or disorden,
gives rise to localization. Recently, attention was called to
another way to achieve localization in a periodic system:
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flatbands. Simply stated, a flatband lattice is a periodic system
characterized by having one or more flatbands in its spectrum.
Since the group velocity of a state belonging to one of these
bands is zero, any flatband eigenstate or a superposition of
them will exhibit no mobility. This allows for the formation
of compacton-like structures, which are completely localized
in space, exhibiting no dynamical evolution thus, constituting
a new form of localized state in the continuum [4]. Some sys-
tems where flatbands have been studied and observed include
optical [5, 6] and photonic lattices [7-9], graphene [10, 11],
superconductors [12-15], fractional quantum Hall systems
[16-18], and exciton-polariton condensates [19, 20]. The
origin of the flatbands states can be traced back to an exact
geometrical interference condition.

The existence of flatbands in certain magnetic SRR arrays
imply the existence of eigenmodes that do not diffract across
the array. A linear combination of these modes will also be
degenerate and will not diffract as well. Thus, it is possible, in
principle, to store magnetic energy in certain spatial configura-
tions that will remain inmobile in time. This feature will only be
of practical use if this difractionless character is stable against
perturbations that arise naturally in real life magnetic arrays,
such as fabrication defects or errors in the initial conditions.

© 2017 IOP Publishing Ltd  Printed in the UK
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Figure 1. Quasi-onedimensional arrays of SRRs. (a) Stub ribbon, (b)Lieb ribbon, (c) kagome ribbon.

In this work we analyze the important problem of the sta-
bility of these states under perturbations of the initial charge,
the presence of anisotropy of the couplings, or noise in the
coupling between magnetic units, for three ribbon arrays of
different geometry. As we will see, two out of the three sys-
tems examined proved to be stable. This gives us hope that
these systems could be at the heart of future magnetic storage
devices.

2. The model

The simplest MM model consists of a quasi-onedimensional
lattice (ribbon) of metallic split-ring resonators (SRRs), cou-
pled inductively [21], in the absence of dissipation, driving
and nonlinearity (figure 1). Each SRR can be thought of as an
approximate RCL circuit and thus, possessing a capacitance,
an inductance and a resistence. They are further characterized
by a resonance frequency wy ~ 1/ VLC.

The evolution of the charge Q residing on the nth-ring is
given by

d2

dr?

+&=0, ()

LOw+ D MumOnm | + =

m¥#n

where L is the self-induction of the nth-ring and My, is the
mutual inductance between rings n and m. We can express this
in dimensionless form by defining 7 = wy ¢, gn = On/CUo,
Anm = Mum/L, with Uy a characteristic voltage across the slit
of the ring. Equation (1) becomes

2
a2 gn(T) + Z Anmdm(T) | + gn(7) = 0. )
m#n

Here, A\ym represents the ratio between the mutual and the
self inductance of the rings, and its value depends on the pre-
cise geometry of the rings as well as on the mutual distance
between nearby rings. Hereafter, and for the sake of simplicity
we will consider coupling to nearest-neighbors only: Apm = A
if n, m are nearest neighbors, zero otherwise.

The stationary modes are obtaining by posing a solution of
the form gn(7) = gn exp(iQ27), where the gn amplitudes obey

—-? (‘In + /\Zflm> +aqn=0, 3)
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where the sum is restricted to nearest neighbors only. Since
each ribbon is a an arrangement of unitary cells periodic in the
horizontal direction, we set in equation (3) g; = A; exp(ikn)
where 7 is the position of the unitary cell and j labels the rings
inside the unitary cell. Using this form into equation (3) leads
toa M x M system of equations for the A; amplitudes, where
M is the number of rings inside a unitary cell. After imposing
that the determinant of this system be zero in order to have
nontrivial solutions, one arrives to a polynomial equation for
€2 whose solutions gives us the shape of the M allowed bands
02 (k).

We proceed now to examine analytically and numerically
the spectral properties of three quasi-one-dimensional (rib-
bons) split-ring resonator lattices: stub, Lieb and kagome lat-
tices, which are characterized for containing flatbands in their
spectrum.

3. The stub ribbon

We begin by examining the stationary modes of the stub
ribbon, whose geometry is shown in figure 1(a). The ribbon
has a unitary cell that contains three rings, implying an spec-
trum with three bands. They are given by

0 =1

1

1+ /3 +2cos(2k) A’
The condition 9% > 0, leads to the condition A <1/ V5=
0.447. Under this constraint, we have all three bands real.
Figure 2 shows the three bands.

