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Nonlinear impurities in a linear chain

M. I. Molina and G. P. Tsironis*
Computational Physics Laboratory, Department ofPhysics, University ofNorth Texas, Denton, Texas 76203

(Received 19 February 1993)

We use the Green's function formalism to evaluate analytically the stationary states for an electron
moving in a one-dimensional chain in the presence of one and two adiabatic Holstein-type nonlinear im-
purities. For the case of one nonlinear monomer we find that, contrary to what occurs in the linear im-
purity problem, the strength of the impurity must be greater than half the bandwidth for a bound state
to exist. In the case of a nonlinear dimer resonance phenomena are observed that lead to complete
transmission through the dimer.

The nonlinear features of the motion of a strongly in-
teracting particle in one-dimensional lattices were given
considerable attention in recent years. This problem,
aside from the purely theoretical interest pertaining to
the properties of self-trapping in ordered and disordered
lattices has practical ramifications in biology, ' condensed
matter as well as optics. Most of the past studies were
confined in studying systems where the discrete crystal-
line symmetry of the lattice is preserved. Two notable ex-
ceptions are the works in Ref. 4 where numerical studies
were done for nonlinear discrete segments embedded in
an in6nite, linear discrete host. In the present Rapid
Communication we cast the approach of Ref. 4 into a
tight-binding type formalism and present an analytical'
treatment of the problem of one and two nonlinear im-
purities embedded in a linear host. Due to its generality,
our method can also be extended to arbitrary nonlinear
segments. Our findings in the dimer case show that
some of the results obtained in the context of the linear
random dimer model have a direct counterpart in the
present nonlinear case.
Consider an electron moving in a one-dimensional

periodic lattice in the presence of a number of substitu-
tional nonlinear (adiabatic) Holstein-type impurities lo-
cated at lattice sites ri, r2, . . . , rM. These impurities
have the same nonlinear features studied in the context of
the discrete self-trapping equation. We cast- this prob-
lem into the tight-binding form where the "Hamiltonian"
1s

H =Ho+HM,
where

probability of finding the excitation on site ri and M is
the total number of impurities. Note that the perturba-
tion HM differs from the well-known problem of linear
impurities in that it incorporates strong polaronic effects.
For convenience, we introduce the following dimension-
less quantities: z =E/2V, H =H /2V, and y —=y/2V.
(a) One nonlinear impurity The .(dimensionless) lattice

Green's function of our system G =—1/(z H) can b—e for-
mally expanded as

G(o)+ G(o)Hi G(o)+ G(o)H~ G(o)Hi G(o)+ (4)

G( )G(0)
mn mal ~ ~ 2 (o)1—t~Co~ Goo

(5)

We cannot use Eq. (5) yet, since we do not know I Co I;
we will however determine it subsequently in a self-
consistent manner.
Bound state. The bound state energy zb is given by the

pole(s) of G „:1 =@!Co'I Goo'. Since Goo'=1/+z —1
(Ref. 9), we get for zb

z, =+&1+y'I c,(b' I' .

where G'0' is the unperturbed (@=0) Green's function,
H, =y I Co I IO & & Ol and where, without loss of generality,
we have placed the impurity at the origin. by inserting
H, into Eq. (4), we can formally resum the perturbative
series to get, in the Wannier representation

alld

Ho=~(lt &&t+ iI+It +1&&il)

HM =x& I C, . I'lr; & & r; I

i=1

(2) The bound state amplitude coefficients C„'"' can be ob-
tained from the residues of G „(z) at z =zb through the
relation:

C„'"'C' "=ResIG~„(z)I,
Now, since

and the I li &I represent Wannier electronic states, V' is
the hopping matrix element, p is the nonlinearity param-
eter (proportional to the strength of the electron-phonon
interaction at the impurity site), IC„ I represents the

t

G(P)( ) I + ~ 1!ln —m1

Vz' —1

we get, with the help of Eqs. (5) and (7):
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(9)x[~1+y'IC( 'I —lyllc' )I'j""r
We now determine I Co 'I by the self-consistency re-

quirement that Eq. (9) be obeyed at n =0. We get

probability profile lC„' 'I for the bound state versus the
lattice site n, for several different values of the nonlineari-
ty parameter y. Figure 2 shows the probability of finding
the excitation on the impurity site versus the nonlinearity
parameter y
Extended states. All states inside the band —1(z & 1

are extended (scattering states) with z =cos(k). They are
formally given by

I
O'"'

