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We examine the formation of bound states on a generalized nonlinear impurity located at or near the
beginning (surface) of a linear, tight-binding semi-infinite lattice. Using the formalism of lattice Green func-
tions, we obtain in closed form the number of bound states as well as their energies and probability profiles, for
different nonlinearity parameter values and nonlinearity exponents, at different distances from the surface. It is
shown that close to the surface, the amount of nonlinearity needed to create a bound state or to effect
dynamical self-trapping, increases (decreases) depending on whether the exponent is smaller (larger) than,
approximately, 2.
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The interplay of nonlinearity and discreteness has re-
ceived considerable attention recently1 because it plays a vi-
tal role in the emergence of a different kind of excitation in
extended, nonlinear systems with discrete translational in-
variance, known as intrinsic localized modes (ILM). These
ILMs are generic to physical systems of interest, such as
arrays of nonlinear optical waveguides,2 molecular crystals,3
biopolymers,4 arrays of Josephson junctions,5 and even
Bose-Einstein condensates in magneto-optical traps.6
Given the strictly local manner in which nonlinearity en-

ters into the effective evolution equations in all these cases
(see below), one is led to the idea that in the limit of strong
nonlinearity, one could approximate a typical nonlinear sys-
tem by a linear one containing a small cluster of nonlinear
sites or even a single nonlinear impurity. The system, thus
simplified, is amenable to exact mathematical treatment, and
the influence of other potentially competing effects, such as
dimensionality, boundary effects, noise, etc., can be more
easily studied without losing the essential physics.
For a one-dimensional discrete system in the presence of

a single nonlinear impurity, located at n=d, the dynamics is
given by the well-known discrete nonlinear Schrödinger
(DNLS) equation

i
dCn
dt

= V!Cn+1 + Cn−1" − "#Cn##Cn$n,d !% $ 1" , !1"

where Cn is the probability amplitude for finding the excita-
tion on site n, V is the nearest-neighbor transfer matrix ele-
ment, " is the nonlinearity parameter, and # is the nonlinear-
ity exponent. Usually, but not always, #=2, which, in a
condensed-mater context, corresponds to an underlying har-
monic oscillator degree of freedom “enslaved” to the excita-
tion (electron) at the impurity site. When this vibrational
impurity is anharmonic in nature, other # values are possible,
in principle, with #&2 corresponding to a “hard” vibrational
impurity while #'2 corresponds to a “soft” case.7
Bound states for single nonlinear impurities embedded in

infinite lattices include chains,8–10 Cayley trees,11
triangular,13 and cubic12,13 lattices. Now, since the creation of
a bound state, or the dynamical self traping at the impurity
site implies the localization of energy on a scale of the order

of the lattice spacing, one might surmise that, by placing the
nonlinear impurity at or near the surface of a semi-infinite
lattice, the nonlinearity strength needed to affect localization
would decrease, facilitating in this way its creation and ex-
perimental observation. As a step in that direction, in this
work we examine a simple model consisting of an electron
(or excitation) propagating in a semi-infinite, linear chain,
which contains a single nonlinear impurity at a distance d
from the beginning (“surface”) of a semi-infinite chain (Fig.
1), we examine the conditions for the existence of bound
state(s) and the dynamical self-trapping properties, and we
compare them to the results obtained for the infinite chain.9

I. BOUND STATES

We consider Eq. (1) for a semi-infinite lattice !n
=0,1 , . . . " and normalize all energies to the half bandwidth
of the infinite chain case. The Hamiltonian is given by

H =
1
2%n=0

(

!#n&'n + 1# + #n + 1&'n#" + )#Cd###d&'d# , !2"

where (#n&) are Wannier states and )$" / !2V". The dimen-
sionless Green function G=1/ !z−H" can be formally ex-
panded as14 G=G!0"+G!0"H1G!0"+G!0"H1G!0"H1G!0"+¯,
where G!0" is the unperturbed !)=0" Green function and
H1=)#Cd###d&'d#. The series can be resumed to all orders to
yield

Gmn = Gmn
!0" +

)#Cd##Gmd
!0"Gdn

!0"

1 − )#Cd##Gdd
!0" , !3"

where Gmn$'m#G#n&. Now, we cannot use Eq. (3) directly
because we do not know Cd, but we will determine it through
an exact self-consistent procedure. The energy of the bound
state(s) is obtained from the poles of Gmn, i.e., by solving

FIG. 1. A nonlinear impurity near the surface of a one-
dimensional chain.
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1=)#Cd##Gdd
!0"!zb". On the other hand, the bound-state ampli-

tudes Cn are obtained from the residues of Gmn at z=zb. In
particular, at the impurity site, #Cd#2=Res(Gdd!z")z=zb
=−Gdd