After solving numerically the stationary equation (3) for the
stub geometry, we obtain all the modes for this ribbon. Results
are shown in figure 3. The top part shows all the eigenvalues

“
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Figure 2. The bands for the stub ribbon (A = 0.3).

ordered in descending order. The flat band is clearly visible.
The center part shows all the modes in space, where we have
placed each eigenvector in correspondence with its associated
eigenvalue. The complexity of the figure is only apparent.
The plot appears divided into sectors because of the particular
numbering employed for the sites. While for a 1D lattice each
site can be numbered in an unambiguous manner, and one
can hang the plot of the eigenmodes one behind the other, in
our case, the geometry is not quite 1D, and we have labelled
all sites of the first row as 1,2, - - - P. The sites on the second
(diluted) row were labelled P+ 1,P +2,---N. An example
of this numbering is shown at the top of figure 3. Thus, on our
plot the amplitudes for the first 85 sites or so, correspond to
the amplitudes on the first row, while the amplitudes for sites
85-130 correspond to the amplitudes on the second row of the
stub ribbon.

The modes between n =45 and n = 85 belong to the
degenerate eigenvalue Q% =1 and they are highly local-
ized and form a Stark-like ladder [22] with each mode being
shifted by one lattice site. The rest of the modes belonging to
the dispersive bands, show extended states as usual. In addi-
tion we observe the existence of edge modes (marked by red
circles), whose shape is shown in the lower part of the figure,
where each color denotes the value of the charge residing at a
particular ring. Thus, green corresponds to ¢, = 0, yellow to
gn = 1 and black to g, = —1.

The localized modes belonging to the flat band can be
combined to yield compacton-like eigenmodes. The dynamics
of such eigenmode shows no evolution, because of an exact
phase cancellation: The phase distribution of a compacton-
like state is such that during the time evolution, they cancel on
all nearest-neighbor sites, impeding in this manner the time
evolution of the mode. Some examples of this are shown at the
bottom part of figure 3 and at the top of figures 4(a) and (b).
The evolution of these two modes is shown in the bottom half
of the figure, which shows the participation ratio (PR) versus
time. The PR is a measure of localization of a state and is
defined as PR = (3", |q:(1)[*)?/ Y, |q:(1)]*. Roughly, it meas-
ures the number of sites in a lattice that are effectively excited
by a mode. For a completely localized mode on a single site,
PR =1, while for a completely delocalized state, PR = N,
where N is the number of lattice sites. In our case we see that
the PR of the two modes does not change with time. As a
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Figure 3. Top: Eigenvalues of the stub ribbon, arranged in order
of decreasing value. The flat band is clearly appreciable at {2 = 1.
The top part shows the numbering scheme used to label the sites.
Center: Density plot of the eigenvectors of the stub ribon, arranged
in order of increasing eigenvalue. Bottom: Form of the edge modes
marked in red.

contrast, we also plot the PR of an initial profile consisting of
a single site initially charged. In this case, as time increases
the excitation expands in space filling eventually the whole
SRR array.

3.1. Dynamical stability

Let us now focus on the three-sites fundamental stub mode
(figure 4(a)) and how its evolution is affected by the presence
of several perturbations. First, let us disturb the value of the
initial charge on the SRRs: g; = A; + 6;, where A; = £1 and
d; € [—w,w], where 2w is the disorder width. Figure 5 shows
the evolution of the PR of this perturbed compact mode, for
several disorder widths. As we can see, the mode is quite
robust, even for large disorder widths and only for ¢ < 100
there are strong fluctuations signaling the redistribution of
charge among the SRRs. Eventually, the system converges
to the non-disordered compact mode, plus some small oscil-
lations. The general features of the evolution in this case
can be traced back to the fact that the initial condition can
be expanded in modes belonging to all the bands, flat and
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Figure 4. Top: Example of the two lowest-lying compact modes of
the stub lattice. Bottom: Time evolution of the participation ratios
(PR) of the two compact modes and comparison with the case of an
initially localized profile. The inset shows a magnification of the PR
of the two modes.

dispersive and thus, the only portion of the disturbed ring
that will evolve away from the ring is the noise part, leaving
behind the original ring. In this sense, the disturbed ring is
stable. This argument applies to any array, so we can predict
stability for all three geometries.

