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Fractional Calculus

L’ Hopital,  Leibniz,….

Is there an operator H such that H2
f(x) = f

0(x)?
i.e., a ”half derivative”

Take n (integer) ! a (real)

f(x) = xk, then
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Fractional Calculus

Example k=1, a=1/2
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Fractional Calculus

There are some problems, however

(da/dxa)1 = (dax0/dxa) = (1/�(1� a)) x�a 6= 0

weird

(da/dxa)1 = (da�1/dxa�1)(d/dx)1 = 0

We could have computed in different order

better

How do we interpret this?

So, in principle for f(x) =
P

n cn xn, one could compute
(da/dxa)f(x) by deriving each term in the series



Fractional Calculus

I1xf(x) =
R x
0 f(s) ds

L{I1x f(x)} = (1/s) L{f(x)}
L{Inx f(x)} = (1/sn) L{f(x)}

n ! ↵

L{Iax f(x)} = (1/sa) L{f(x)}

Iaxf(x) =
1

�(↵)

R x
0

f(s)
(x�s)1�↵ ds

convolution

How about the fractional integral ?

Laplace

Now we can define a fractional derivative

n ! a



Fractional Calculus
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Riemann-Liouville form
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Caputo form



Fractional  Laplacian

Using L. Rocal et al. (2018)

Tight-binding in 1D

DNLS

discrete Laplacian�nCn ⌘ Cn+1 � 2Cn + Cn�1



Fractional  Laplacian

Dispersion relation

� = 0 and �n = A exp(ikn)

kernel

Cn(t) = exp(i�t) �n



Dispersion Relation



Dispersion Relation



Mean Square Displacement



Nonlinear Fractional Modes

Nonlinear case: � 6= 0

System of N coupled nonlinear equations

Nonlocal coupling

Use multidimensional Newton-Raphson, starting from the decoupled limit

Obtain bulk and surface fractional discrete solitons



Nonlinear Fractional Modes
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Nonlinear Fractional Modes
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Fractional Selftrapping

ST transition is maintained
Onset of linear trapping
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SUMMARY

Effect of replacing the usual discrete laplacian by a fractional one

Linear case: linear wave spectra, intersite coupling and RMS 
computed in closed form. Bandwidth decreases with decreasing exponent, 
the RMS is always ballistic.

Nonlinear case:  Computed bulk and surface modes and their stabilies
as a function of fractional exponent. Selftrapping threshold shifts to 
lower values.

General phenomenology is more or less preserved ! Discrete soliton
concept robust against different mathematical extensions of Laplacian 
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