!0"2!zb" /Gdd!
!0"!zb". Inserting this back into the bound-

state energy equation leads to

1
)
=

Gdd
!0"#+1!zb"

*− Gdd!
!0"!zb"+#/2 . !4"

The unperturbed Green function Gmn
!0" for the semi-infinite

lattice can be calculated by the method of mirror images.
Since there is no lattice to the left of n=0, Gmn

!0" should vanish
identically at n=−1. Thus, Gmn

!0"!z"=Gmn
( !z"−Gm,−n−2

( !z",
where Gmn

( !z" is the Green function for the infinite
lattice Gmn

( !z"=sgn!z"!1/,z2−1"*z−sgn!z",z2−1+#n−m#, where
sgn!z"= +1!−1" for z'0!&0". Therefore,

Gmn
!0"!z" = sgn!z"

1
,z2 − 1 *z − sgn!z",z2 − 1+#n−m#

− sgn!z"
1

,z2 − 1 *z − sgn!z",z2 − 1+#n+2+m#. !5"

From Eq. (5) we note the parity property Gdd
!0"!−z"=−Gdd

!0"!z",
which implies Gdd!

!0"!−z"=Gdd!
!0"!z". This means, according to

Eq. (4) that the change )→−) reverses the sign of zb. On the
other hand, from Eq. (1), it is possible to deduce that the
change )→−) is equivalent to the change Cn→ !−1"n Cn

*.
Since we are interested in a localized state, where Cn can be
chosen as real, we conclude that a change in sign of the
nonlinearity parameter reverses both the “staggered” charac-
ter of the bound state and the sign of the localized state
energy.
After inserting Eq. (5) into (4), the general structure for

the number of bound states emerges. For any finite distance d
from the surface and any positive value of the exponent #,
there is a critical amount of nonlinearity ) below which there
is no bound state and above which there are two bound
states. For # exponents smaller than 2 and as d is increased,
one of the bound states tends to merge with the band edge, so
that in the limit of a very deep impurity, there is only a single
localized bound state. For #'2, however, as d is increased,
both bound states remain localized. In the special case of a
linear impurity !#=0", there is a single bound state provided
)'1/ !d+1". Thus, in the limit d→( these results are con-
sistent with the case of a completely infinite lattice:9 a single
bound state for #&2, and for #'2, a critical curve in non-
linearity strength and nonlinearity exponent space, separating
a region with no bound states from a region with two bound
states. At the surface !d=0", the critical curve is given by

)c =
!1 + #"!1+#"/2

2##/2 . !6"

In particular, for the DNLS case, )c=33/2 /4-1.3, larger than
the value for the infinite chain !)c=1". Figure 2 shows phase
diagrams in )-# space showing the number of bound states
at different distances d between the impurity and the “sur-
face” of the system.

As to the stability of these bound states, it is easy to see
from a graphical analysis of the structure of Eq. (4) that, as
nonlinearity ) is increased, one of the bound states becomes
more and more localized while the other becomes more and
more delocalized. Since, in the limit of high nonlinearity, the
effective coupling among sites is negligible, one would ex-
pect the bound state to become more and more localized.
Therefore, the state with the smaller localization length is
stable, the other unstable. This qualitative argument is con-
firmed by the more rigorous procedure of examining the
Hamiltonian flow of the system around the two fixed points
(bound states).
Figure 3 shows the critical nonlinearity for the onset of a

bound state, as a function of the distance from the impurity
to the lattice “surface” !n=0", for different nonlinearity ex-
ponents. Significant differences from the infinite lattice case
are apparent. As the impurity is placed closer and closer to
the surface, the critical nonlinearity to create a bound state
increases or decreases, depending on whether the nonlinear
exponent is below or above .2. In particular, for the all-
important standard DNLS case #=2, the presence of a sur-
face increases the nonlinearity needed to create a bound
state, which is contrary to popular belief that a surface would
help localize the electron.

FIG. 2. Phase diagram in )-# space showing the number of
bound states for different distances impurity surface (in units of the
lattice constant).

FIG. 3. Scaled critical nonlinearity for onset of a bound state as
a function of the distance from the nonlinear impurity to the “sur-
face” of the chain.
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For a given value of exponent # and any inclusion dis-
tance d, the bound state probability profile #Cn#2 is given in
closed form by #Cn#2=A*Q#n−d#−Q#n+d+2#+, where Q$zb
−,zb2−1, A$!zb−Q" / (zb+ *zb+2!1+d",zb2−1+Q2!1+d") and zb
is the solution of Eq. (4). Simple analysis of this profile
shows that #Cn#2 has always a single hump at n=d. This
profile is shown in Fig. 4 for the standard DNLS !#=2" and
a nonlinearity strength ) just above critical, at four different
impurity locations under the surface. Its general features are
shared by other # exponents. Below the surface, the prob-
ability profile converges quickly to the infinite lattice case as
d increases past 4.

