Fractional discrete vortex solitons
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We examine the existence and stability of nonlinear discrete vortex solitons in a square lattice
when the standard discrete Laplacian is replaced by a fractional version. This creates a new, effective
site-energy term, and a coupling among sites, whose range depends on the value of the fractional
exponent «, becoming effectively long-range at small « values. At long-distance, it can be shown
that this coupling decreases faster than exponential: ~ exp(—|n|)/y/|n|. In general, we observe
that the stability domain of the discrete vortex solitons is extended to lower power levels, as the a
coefficient diminishes, independently of their topological charge and/or pattern distribution.

Introduction. Vortices are objects characterized by
a spatially-localized distribution of field intensities, to-
gether with a nontrivial phase distribution. This phase
circulates around a singular point, or central core, chang-
ing by 27S times in each closed loop around it (where S
is an integer number). Integer S is known as the topo-
logical charge of the vortex. The sign of S determines
the direction of power flow. In optics, this type of so-
lution is also known as a vortex beam and has arisen
considerable interest given their potential technological
applications. Optical vortices have been envisioned as a
mean to codify information using their topological charge
value in classical [1] and quantum [2] regimes. Also, a
stable vortex is capable of delivering its orbital angular
momentum (OAM) to a nearby object, given way to one
of its most remarkable applications: optical tweezers in
biophotonics, where they are useful due to their ability to
influence the motion of living cells, virus, and molecules
[3-5]. Other applications can be found in optical systems
communications [6] and spintronics [7].

A particular domain where discrete vortex solitons can
be found, is in the discrete nonlinear Schrédinger (DNLS)
equation [8-10], whose dimensionless form can be written
as:
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where CY, is, for instance, the amplitude of an optical
or electronic field, y is the nonlinear coefficient, and
the sum is usually restricted to nearest-neighbor lat-
tice sites. The DNLS equation has proven useful in de-
scribing a variety of phenomena in nonlinear physics,
such as the transversal propagation of light in waveg-
uide arrays [11-14], propagation of excitations in a de-
formable medium [15, 16], self-focusing and collapse of
Langmuir waves in plasma physics [17, 18], dynamics
of Bose-Einstein condensates inside coupled magneto-
optical traps [19, 20], and description of rogue waves in
the ocean [21], among others. Its main features include
the existence of localized nonlinear solutions in 1D and
2D, usually referred to as discrete solitons, with families
of stable and unstable states, the existence of a selftrap-
ping transition [22, 23] of an initially localized excitation,

and a degree of excitation mobility in 1D [24]. For the
DNLS equation, the existence and observation of discrete
vortex solitons in Eq. (1) for several lattices have been re-
ported in several works. For a square geometry and Kerr
nonlinearity [Eq. (1)] it was found that the discrete vor-
tex is stable when x is larger than a critical value [25-27].
For saturable nonlinearity, discrete vortices have been ex-
perimentally observed in a square lattice [28]. They have
also been studied in a nonlinear anisotropic Lieb lattice,
which possesses a flat band [29]. For a hexagonal lattice
in a self-focusing photorefractive crystal, vortices with
S = 1 have been found but proven unstable, while for
S = 2 a range of stability can be found [30-32]. Dis-
crete vortices living at the boundary between a square
and hexagonal lattice with photorefractive nonlinearity,
have also been found [33].

Another field with substantial recent interest is that of
fractional calculus. Its origin dates back to the firsts ob-
servations that the usual integer-order derivative could
be extended to a fractional-order derivative, that is,
(d"/dz™) — (d*/dx®), for real o, which is known as the
fractional exponent. The field has a long history dating
back to letters exchanged between L’Hopital and Leib-
nitz, followed by later contributions by Euler, Laplace,
Riemann, Liouville, and Caputo, to name some. Sev-
eral formalisms have been derived to treat these frac-
tional derivatives, each one having its advantages and
shortcomings. In the popular Riemann-Liouville formal-
ism [34-37], the a-th derivative of a function f(z) can be
formally expressed as
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for 0 < a < 1. For the case of the laplacian operator

A = 0?/02% + 9% /9y?, its fractional form (—A)® in two
dimensions can be expressed as [37]
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where I'(x) is the Gamma function and 0 < o < 1 is the
fractional exponent.

