The fractional nonlinear P7 dimer

Mario 1. Molina
Departamento de Fisica, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile
(Dated: January 29, 2021)

We study a fractional Discrete Nonlinear Schrodinger dimer, where the usual first derivative in the
time evolution is replaced by a non-integer order, a la Caputo. The dimer is nonlinear (Kerr) and
PT symmetric, and we examine the excitation exchange dynamics between both sites. By means
of a Laplace transformation technique, the linear P7T dimer is solved in closed form in terms of
Mittag-Leffler functions, while for the nonlinear regime, we resort to numerical computations using
the direct explicit Grunwald algorithm. The main effect of the fractional derivative is to decrease
the amplitude of the exchange oscillations towards zero. It also affects the standard selftrapping
transition by decreasing the trapped fraction as the nonlinearity is increased past threshold.

I. INTRODUCTION

The topic of fractional calculus has experienced a
rekindled interest in recent times. Essentially, it extends
the notion of a derivative or an integral of integer order,
to one of a fractional order, (d"/dz™) — (d*/dz®) for
real a. The subject has a long history, dating back to let-
ters exchanged between Leibnitz and LL’Hopital, and later
contributions by Euler, Laplace, Riemann, Liouville, and
Caputo to name some[1-5]. The starting point was the
computation of d®z¥ /dxz®, where « is a non-integer num-
ber:

dnak L(k+1) ., da*
dz™  D(k—n-+1) dz®
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1)
For instance (d'/2/dz'/?)x = (2/+/7)\/x, and dx/dx =
(d/2 dat/2) (V2 fda2)x = (24/m)(T(3)/T(1))a" = 1,
as expected. From Eq.(1) the fractional derivative of
an analytic function f(z) = Y, axz® can be computed
by deriving term by term. This basic procedure is not
exempt from ambiguities. For instance, (d*/dz®) 1 =
(d*2°/dz®) = (1/T(1 — )z~ # 0, according to Eq.(1).
However, one could also take (d*~!/dx®~1)(d/dx) 1 =
0. For the case of a fractional integral, a more rigorous
starting point is Cauchy’s formula for the integral of a
function. From the definition
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we apply the Laplace transform £ to both sides of Eq.(2)

LI, f(x)} = (1/s) L{f(2)} 3)

After n integrations, one obtains

LI fa)} = (1/s") L{f(2)} (4)

Extension to fractional « is direct:

LA f(e)} = (1/s%) L{f(2)} ()

After noting that the RHS of Eq.(5) is the product of two
Laplace transforms we have, after using the convolution
theorem
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From this definition, it is possible to define the fractional
derivative of a function f(z) as

I () e s =

dz®
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where, m—1 < o < m. Eq.(7) is known as the Riemann-
Liouville form. An alternative, closely related form, is
the Caputo formula[5]:
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which has some advantages for differential equations with
initial values. The various technical matters that arise in
fractional calculus have prompted a whole line of research
that has extended to current times. Long regarded as a
mathematical curiosity, it has now regained interest due
to its potential applications to complex problems in sev-
eral fields: fluid mechanics[6, 7], fractional kinetics and
anomalous diffusion[8-10], strange kinetics[11], fractional
quantum mechanics[12, 13], Levy processes in quantum
mechanics[14], plasmas[15], electrical propagation in car-
diac tissue[16] and biological invasions[17]. In general,
fractional calculus constitutes a natural formalism for the
description of memory and non-locality effects found in
various complex systems.

