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We study the effect of a resonant frequency disorder on the eigenstates and the transport of magnetic
energy in a two-dimensional (square) array of split-ring resonators (SRRs). In the absence of disorder,
we find the dispersion relation of magneto-inductive waves and the mean square displacement (MSD) in
closed form, showing that at long times the MSD is ballistic. When disorder is present, we consider two
types: the usual Anderson distribution (uncorrelated monomers) and 2 x 2 units assigned at random to
lattice sites (correlated tetramers). This is a direct extension to two dimensions of the one-dimensional
random dimer model (RDM). For the uncorrelated case, we see saturation of the MSD for all disorder
widths, while for the correlated case we find a disorder window, inside which the MSD does not saturate
at long times, with an asymptotic sub-diffusive behavior MSD ~ t0-26, Qutside this disorder window, the
MSD shows the same kind of saturation as in the monomer case. We conjecture that the sub-diffusive
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DiSOFQEF' behavior is a remanent of a weak resonant transmission of a 2D plane wave across a tetramer unit.
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Introduction The current ability to tailor material properties at
will has lead to a whole class of artificial materials, termed meta-
materials, characterized by unprecedented thermal, optical, and
transport properties that make them attractive candidates for cur-
rent and future technologies. Among them, we have magnetic
metamaterials (MMs) that consist of an array of metallic split-ring
resonators (SRRs) coupled inductively [1-3]. This type of system
can, for instance, feature negative magnetic response in some fre-
quency window, making them attractive for use as a constituent
in negative refraction index materials [4-7]. The usual theoreti-
cal treatment of such structures is an effective medium approx-
imation where the composite is treated as a homogeneous and
isotropic medium, characterized by effective macroscopic param-
eters. Of course, this approach is valid, as long as the wavelength
of the external electromagnetic field is much larger than the linear
dimensions of the MM constituents.

One of the simplest two-dimensional MM models consists of
a periodic square array of split-ring resonators (SRRs) lying on a
common plane, where each resonator consists of a small, conduct-
ing ring with a slit (Fig. 1). Each SRR unit in the array is equivalent
to a resistor-inductor-capacitor (RLC) circuit featuring self- induc-
tance L, ohmic resistance R, and capacitance C built across the

* Corresponding author.
E-mail address: mmolina@uchile.cl (M.I. Molina).

https://doi.org/10.1016/j.physleta.2021.127517
0375-9601/© 2021 Elsevier B.V. All rights reserved.

slit [8,9]. If we assume a negligible resistance, each unit will pos-
sess a resonant frequency w = 1/+/LC. Under this condition and in
the absence of driving, the evolution equations for the charge Qj
residing at the nth ring are given by

dQn
=1 1
= =In (1)
dln  Qn dIm
L2+ =2=-M) 2 2
dt ' C — dt @)

where M is the mutual inductance and the sum is restricted to

nearest-neighbors of n. These equations can be cast in dimension-

less form as

d? 5

d? Gn + A ZQm + wpqn =0 (3)
m

where g denotes the dimensionless charge of the nth ring, n =

(nx,ny), A is the coupling between neighboring rings that origi-

nates from the dipole-dipole interaction, and a)ﬁ is the (square of)

resonant frequency of the nth ring, normalized to a characteristic

frequency of the system, (w,z,) =(1/N)}_, w,zl These equations can

also be derived from the Hamiltonian H = ), Hy where Hy is the

Hamiltonian density

1
Hp=-

-2 . . 2 2
> | 40+ 2dn ;Qm + kgl ), (4)
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Fig. 1. Two-dimensional split-ring resonator array.

where qp = (d/dt)qn. We assume that the magnetic component
of any incident external electromagnetic wave is perpendicular to
the SRRs’ plane and that the electric field of the incoming wave
is perpendicular to the electric field induced along the slits. This
insures that only the magnetic component of the incoming wave
creates an electromotive force on the rings, giving rise to an oscil-
lating current in each SRR and to an oscillating voltage difference
across the slits. Also, it is a good idea to reduce electric dipole-
dipole effects coming from the strong electric fields at the slits
by a judicious placing of the SRRs in the common plane to keep
the slit-to-slit distance as large as possible (Fig. 1). However, large
Ohmmic and radiative losses remain as the main drawback of the
SRR array. A possible way to deal with this problem that has been
considered is to endow the SRRs with external gains, such as tun-
nel (Esaki) diodes [10,11] to compensate for such losses.