The fractional Laplacian (3) has found many appli-
cations in fields as diverse as Levy processes in quan-
tum mechanics [38], photonics [54], fractional kinetics
and anomalous diffusion [39-41], strange kinetics [42],
fluid mechanics [43, 44], fractional quantum mechan-
ics [45, 46], plasmas [47], electrical propagation in cardiac
tissue [48] and biological invasions [49].

In this work, we study the effect of replacing the
usual two-dimensional discrete Laplacian by its fractional
form [50, 51], on the creation and stability of discrete
vortex solitons on a square lattice. As we will see, as
the fractional exponent decreases, moving away from the
usual non-fractional value, there is a stabilizing effect on
those vortices with a topological charge equal to 2.

The model. Let us consider a square lattice, where the
kinetic energy term in Eq.(1), > Cm, can be written
as 4Cy + A,,Cy, where A,, corresponds a the well-known

J
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where j = (j1,J2) and m = (my,ms), and G(...) is the
Meijer G-function. As we can see, the symmetric ker-
nel K%(m) = K“(—m) plays the role of a long-ranged
coupling. Near o = 1, K(m) — 0mu where u = (1,0)
or u = (0,1), ie., coupling to nearest neighbors only.
Equation (6) can now be written as
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With a bit of algebraic manipulations, it is possible to
prove that Eq.(10) has two conserved quantities namely,
the power

P =3 [Cut) (11)

and the Hamiltonian,
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These relations prove useful when monitoring the accu-
racy of numerical computations.

Now let us consider stationary modes defined by
Cu(t) = e ¢y, which obey

(_)‘ +4)¢n + Z (¢m - qbn)Ka(m - Il) + X|¢n‘2¢n =0,
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(14)
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expression for the discretized Laplacian

ApCh = p+lq T Cpfl,q —4 Cp,q
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where n = (p, ¢). Equation (1) can then rewritten as
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Let us now replace the Laplacian A,, by its fractional
form (A,)%, and given by [52, 53]

(Ap)*Cn =Y (Cm — Cu) K*(n—m) (7)
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with m = (mq,ms) and I,,(z) is the modified special

Bessel function. An equivalent expression for (A,)% is
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where ¢y is the field amplitude that defines a complex
spatial profile of the solution, and X is the propagation
constant.

It should be mentioned that, when dealing with a fi-
nite square lattice, in expressions (6) and (14) the term
4 is to be replaced by 3 (2) when n falls at the edge
(corner). Figure 1 shows the effective site energy e(n) =
4= nyn K¥(m—n) and effective coupling K*(m—n).
We can see that, as o decreases, the range of the cou-
pling between two distant sites increases. In particular,
for n = 0 and along the main diagonal m=(m,m), its
value can be shown to approach

K m) ~ w5 ey v

i.e., faster than exponential.
Discrete wvortex solitons.

(n — 00), (15)

Let us examine the non-

(12) linear stationary modes given as complex solutions of

Eq.(14) and characterized by a nontrivial distribution of
the phases. They form a set of N x N nonlinear alge-
braic equations for the amplitudes {C,, }. The form of the
nonlinear term chosen here is of the Kerr type (cubic),
although other forms can be used, such as the saturable
nonlinearity[29]. Numerical solutions are obtained by the
use of a multidimensional Newton-Raphson scheme, us-
ing as a seed a solution in the form C,, = A,, exp(iS0,),
where S is the topological charge and 6 is the azimuthal
angle of the nth site, with a highly localized distribu-
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Figure 1. First row: Effective coupling K*(n — m) between
m = (0,0) and sites n = (n,0) (left column), n = (n,n)
(middle column), and n = (n,2n) (right column). Second
row: Effective site energy e(n) for several fractional exponents
o and n = (n,0) (left column), n = (n,n) (middle column),
and n = (n,2n) (right column). Number of sites= 10 x 10.
The numbers on each curve denote the value of the fractional
exponent.