On the other hand, when dealing with effectively dis-
crete, interacting units, as one encounters in atomic
physics (interacting atoms), or in optics ( coupled op-
tical fibers), it is common to deal with discrete versions
of the continuum Schrédinger equation, or the paraxial
wave equation. The effective discreteness comes from
expanding the solution sought in terms of (continuous)
modes that can be labelled unambiguously. The simplest
of such examples is the bonding, anti-bonding electronic
mode that one finds for a two-sites (dimer) molecule af-
ter diagonalizing the two-site Schrodinger equation in the
tight-binding approach. Something similar happens in
optics, where the paraxial equation is formally equivalent
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Figure 1. Nonlinear anisotropic fractional dimer where the
excitation is on site 1 initially (¢ = 0). In the PT case,
€1 = —€x =17

to the Schrodnger equation. In that case, for two optical
waveguides, the total electric field is expanded in terms of
the electromagnetic modes in each guide which interact
through the evanescent field between the two guides giv-
ing rise to a transversal dynamics for the optical power.
The procedure can be extended to N interacting units,
either atoms or waveguides, where the relevant dynam-
ics is given by a discretized version of the Schrodinger
equation for N units[18, 19]. Of course, at the end one
has to collect all the discrete amplitudes and multiply
them by the corresponding continuous mode profiles and
superpose them, to obtain the final field. The simplest
case N = 2 is termed a dimer and oftentimes constitute
a basic starting point when studying an interacting, dis-
crete system. Ensembles of interacting dimers have been
studied before in classical and quantum statistics[20-22],
and more recently, they have been considered in model
of correlated disorder[24] and in magnetic metamaterial
modeling[23].

In this work we consider the discrete Schrodinger equa-
tion for a dimer system, where the standard time deriva-
tive is replaced by a fractional one. The dimer consid-
ered is rather general and contains asymmetry, P7T sym-
metry and nonlinearity (Fig.1). Our main interest is in
ascertaining the effect of the fractional derivative on the
excitation exchange between the sites, its stability and
selftrapping behavior, for several cases of interest.

II. THE FRACTIONAL DIMER

Let us consider the fractional evolution equations for
a general nonlinear dimer

i%la(t) +aC1(t) + VO (1) + XICL ()P Cr(t) =
;0 C2()

qe + e2Cao(t) + Vi (t) + X|Cz(t)|202(t) =0 (9)

where « is the fractional order of the (Caputo) deriva-
tives with 0 < a < 1. Quantities C 2 are probability
amplitudes in a quantum context, or electric field ampli-
tudes, in an optical setting. Parameter V' is the coupling
term and Y is the nonlinearity parameter.

Let us first consider the case of a general linear (x = 0)
dimer, and assume C7(0) = 1,C2(0) = 0. We will solve
this case in closed form by the use of Laplace transforms:
For 0 < a < 1, the Laplace transform of the Caputo
fractional derivative of order « is given by

L{f(6)} = s“L{f(&)} — s F(07). (10)

After applying the Laplace transform £ to both sides of
Eq.(9) we have

i(s*L(Cy) — s 1) + e L(C1) +VL(Cy) =0
i s”L(Cy) + e2L(Ca) + VL(Cy) =0. (11)

Solving for £L(C7) and L(Cs) gives:

—i(eg +isY)s¥ 1

L(C)) = 12
( 1) S2a — i(&l + 62)80‘ + V2 — €1€2 ( )
and
£(s) = Vet (13)
27 2o ie] +€2)s* + V2 —eren’
Using the inverse Laplace formula[25]
r-1 L =
s 4+ asP +b
a— r (a— r r+1 o
t PZ 2 a—t1+(a—[3)7'—p+1(_bt )7 (14)
we obtain:
Ci(t) = (iler +€2))" t* Byl i ((erea — V™)
r=0
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where E] ;(z) is defined as
1
Z k! F ak +5) (17)

where (v), = I'(y + n)/T'(v), and «, 5,7 € C, Re(a) >
0,Re(B) > 0,z € C. Figure 2 shows examples of the time
evolution of the square of the dimer amplitudes, for sev-
eral site energy parameters, and fractional derivative or-
ders. In general we observe that, as soon as « differs from
unity, the dynamics is either bounded or unbounded, de-
pending on the values of the site energy parameters. For
the bounded cases, there is some oscillation initially, with
a decreasing envelope towards zero.
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Figure 2. Dimer amplitudes for the linear case (xy = 0) and
several site energy parameters €1, €2 and different fractional
derivative orders a. Solid(dashed) line denotes |C1|? (|C2|?).