I

= 'r/ I—(1/y ) 6( I y I

—1) (10) le, &
= lk &+G"'+(z)T+(z) lk &, (13)

which implies, from Eq. (6): zr, =+[1+6(lyl —1)(lyl—I)]. At lyl=1, zb =+1 and so it is the state at the
band edge which separates from the band to form the
discrete level. By replacing Eq. (10) into Eq. (9) we have
the final expression for the bound state profile:

where lk & are the eigenstates of G' ' (plane waves). T is
given by

T=H, +H, G' 'H, +H, G' 'H, G' 'H, +.. . (14)

In addition, it can be shown from Eq. (7) that we can
choose all the amplitudes for the bound state to be real
and positive The b. ound state described by Eq. (11) exists
only for y ) 1 in which case it decays exponentially away
from the impurity site, with a localization length A, given
by

After resumming, we get

y I c.l'lo & & olT=
1—y Col'Goo'

(15)

From Eqs. (13) and (15) we get for the scattering ampli-
tude at sste n

ylC, I'(n G"'+(z)IO&(Olk &

(16)
1—y I C, I'GI)o'

—1

2ln( I y I
—'~/y —1)

(12) The transmission coefficient t is the probability density at
the impurity site, i.e., t = I Co I . From Eq. (16), we have

where a is the lattice spacing. For
I y I
( 1, no bound state

exists and all the eigenstates are scattering states
[ I C„ I

=0 ( I /X) ]. This is markedly different from the
linear impurity case, where there is always a bound state
no matter how small the impurity parameter is. In our
case, in order to have a bound state at all, the strength of
the nonlinearity parameter must be at least equal to half
the bandwidth: I y I =y/2 V = 1. Figure 1 shows the

1

ytGo(oo) lz
. (17)

y t + sin(k) t —sin(k) =0, (18)

whose positive and real solution is

By replacing Goo =—i+1—z we get a cubic equation
for t:

1/3

t =(1/y) 9y sin(k) +&3't/27y sin(k) +4sin(k)
18

(2/3)' 'sin(k)
[9y sin(k) +V3r/27y sin(k) +4sin(k) ]'
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FICx. 1. One nonlinear impurity. Probability profile for the
bound state for different values of the nonlinearity parameter

y =—y/2V.

FIG. 2. One nonlinear impurity. Probability for finding the
electron at the nonlinear impurity site, as a function of the non-
linearity parameter y —=y/2 V.
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~26(&)6(&)
1 I ml in

1—qlC, I'G", , ' (20)

with 6'" completely known from the previous calcula-
tions.
Bound states. Since for y & 1

I Co I
=0 ( I /1V) and

IC, I
=O(1/X) where K being the number of lattice

sites, there cannot be a bound state. This can easily be
seen by the fact that for N~~, 6' '~G'"~G' '.
Therefore, for lyl & 1 there can be no bound state in a
linear chain doped with a finite number of identical non-
linear impurities of the type considered here. The above
observation can be also generalized to any finite number
of nonidentical nonlinear impurities, provided
ly;I & I@i=1, . . . , M. For y) 1, on the other hand, we
use Eqs. (5) and (11)and get

Figure 3 shows the transmission t versus cos(k) for
y=1; we also plot the transmission for the linea~ prob-
lem with H, =el0) &Ol, for e= l. We note that the non-
linear transmission is always larger than its linear coun-
terpart but does not exhibit any additional features.
Finally, an examination of the density of states (DOS)

shows that for y ( 1 the DOS is not affected by the pres-
ence of the impurity (even though the transmittance de-
creases monotonically with increasing y), while for y ) 1,
a discrete level is formed at the expense of the continuous
spectrum, as expected. '

(b) Two nonlinear impurities W.e specialize to the case
of two nearest-neighboring impurities that form a dimer
located at sites 0 and 1; the impurity "Hamiltonian" is
H, =ylC, I'10)&01+) IC, I'II)&ll. This can be con-
sidered as the problem of one impurity in a chain, "per-
turbed" by an additional impurity. If G"',G' ' denote
the Green's function for the one, two nonlinear impurity
problem, respectively, using Eq. (5) we get for G~ '

y= 2.0

2 Z 3

) IC, I'G", ,'=1. (22)