Next, we analyze the effect of a degree of anisotropy.
We now allow two different couplings: \;, the coupling
between nearest neighbors along the horizontal direction,
and )\, the coupling between nearest neighbors in the ver-
tical direction. In a real system this could be due to a uni-
form stretching of the array, if it is lying on a substrate.
Let us define an anisotropy parameter as 6 = \,/A,. From
figure 6 we see that a degree of anisotropy does not destroy
the flat band.

The evolution of the PR of the perturbed compact mode,
shows that it just oscillates around a constant value, but it
does not decay. In this case, the oscillation is about PR ~ 2,
instead of 3, which is due to the fact that for § = 0.5 the
horizontal sites are farther apart and so, more charge needs
to accumulate at the middle site in order to maintain the
phase relation necessary for a compact mode to persist.
Given that the PR is stable, we can estimate the value
around which the PR oscillates as follows: By imposing
the condition that under the new couplings, the charge is
redistributed in such a way as to satisfy the interference
condition, one obtains

(262 +1)?

PR(0) = 264 + 1.
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Figure 5. Participation ratio PR of the fundamental mode of the
stub ribbon as a function of ¢ for a random perturbation of the
initial conditions. The width of the noise is w = 0.1 (top), w = 0.25
(middle) and w = 0.5 (bottom).

For § = 1/2 this gives 2 which almost coincide with the time
average of the PR.

Now, let us consider a different and more interesting type of
perturbation: Noise in the mutual couplings. This is given by
Xj = Aj 4+ 0X; with A\j = X and d)\; € [-w, w]. In practice,
this type of perturbation could be due to a random variation of
the array inter distances coming from a defectively built array.
As we can see from figure 7, the inclusion of coupling noise
does not destroy the flat band, but strongly affects the modes
in the dispersive bands. These modes show now the phenom-
enon of localization. This is nothing else than off-diagonal
Anderson localization. It is quite visible here since we have
chosen a large value for the disorder width, w = 0.25. The
degenerate modes with 0> = 1 still show the stark ladder-like
spatial distribution. The dynamical evolution of the PR shown
in figure 8 shows that the PR is stable, albeit with oscilla-
tions. The fact that the PR never surpasses de value of 3 when
oscillating tell us that the charge is being distributed back and
forth among the three SRRs only. Given the large amount of
disorder involved (w = 0.25), the robustness of the dynamical
evolution is impressive [23].
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Figure 6. Top: Eigenvalues 22 for a long (N = 120) Stub ribbon
for an isotropy parameter 6 = 1/2. The eigenvalues are plotted in
order of decreasing value and we show near the flat band region.
Bottom: PR of the compact stub mode for an anisotropy parameter
6=0.5.
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Figure 7. Stub ribbon with coupling disorder width w = 0.25 and
A = 0.3. Top: Eigenvalues of the stub ribbon, ordered according to
decreasing value. Bottom: Density plot of the eigenvectors of the
stub ribon, arranged in order of increasing eigenvalue.
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Figure 8. Evolution of the participation ratio PR for the
fundamental compact mode of the stub ribbon subjected to coupling
noise (A = 0.3, w = 0.25). The inset shows the shape of the
compact mode after a long evolution time (+ = 1000).

4. The Lieb and kagome ribbons

For the Lieb and kagome geometrical arrays we repeat exactly
the same procedure as the one carried out for the stub lattice
(section 3). These arrays are shown in figures 1(b) and (c).
We shall proceed with summarizing the main results for these
two arrays.

The Lieb ribbon can be considered as a depleted square
lattice ribbon. Its unitary cell contains five sites (SRRs),
implying an spectrum consisting of five bands:

0 =1

0=

1
1 £ 4/2(1 + cos(2k))A
1
14 /44 2cos(2)A (6)

We have a flat band at % = 1. The bands are real provided the
coupling satisfies |\| < 1/v/6 = 0.408. On the other hand, the
kagome ribbon also has five units (SRRs) in its unitary cell
and its five bands are given by

2

1

2 _
@ = 1—2X\
0 = 1

1+ /2(1 + cos(2k)) A
1

2

O = 7

1 (1 v/3+2cos(20)) A

and shows a A-dependent flat band Q*=1/
(1 —2)). Again, to ensure the existence of the five real bands,
—1/(1+V5) <A< 1/2.