II. DYNAMICAL SELF TRAPPING

We numerically compute the long-time average probabil-
ity at the impurity site Pd=limT→(!1/T"/0

Tdt#Cd#2 for several
distances d from the surface !n=0". As the initial condition,
we use a completely localized excitation on the impurity site
Cn!0"=$nd. Figure 5 shows the critical nonlinearity for self
trapping !Pd'0" as a function of the distance between the
nonlinear impurity and the chain surface, for different non-
linearity exponent values. In general, the behavior is qualita-
tively similar to the one observed for the onset of a bound

state (Fig. 3). In both cases, for a fixed distance, an increase
of the nonlinear exponent # results in an increase of the
nonlinearity threshold for self-trapping. The same behavior
was observed previously for an impurity in a completely
infinite chain.9 This phenomenon is not hard to explain.
Since #Cn#&1, we see from Eq. (1) that as #'0 is increased,
#Cd## will necessarily decrease, which implies that a larger )
will be needed to keep the value of the effective impurity
strength )#Cd##. Thus, at a fixed impurity-surface distance, a
higher # implies a higher )c. Another interesting behavior
we observe from Figs. 5 and 3 is that for a fixed nonlinearity
exponent, the critical nonlinearity depends roughly on
whether the exponent is below or above .2. For #&2, an
increase in the impurity-surface distance d results on a de-
crease of )c, while for #'2, an increase in d increases )c.
The explanation of this phenomenon seems to rest on the
delicate balance between kinetic and potential energies. If we
assume an electronic bound state * with localization length
+, then on normalization grounds we have #*#2.1/+.
The kinetic energy content is ,K.h2 /2m+2, while the
average potential energy is, in magnitude, equal to
,V=/ dx V!x"#*!x"#2=/ dx )#*!x"## #*!x"#2.)a /+*1+!#/2"+,
where a is of the order of the lattice spacing. Thus,

,V/,K . )+1−!#/2". !7"

On the other hand, as the impurity is brought closer to the
surface, the wave function becomes more “compressed”
(Fig. 4), i.e., + decreases as d approaches zero. This implies,
from Eq. (7), that for #'2, a decrease in + increases ,V
with respect to ,K, which means that less nonlinearity is
needed to maintain a localized state. On the contrary, if #
&2, a decrease in + decreases ,V with respect to ,K and
now, more nonlinearity is needed to maintain the localized
state.

III. COMPLETELY NONLINEAR LATTICE

In the large nonlinearity limit where )-)cr, the single
nonlinear impurity results should approximate those corre-

FIG. 4. Probability profile for the stable bound state at different
impurity positions (#=2, )=1.305).

FIG. 5. Right: Scaled critical nonlinearity for dynamical self
trapping as a function of the distance from the impurity to the chain
surface, for several nonlinearity exponents. The empty circles
shown for #=1 and d=4 through d=10 indicate approximate values
since the self-trapping is not abrupt.

FIG. 6. Nonlinear impurity bound-state energy as a function of
distance impurity surface for #=2 and )=2 (upper) and )=−2
(lower).
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sponding to a whole nonlinear lattice. For the particular case
examined in this work, the “extended” problem consists of
the formation of an intrinsic localized mode (ILM) in a semi-
infinite nonlinear latice. Due to the presence of a surface, the
discrete translational invariance is broken and a natural ques-
tion arises: where will the localized state be formed? Our
single nonlinear impurity analog can provide an answer. For
each impurity position d, the bound-state energy can be com-
puted as a function of d. The position corresponding to its
minimum value will correspond to the position of the ILM.
Also, the impurity energy and spatial probability profile
should approximate the ones corresponding to the ILM. Fig-
ure 6 shows the impurity energies as a function of distance
from the lattice surface, for the DNLS case, #=2 and )
= ±2. We see that for a positive value of the nonlinearity

parameter ), the preferred position is the very surface !d
=0", while for a negative ), the preferred position is one
layer below the surface !d=1". These predictions are indeed
confirmed by direct numerical computations, where the
Hamiltonian corresponding to a semi-infinite nonlinear lat-
tice H= !1/2"%n=0

( !#n&'n+1#+ #n+1&'n#"+)%n=0
( #Cn###n&'n# is

diagonalized by an iterative procedure. For the particular ex-
ample in Fig. 6, the error obtained for the ILM energy is
about 1%.
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