The dimensionless stationary state equation is obtained from

Eq. (3) after posing qn(t) = qn expli(2t + ¢)]:

- (qn +x2qm) +wpgn =0. (5)
m

The frequency a)ﬁ can be changed by varying the capacitance of
the ring, which is accomplished by altering the slit width or by
inserting a dielectric in the slit. For a homogeneous array, a),% =1.

On the other hand, the effect of disorder on the stationary and
transport properties of a discrete, periodic system, is an old topic,
but its importance has not waned throughout the years due to its
fundamental importance in several fields. The most relevant result
in this area is Anderson localization which asserts that the pres-
ence of disorder tends to inhibit the propagation of excitations. In
fact, for 1D systems, all the eigenstates are localized and transport
is completely inhibited [12-14]. This was also proven to be true
for two-dimensional systems, while in three-dimensions a mobility
edge is formed. Now, Anderson localization is based on the notion
that the disorder is “perfect” or uncorrelated. However, it has been
noted that in one-dimensional lattices with a correlated disorder,
a degree of transport is still possible. This happens, for instance, in
the random dimer model (RDM) for the usual tight-binding model.
It consists of a binary lattice for the site energies where site en-
ergy is assigned at random to pairs of lattice sites. This leads to a
mean square displacement of an initially localized excitation that
grows asymptotically as t3/2 at low disorder levels, instead of the
saturation behavior predicted by Anderson’s theory [15-17].

An experimental demonstration of the RDM prediction has been
made in an optical setting [18]. A straightforward extension of
these ideas to random arrays of larger units (n-mers), has also
been theoretically explored [19]. For a disordered, one-dimensional
SRR array, it was found that an uncorrelated disorder always leads
to localization of magnetic energy at any disorder strength, with a
transmission that decreases exponentially with the size of the sys-
tem. For correlated disorder and small and medium disorder levels,
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Fig. 2. Random realization of an uncorrelated (left) and a correlated (right) distribu-
tion of random resonant frequencies.

however, it becomes possible for a fraction of states to have reso-
nant transmission, leading to a power-law decrease of the overall
transmissivity with system size [20].

In this work, we examine the localization of the magnetic
modes and the transport of magnetic excitations in a two-
dimensional disordered square array of split-ring resonators, where
the resonant frequencies a)lz1 in Eq. (5) are taken as random quan-
tities. We will consider two cases: A completely uncorrelated one
where the w? are assigned at random to individual units, or
‘monomers’ and a correlated case, consisting of a straightforward
2D generalization of the well-known random dimer model used in
one-dimensional systems: Site frequencies a),zl assigned at random
to 4 nearby units, or ‘tetramers’ (Fig. 2) [21].

A usual indicator of localization is given by the participation
ratio (PR), that measures the extent of the electric charge distribu-
tion stored in the capacitors (or magnetic energy density stored in
the inductors):

2
PR= (Z lgn(6)[? ) /Y lan®* (6)

For a completely localized excitation, PR = 1, while for a complete
delocalized state, PR = N.

To monitor the degree of mobility of a magnetic excitation we
resort to the mean square displacement (MSD) of the charge, de-
fined as

(0%) = "0?ga(0)1?/ ) lgn(®)? (7)

Typically (n?) ~t® at large t, where o is known as the transport
exponent. The types of motion are classified according to the value
of a: ‘localized’ (& = 0), ‘sub-diffusive’ (0 < o < 1), ‘diffusive’ (o =
1), ‘super-diffusive’ (1 <« < 2) and ‘ballistic’ (a = 2).

Homogeneous case Before embarking into the effects of disorder
on the system, let us begin by examining the phenomenology in
the absence of disorder, a)ﬁ =1, in order to have a proper compar-
ison context.

After posing qn ~ exp(ik - n) and solving for 2, we obtain the
dispersion relation in d-dimensions as

Q2= !
L Y > mexp(ik-m)
where the sum is restricted to nearest neighbors.

The time evolution of a completely localized initial charge
qn(0) = Aén,0, and no currents, (dqn(0)/dt) =0, is given by

(8)

qn(0) = (A/V) / L
FBZ
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Fig. 3. Dispersion relation for homogeneous case: (a) A =0.05 (b) A =0.1, (c) A =
0.2 (d) Bandwidth as a function of inductive coupling.