A. The linear P7 dimer

A particularly interesting case of Eq.(9), is the frac-
tional PT-symmetric dimer. For systems that are in-
variant under the combined operations of parity (P) and
time reversal (7), it was shown that they display a real
eigenvalue spectrum, even though the underlying Hamil-
tonian is not hermitian[27, 28]. In these systems there is
a balance between gain and loss, leading to a bounded
dynamics. However, as the gain/loss parameter exceeds
a certain value the system undergoes a spontaneous sym-
metry breaking, where two or more eigenvalues become
complex. At that point, the system loses its balance and
its dynamics becomes unbounded. According to the gen-
eral theory, for our system to be P7T symmetric, the real
part of the site energies in Eq.(9) must be even in space
while the imaginary part must be odd: Re(e;) = Re(ez)
and Im(e;) = —Im(ey). For simplicity we take the real
parts of €1, €5 as zero and thus, e, = —es =1 €, where €
is the gain/loss parameter. This leave us with the equa-
tions:

i%}l(t) + iECl(t) + VCg(t) =0
i%’i(t) —ieCh(t) + VCi (1) = 0 (18)

whose exact solutions can be extracted from the general
solution, Eqgs.(15),(16) as

& (t) = —GtaEga,(¥+1((€2 - V2)t2a) + Ega,l((GQ - V2)t2a)
Co(t) = iV Eay ar1((2 — VHEEY), (19)
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Figure 3. Dimer amplitudes |C1(¢)|* (continuous line) and
|C2(t)|* (dashed line) for the linear PT case (x = 0,¢ # 0)
for several fractional derivative orders and various gain/loss
parameters. (a) @ = 1,e = 0, (b) @ = 0.9,¢ =0, (¢) a =
0.5,e =0, (d) @« =0.25,¢ =0, (e) a = 1,e = 0.5, (f) o =
0.9,¢ = 0.5, (g) @ = 0.8, = 0.5, (h) a = 0.5,¢ = 0.5, (i)
a=0.25e¢=0.5.

where, E, g(z) = E} 5(2) is known as the generalized
Mittag-Leffler function. The Mittag-Leffler function

k

Eap(z) = Z m

k

(20)

is the natural extension of the exponential function and
plays the same rol for fractional differential equations,
as the exponential function does for the standard inte-
ger differential equations. Figure 3 shows examples of
time evolutions for |C;|?,|Cs|? for several fractional or-
ders and several gain/loss parameter values. As we can
see, as « decreases from 1, both amplitudes decrease too,
with oscillations that become monotonically decreasing,
converging to zero at long times.

The asymptotic behavior of Ci(t), C2(t) depends on
the behavior of the Mittag-Leffler functions E, g(z) at
large values of |z|. After writing z = |z|exp(i¢), we
have[26]

Eap3(2) = (1/a) Q"7 exp(Q)
where Q = 2'/* = exp((1/a) log(|z|)+i ¢) and |¢/a| < 7
(¢ = €2 — V?). This implies,

exp(Q) = exp(|z["/ cos((1/a)¢)) xexp(i ||/ Sin((l(/a))qﬁ))

22
Thus, bounded behavior in time will occur for (7/2) <
|¢/a| < m, while unbounded behavior occurs for 0 <

(21)
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Figure 4. Asymptotic stability for the amplitudes
Ci(t), Ca(t) for the fractional PT dimer system (19). Here,
U = unbounded, S = bounded, and z = (2 — V?)t**. The
dots denote the position of our two phases, phase(e2 —V2) =0
for €2 — V2 > 0, and phase(e? — V?) = 7 for €2 — V2 < 0.

|p/a| < m/2. In our case, ¢ = arg(e? — V?) = 0,7,
implying that C;(t) and Cy(t) will increase (decrease)
asymptotically in time if (¢2 — V'2) is positive (negative).
This behavior is sketched in Fig.4.