The band structure of the Lieb and kagome ribbons are
shown in figure 9. The eigenmodes belonging to the flatbands
of the Lieb and kagome ribbons are also highly localized, in
a manner quite similar to the stub case (figure 3) and [24].
Combinations of these modes give rise to compact modes in
the form of closed rings, as the ones shown in the inset of
figure 10 for the Lieb case, and in figure 11 for the kagome
case. The fundamental Lieb mode is composed of four SRRs
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Figure 9. Top: The five bands of the Lieb ribbon. Bottom: The five
bands of the kagome ribbon. The coupling value is A = 0.5 in both
cases.
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Figure 10. Participation ratio as a function of time for several
combinations of Lieb compact modes. The PR = 4 value
corresponds to the fundamental mode. The case PR = 6 (4.5)
corresponds to a linear combination of two fundamental modes in
phase (antiphase).

forming a ring. Two of them have charge g and the other two
charge —¢q. In the kagome case, the fundamental mode is com-
posed of six SRRs, where three of them have charge ¢ while
the rest have charge —q. The value and sign of the charges are
chosen as to ensure that the sites outside the rings will receive
no charge at any time, thus isolating the fundamental mode
and ensuring its lack of dynamical evolution.
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Figure 11. Participation ratio as a function of time for two
combinations of kagome compact modes. The PR = 6 value
corresponds to the fundamental mode, while the PR = 10
corresponds to a linear combination of two fundamental modes in
antiphase.
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Figure 12. Evolution of the participation ratio of the fundamental
(a) Lieb and (b) kagome compact modes with an initial noise.
(w=0.5).

In-phase and out-of-phase combinations of compact modes
are degenerate stationary modes and therefore, they also do
not diffract.

As we did for the stub ribbon, let us now look at the
dynamical evolution of the fundamental compact modes
under the influence of perturbations such as noise in the initial
charge, anisotropy of the couplings and noise in the individual
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Figure 13. Top: Eigenvalues of the Lieb ribbon, ordered according to decreasing value, for two values of the anisotropy parameter: 6 = 2
(left) and § = 1/2 (right). Bottom: Time evolution of the participation ratio of the Lieb compact mode for two anisotropy parameter values.
The horizontal dashed lines mark the theoretical estimate for the PR of the deformed compact modes.

couplings. Figure 12 shows that both ribbons are robust
against noise in the initial value of the charges.

Next, let us examine the stability against a degree of aniso-
tropy in the couplings. Now we have to define two aniso-
tropy parameters. For the Lieb lattice, ; = A,/ A,, where )\,
is the coupling between nearest neighbors in the horizontal
direction and ), is the coupling between nearest neighbors
in the vertical direction. For the kagome lattice we define
Ok = An/ Mg, where )\, is the coupling between nearest neigh-
bors in the horizontal direction while A is the coupling along
the diagonal direction. As we can see from figure 13, the flat
band of the Lieb ribbon is robust against coupling anisotropy
for several ¢ values, including large values compatible with
the existence of the flat band. The evolution of the participa-
tion ratio of the compact Lieb mode (4 sites) show that it is
stable, with oscillations around a new equilibrium value. As
we did for the stub lattice, we estimate the equilibrium PR
by imposing the condition that under the new couplings, the
charge is redistributed in such a way as to satisfy the interfer-
ence condition. Thus, one obtains the estimate

(1+0%)?
1464

For the cases shown in figure 13, this estimate predicts that
for 6 = 2 the new stable PR should be PR = 2.94, while for
0 = 1/2, the PR should also be 2.94, exactly as shown in the
figure. This is not a coincidence, since PR(9) satisfies the
symmetry PR(§) = PR(1/6).

A radically different situation occurs for the kagome ribbon
[25]. As we can see from figure 14, as soon as the anisotropy
value is different from one, the flat band is destroyed, even for

PR(3) = @®)

very small anisotropy values. When one propagates the com-
pact kagome mode, it deforms quickly spreading its charge all
over the lattice, as shown by the evolution of its PR. The oscil-
lations that appear for # > 600 are due to finite-size effects,
where the magnetoinductive wave bounces from the array
boundary.