It is not possible to solve Eq. (22) for z in terms of ICi
in closed form. However, some general features can be
deduced by examining a plot of the real part of GI'i~(z)
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FICx. 4. Two nonlinear impurities. Solid line: Real part of
G &~ (z) vs z =E/2V, for the case y =2.0. Dashed line:
I/plC, I, taken equal to 1 for definiteness. Intersection(s) of
these two curves outside the band determine the energy(ies) of
the bound state(s).
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FICx. 3. One nonlinear impurity. Transmission coefficient t
vs cos(k) (solid line) at y =y/2 V= 1. The dashed line
represents the transmission coefficient for the linear impurity
with e= l.

FIG. 5. Two nonlinear impurities. Transmission t vs cos(k)
for (a) y =0.75, (b) y = 1, and (c) y = 1.25 (solid lines). In each
case the dashed line represents the transmission for the corre-
sponding problem with two linear impurities.
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12—
Qy,'—1

1

y, lc, I'

Since
I C, I

is unknown, a precise value of y, can only be
obtained via a numerical calculation. A simple estimate
may be obtained by assuming that C& has behavior
similar to ICoI in the one-impurity problem. In the
latter case we obtain y, -&13/2-1.80. Other simple

(Fig. 4). For values of y close to 1, we expect I C, I to be
small and then, the line 1/yICi is located in the upper
part of the plane in Fig. 4 and therefore there is only one
intersection outside the band (i.e., there is a unique bound
state). This intersection occurs at a z value slightly
higher than the one in the one-impurity case, viz. the
presence of the second impurity merely shifts the bound
state energy. As the value of y increases, IC, I

increases
as well and the line 1/yIC, I

will shift to the lower part
of Fig. 4. There will be a value of y for which there will
be a second intersection with Re [G",, '(z) ] just outside the
band (z =1 ) and thus a second bound state appears.
The value of such critical y, will satisfy the condition
G", ,'(z~ 1)=1/y, IC, I, or [using Eq. (21)]:

zC„=(1/2)(C„+i+C„ i)
+S.~y IC.I'c.+S.,y lc, I'c .

We set

(24)

ei "+Re ' " n 0
C ='n Te ikn (25)

with R, T representing the reflected and transmitted part
of the wave, respectively. Inserting Eq. (25) into Eq. (24)
we get after some tedious algebra the following nonlinear
equation for the transmission coefficient t —=

I TI:

estimates place y, slightly below or above this value.
The important feature here is the existence of this second
threshold value of nonlinearity beyond which two bound
states can exist. This behavior is reminiscent of localiza-
tion on a Bethe lattice (with connectivity 4) doped with
two linear nearest-neighbor impurities.
Transmission coe+cient Th. e simplest way to obtain

the transmission coefficient through the nonlinear dimer
is by studying the scattering properties of plane waves
sent towards it. The eigenvalue equation becomes in this
case:

4sin (k)
(b a) +—ab [ab —2(a +b) cos(k)+4cos (k)]+4 sin (k) (26)

where a =2yt and b =2yt 1—2y exp(ik)I . It can be
seen from Eq. (26) that for yI (1 the wave vector with
value k, =arccos(y) always leads to complete transmis-
sion, i.e., t =1. This type of resonant phenomenon is not
dissimilar to the one observed in the context of plane
wave scattering through a completely linear dimer lead-
ing to enhanced transport properties even in the presence
of spatial randomness. This makes doping with non-
linear impurities an attractive candidate method for fa-
bricating quasi-one-dimensional materials with desired

I

transport properties. In Fig. 5 we plot the transmission t
as a function of cos(k) for different values of y (solid line)
and compare it with the linear case (dashed line). In the
nonlinear case, t is significantly larger than that of the
linear case, especially for values of y) 1. At about
y-0. 75, t begins to develop a window of bistability,
whose width decreases as the nonlinearity parameter is
increased. This bistability seems to be related to the
multistability observed in periodically modulated one-
dimensional nonlinear structures.
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