B. The nonlinear P7 dimer

We now explore a PT dimer in the presence of nonlin-
earity, and subject to fractional evolution equations

i%p +ieCy(t) + VOa(t) + X|C1 (H)PC1(t) = 0
Z%i(t) —ieCq(t) + VC1(t) + X|C2(t)|202(t) —0(23)

In the absence of PT symmetry (¢ = 0), and for
order @« = 1, eqs.(23) have been explored before in
the literature[29-31]. For initial conditions C;(0) =
1,C5(0) = 0, it was shown that they lead to the phe-
nomenon of a seltrapping transition: The existence of a
critical nonlinearity parameter x./V = 4 below which,
the long-time average of the square of the amplitudes, is
the same and equal to 1/2, (|C1]?) = (|Ca]?) = 1/2. At
nonlinearity values above x./V, (|C1|?) increases past
1/2 and converges to 1 at large x/V values. The be-
havior of (|C2|?) is the opposite, decreasing from 1/2
and approaching zero in the large nonlinearity limit.
The trapped fraction at the initial site, (|C1]?), changes
abruptly as the critical nonlinearity is crossed. Another
interesting feature is the existence of a conserved quan-
tity: P = |C1(t)]? + |Ca(t)|* = constant.

For a fractional order derivative (0 < o < 1), where
we take the Caputo version of the fractional derivative,
and in the presence of P7T symmetry, we resort to the
Grunwald algorithm([32] to compute the time evolution of
C4(t), Co(t) for initial conditions C1(0) = 1,C5(0) = 0.

time time

Figure 5. Dimer amplitude at initial site |C1 (t)|? for the non-
linear P77 case for several fractional derivative orders, various

gain/loss parameters and different nonlinearities.

This approach is based on finite differences, and in our
case leads to the following difference equations:

n+1

Xop1 =Y 0 Xpp1oy +ih(Y, +ieX,
v=1
+X |Xn|2Xn) + T%+1X0
n+1

Yoi1 =Y 0¥ni1y +ih(X, — i€V,
v=1

+x |Yn|2Yn) + TS+1YO (24)
where, X = C1,Y = (s, and

oo = (-1)“(0‘) ro = r(%aa) (25)

Numerical results are shown in Fig.5. In panel (a) we
show the behavior of |C;(¢)|? in the linear limit (y = 0),
for a fixed o and several different gain/loss parameter
values. We see that the effect of increasing € is to aug-
ment the amplitude and decrease the frequency of the
oscillation. When e approaches V', the amplitude grows
unbounded and the oscillation stops. In panel (b) we
take x = 0 as before, with a fixed gain/loss € and for sev-
eral order a values. As we noticed before, the presence
of 0 < a < 1 induces a decreasing oscillation behavior in
|C1(t)]?. If we reduce now the value of o, we see a further
decrease of the oscillation amplitude, with little effect on
the frequency. We now move to the nonlinear case. In
panels (c, d) we show the behavior of |Cy(¢)|? in time for
fixed a, e parameters and for several y values. Roughly
speaking, what we observe here is that for y < 4V the




|C1(t)|? curves decrease to zero at long times, while at
values greater than 4V, the curves approach a constant
value. This looks just like a manifestation of the selftrap-
ping effect observed in the standard case (o = 1). But
there is a significative difference: As y is increased past
4V the selftrapped fraction decreases with x instead of
increasing, as in the standard case.

III. CONCLUSIONS

In spite of interesting differences with the standard
integer derivative case, the very general features of the
dimer remain more or less the same; (1) there is exchange

between the sites, (2) in the presence of PT symmetry
there are two clearly demarked regimes where the ampli-
tudes decrease to zero or diverge to infinity.(3) there is
still a selftraping transitions, whose details depend on the
value of the fractional derivative order. The persistence
of this general phenomenology in the face of a different
rate of change, suggest that this phenomenology is robust
against "mathematical perturbations”. This kind of ro-
bustness has been also observed for the fractional DNLS
equation, where the Laplacian is replaced by a fractional
one[33, 34]. Thus , the concept of power exchange be-
tween sites, selftrapping transitions and existence of non-
linear excitations (discrete solitons) are concepts of wide
validity.
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