Finally, let us consider a random perturbation of
the individual couplings, as we did for the stub lattice:
Xj = Aj+ 0Ny, where A = X\ and dX; € [—w, w]. Results
are shown in figure 15. For the Lieb ribbon we can see that
the flat band survives the addition of coupling noise, even
for large disorder strength (w = 0.25) while for the kagome
ribbon, the flat band is destroyed even for very small disorder
strength (w = 0.05). The evolution of the PR for the Lieb
ribbon shows that it is quite robust with a PR value around the
one corresponding to the fundamental mode (PR = 4), while
for the kagome case, the PR quickly reaches ‘macroscopic’
values, of the order of N. To summarize the stability results
for all three ribbons, we show in table 1 the response of each
lattice to the three types of perturbations considered in this
work. While the stub and the Lieb ribbons are stable to all the
perturbations, the kagome was only stable to the initial noise
only, being unstable against the other two. Clearly, there is a
strong geometrical element at play here.

5. Dissipation

It is well-known that in SRRs some degree of loss (radiative
and resistive) is always present. It is natural then, to wonder
whether our flatbands survive the addition of dissipation. In
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Figure 14. Top: Eigenvalues of the kagome ribbon for different anisotropy values. The inset shows the region where one has a flat band
when ¢ = 1. Bottom: Evolution of the participation ratio for the compact mode of the kagome ribbon for two anisotropy values.

the presence of losses, the equation for the stationary modes
changes to

_Qz <‘Zn +A Z‘bn) + I’YQqn +aqn = 0 (9)

where 7 is the loss coefficient. By means of elementary alge-
braic manipulations, one can recast equation (9) as

Bau+AY qn=0
m#n

i.e. the well-known tight-binding equation, where the eigen-
value [ is given by

1470
6:1—(%).

The mapping defined by equation (11) allows us to transit
between our SRRs ribbons with dissipation, and the tight-
binding ribbons, of the same geometry. We immediately see

(10)

an

that the flatbands of the tight-binding system imply flatbands
on the SRR system, which are complex as soon as the loss
coefficient is included. That is, the flatbands without losses
‘survive’, meaning they do not become dispersive, but they
become complex. The flatbands of the tight-binding ribbons
were examined by us in a previous work [26]. These are 5 = 0
(stub and Lieb), 8 = —2X (kagome). From equation (11), we
obtain the flatbands of the SRRs with losses:

Q=(1/2) (i + V4 — ) (12)
(stub and Lieb),
_i(v/2) 1 (v/2)*
Q_1—2A+\/1—2)\_(1—2)\)2 13

(kagome). Comparison between equations (12) and (13)
shows that dissipation effects are stronger in the kagome lat-
tice than in the stub and Lieb lattices.
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Figure 15. Top: Eigenvalue spectrum for the Lieb ribbon (left) and the kagome ribbon (right), for w = 0.25 (Lieb) and w = 0.05 (kagome).
Bottom: Evolution of the participation ratio of the Lieb (left) and kagome (right) fundamental compact modes.

Table 1. Summary of the stability behavior of the three ribbons
against the three types of perturbation.

Initial
Ribbon noise Anisotropy Coupling noise
Stub Stable Stable Stable
Lieb Stable Stable Stable
Kagome Stable Unstable Unstable

6. Conclusions

We have examined the spectral and dynamical properties of
three quasi-onedimensional (ribbons) magnetic lattices that
have a flatband in their spectra. It is observed that the degen-
erate eigenmodes of these flatbands form a Stark-like ladder
where each mode is shifted by one lattice site. Their combina-
tion gives rise to compact modes that do not diffract due to an
exact geometrical phase cancellation. For all three cases, we
computed the stability of the fundamental band mode against
perturbation of their initial charge value, the effect of possible
anisotropy of the couplings, and the presence of small random
perturbations of the individual couplings. We find that the stub
and Lieb ribbons are stable against all three perturbations,
while the kagome ribbon is only stable to the perturbation of
the initial value. The fact that all three cases are stable against
this type of perturbation could be traced back to the fact that,
because of linearity and absence of gain/loss mechanisms, the
perturbed initial mode will evolve as a linear combination of
the evolution of the mode itself plus the evolution of the noise.
The result is the original mode plus some small superimposed
amount of noise. In addition, when loss effects are included
into the picture, all flatbands remain flat, but with a complex
eigenvalue, meaning that the eigenmode will decay in time.

The fact that, in two out of three geometries, the flatband
modes proved stable is highly interesting since it suggests
that it would be possible in principle to store magnetic energy
in certain carefully chosen configurations that would remain
immobile in time, constituting in this way a basis for a future
stable magnetic storage device.
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