+ (A/V) / el (km+ud) g (9)

FBZ

where v is the volume of the first Brillouin zone (FBZ), and QIZ( is
given by Eq. (8). After replacing this form for gy(t) into Eq. (7), one
obtains after some algebra, a closed form expression for (n2):

_ (1/V) fpgz(vkgk)z(] —€0os(2 Qi t)) 2

2
n 10
() 14+ (1/v) [pp,C0S(2 Qi t) (10)
At long times (n2) approaches a ballistic behavior
2 1 2 2
(n°) = " (Vikp)“dk | t (t - o0) (11)
L FBZ
while at short times,
1
m?) = - / Qi (ViQu)?dk | t* (t = 0). (12)
L FBZ
For a square lattice (d = 2),
1
i (13)

Qs =
K™ 14122 [cos(ky) + cos(ky)]

where, Kk = (kx, ky). We see that the system is capable of support-
ing magnetoinductive waves, if || < 1/4. Fig. 3 shows the band
Q7. as well as the bandwidth, defined as |Q3 — Q2 |, is given by
81/(1 — 161%). We see that at the edges of the Brillouin zone, the
bandwidth diverges at |A| = 1/4, but Figs. 3 (a), (b) and (c) show
that the increase in bandwidth is mostly concentrated in the im-
mediate vicinity of (ky, ky) = (£, £7).

Disorder We introduce now disorder into our system by consid-
ering the case when the resonant frequencies w? are taken as
random. This can be done in practice by altering the spacing be-
tween the slits, or by inserting different dielectrics in the slits. For
the numerical computations of quantities of interest, we use a self-

expanding square lattice with open boundary conditions. That is,
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Fig. 4. Average density of states for the uncorrelated (top) and correlated (bottom)
cases for several impurity width values @ (N =30 x 30, number of realizations=
50).

at the beginning of the computation the lattice is relatively small
and grows in size as time evolves, to contain the expanding wave-
front. For the evolution times used here, t ~ 1000, a typical final
lattice dimension is about 64 x 64, with open boundary conditions.
The open geometry is more desirable when one looks to potential
applications to magnetic card devices.

Let us get back to the stationary equation (5) which can be
rewritten as

1 1 1
—<§)Qn+<E)Qn+)\<E)ZQm=O (14)

We see right away that the equation corresponds to an Anderson
tight-binding model, with a site energy term equal to 1 /a),zl, and
a site-dependent coupling )L/a)lzl. That is, the “diagonal” term and
the “off-diagonal” term are completely correlated, and their values
appear “inverted” when compared to a usual tight-binding model.
This implies that the high disorder limit corresponds to small a)fl
while large w? values leads to the small disorder limit.

We will explore two kinds of disorder: an uncorrelated one,
where the site frequencies a)f1 are assigned at random from a con-
tinuous distribution [1, @?] for a 50 — 50 impurity fraction. Clearly,
for w® =1, we recover the homogeneous case. The second kind of
disorder we will explore is a correlated one, consisting of a gener-
alization to two dimensions of the one-dimensional Random Dimer
Model (RDM) of Kundu and Philips [16]. While in the RDM one as-
signs random site frequencies at pairs (dimers) of lattice sites, in
our case we will assign (random) site energies to 4 nearby sites
or ‘tetramers’ of lattice sites. Fig. 2 shows an example of a disorder
realization for the uncorrelated and correlated cases. We notice the
presence of 4-sites clusters that constitute the new, bigger ‘point
impurities’.
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Fig. 5. Comparison of the average participation ratio for the uncorrelated (left col-
umn) and the correlated case (right column) (N =22x 22, number of realizations
=30.)

Fig. 4 shows the average density of states (DOS)
D<92>=<<1/N2)Za<92 —szfn>> (15)
m

where N2 is the number of sites, the sum is over all modes, and
the average is over all random realizations. The shape of the curve
for the ordered case (w? = 1) seems to hint at the existence of van
Hove-like singularities, which are rounded-off here due to finite-
size effects. In both cases, uncorrelated and correlated disorder, the
density of states shows a maximum whose position increases from
a small frequency to larger frequencies, as the disorder w is in-
creased. The position of the DOS maxima seems to converge to a
fixed frequency value, close to unity. On the other hand, in the
limit @ — 0, the DOS converges to a Dirac delta function. This can
be proven from Eq. (5) where, for co,zl — 0, the eigenvalue equa-
tions reduce to

—-Q? (anqu) =0, (16)

which implies € =0 and D(Q?) = §(Q?).

The width of the DOS increases with an increase in disorder, as
expected. In general, there is no appreciable difference in the DOS
between the disordered monomer and tetramer cases.

For a square lattice of N x N sites, the participation ratio of
mode « is

2
PRO = lay o, P | /D laf.n,I* (17)

Ny, Ny Ny, ny

For a homogeneous square lattice, we have q'; ~ sin(kyxny) sin(kyny),
and PR® = (4/9)N x N in the limit of a large number of sites.
Fig. 5 shows the average participation ratio {((PR)) averaged over
all mode frequencies and over all disorder realizations, as a func-
tion of disorder width, for the uncorrelated and correlated cases.
The overall shape of the ((PR)) looks quite similar in both cases,
with an ((PR)) that decreases steadily towards both sides around
w =1, the homogeneous case. This is to be expected since, as we
commented before, a deviation from w =1 to smaller w values
leads to an effective increase in disorder, while something similar
happens at values of w greater than unity, although in this case
the disorder is less drastic than for the other case. Now, we see
that the amplitudes of the curves are different for both cases, with
the correlated case showing higher ((PR)) values for all the fre-
quency range. This implies a smaller wave localization, on average
than for the uncorrelated case.
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Disordered transport Let us now compute the spreading of an ini-
tially localized magnetic excitation and observe its time evolution.
For our SRR array, we will focus on the mean square displacement
(MSD) of the magnetic energy density

(0%) =Y "0?[Ha()*/ Y [Ha(D)I (18)

where Hy is given by Eq. (4). We computed and compared the
MSD for the uncorrelated and correlated cases. Results are shown
in Fig. 6. We note the presence of strong fluctuations, where the
MSD changes considerably from realization to realization. For the
uncorrelated case, the MSD seems to saturate at long times for
all disorder widths. A comparison of the MSD for different dis-
order widths reveals that the saturation value MSD is greater for
the w > 1 case than for the case with w < 1. This can be under-
stood from Eq. (14) where we see that values of a)lz1 > 1 results
in effective low disorder, while values of @2 < 1 are equivalent to
high disorder. For the tetramers case, we see evidence of a de-
parture from saturation for @ < 1, with a sub-diffusive transport
MSD ~ t%26 (Fig. 7). For w > 1, the MSD is greater than its uncor-
related counterpart and also seems to saturate at long times.
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Now, what is the origin of the propagating regime we see for
the correlated case? Here, it might be useful to remember that
for the one-dimensional traditional Anderson random dimer model
(not SRR), there is a nontrivial difference between the uncorrelated
and correlated case: The existence of resonant trajectories where a
plane wave can propagate across the whole lattice without scatter-
ing. This happens for energies close enough to the resonant energy
where a wave goes through a dimer with unity transmission. This
gives rise to +/N of transmitting states [15-17] and to a MSD that
behaves as t3/2 at long times. This effect was also observed nu-
merically in a one-dimensional disordered SRR array [22]. For our
2D case, we could assume for simplicity that a 2D plane wave can
be factored as 2 independent waves that propagate along the hor-
izontal and vertical axes. When this wave encounters a tetramer,
it could pass unreflected if a resonance condition is obeyed, which
involves the contrast between the background frequency (w? =1)
and the frequency of the tetramer. Since the frequency of the
tetramers is extracted from a continuous distribution rather than
a binary one, the effect will be small since after traversing a
tetramer, the wave might not encounter a favorable transmitting
condition until farther out. Anyway, this small resonance effect de-
creases the effective disorder of the system, leading to a number
of states with larger localization lengths. This explains the higher
((PR)) found for the correlated system (Fig. 5).

Conclusions We have compared the effect of two types of disorder
on the eigenmodes and the transport of excitations, of a simplified
model of a magnetic metamaterial consisting of a square array of
split-ring resonators. The disorder consisted of random values of
the resonant frequencies of the rings, taken from a continuous dis-
tribution, that are assigned to array sites completely at random
(uncorrelated case), or by assigning ‘tetramers’ at random to the
array sites (correlated case). The last case corresponds to a gener-
alization of the random ‘dimer’ model for one-dimensional systems
of Dunlap and Wu [16]. Our system can be mapped to a tight
binding system with site energies and couplings that are nearly
identical and with effective disorder strength values that are ‘in-
verted’, Eq. (14). Thus, small (large) values of w2 lead to effective
large (small) disorder. The computation of the mean square dis-
placement (MSD) shows that, in general, there is saturation at large
times in both cases, but for the correlated case there appears to
be a disorder window inside which the MSD increases in time in
a sub-diffusive manner. We explained this feature as a possible
remnant effect of plane wave resonance across a single tetramer.
This conjecture also explains the features of the participation ra-
tio (PR) where for the correlated case we observe the existence of
modes whose localization length is greater than for the uncorre-
lated case. These results could be of use for the future design of
efficient magnetic energy confinement devices, and the harvesting
and transport of magnetic energy.
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