Figure 2. 4-sites discrete vortex with S = 1 and exponent
o = 0.2. (a) Real part (b) Imaginary part (c) Amplitude
profile (d) Phase profile. (A = 6)

tion for A,,. This ansatz is obtained from the decoupled
limit, also known as the anticontinuous limit, where each
site becomes decoupled from each other. We use a finite
N x N lattice with open boundary conditions. Figures
2 and 3 show examples of two different discrete vortex
solitons with fractional exponent a = 0.2, and two val-

Figure 3. 6-sites discrete vortex with S = 2 and exponent
a = 0.2. (a) Real part (b) Imaginary part (c) Amplitude
profile (d) Phase profile. (A = 6)

ues of the topological charge, S =1 and S = 2. As we
will show, the main effect of small « values of fraction-
ality is to stabilize the modes with S = 2 with 4 and 6
sites, while inhibiting the existence of modes with S =1
modes for the 6-sites mode. At « values in the range
0.5 < a < 1, fractionality does not seem to affect the
stability of the S = 1 mode. For the modes with S =1
and 4 sites, stability is not affected by fractionality.

The stability of the computed vortex solitons is car-
ried out by a simple linear stability analysis, which we
describe briefly here for completeness. We start by per-
turbing the vortex solution C,, = (¢n + 0n)exp(iAt),
where ¢, is the solution of Eq.(14) and |6, (¢)| < |@n]-
We replace this in the evolution equation (6) [ with A,
replaced by its fractional form (Ay)®]. After a lineariza-
tion procedure, where we neglect any powers of dy(t)
beyond the linear one, we obtain a set of linear evolu-
tion equations for dy,(t). Next, we decompose dy(t) into
its real and imaginary parts: 0n(t) = an(t) + @ yn(t).
To simplify the notation we map the sites of the two-
dimensional square lattice into those of an open one-
dimensional chain: (ny,n2) = n =n; + (ng — 1)N, with
1 < nq,ne < N. Then, the equations for z,(t) and y,(t)
can be written in the form:

a? . a? .
ﬁx—Aszo, @y—BAy:O7
where ¥ = (z1,22, - onxn) and ¥ = (y1,Y2, - YNxN)-
Matrices A and B are given by

Apm = [_A_Ka(0)+5n+X(2|¢n|2_¢3L]) Onm+K*(n—m)
(17)
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Figure 4. Power content versus eigenvalue of some vortex soli-
tons, for several fractional exponents and topological charges
S =1 (upper row) and S = 2 (lower row). Solid (dashed) lines
represent stable (unstable) solutions. Blue, orange, green and
violet lines correspond to a = 0.8, 0.6, 0.4 and 0.2, respec-
tively. Amplitude (top left) and phase profile (bottom right)
at inset of each diagram corresponds to solutions for A = 12.

By = A KY(0) =€ =X (2|¢n|* +7]) Grim — K (n—m)

(18)
where €, = 8 — Zj K%(n — j), with 8 = 2 for a corner
site, 8 = 3 for an edge site, and 8 = 4 for a bulk site (in
solid state physics, 5 is known as the coordination num-
ber). Linear stability is determined from the eigenvalue
spectra of the matrices AB (or BA). When all eigenval-
ues are real and negative (positive), the system is stable
(unstable). In the more general case that also considers
possible complex eigenvalues, one defines the instability
gain G as:

G = Max of {; (Re(g) + v/Re(g)? + Im(g)? ) }1/2

(19)
for all g, where g is an eigenvalue of AB (BA). Thus,
when G = 0, the mode under inspection is stable; other-
wise it is unstable.

Results from the above procedure are displayed in
Fig. 4. They are summarized by mean of P vs A di-
agrams, for several values of the fractional exponent «.
Amplitude (top left) and phase (bottom right) profiles for
these kinds of stationary vortex solutions are displayed
at the inset of each diagram. We see that vortex beams
with S = 1 and four main peaks, the off-site square (a)
and diamond shape (b), increase their stability domain
as the « coefficient diminish. Similar behavior can be
observed for those stationary modes endowed with S = 2
and displaying six main peaks and hexagonal shape (c).
However, for modes with eight peaks and on-site square

4

shape (d), the stability domain displays a piecewise do-
main for high values of «. Here, we have employed a
N x N square lattice with N = 17. As normally happens
in the non-fractional case, families of modes, indistinct
of « coefficient, exhibit a saddle-node bifurcation near to
the linear band border. Here we only calculate solutions
belonging to the lower branch of the bifurcation point.
Discrete solitons display here highly localized patterns,
as expected for a cubic nonlinearity. We can observe a
smooth spiral phase for any loop enclosing the singular-
ity, in those solutions with symmetric amplitude profiles
matching their nominal topological charge. On the con-
trary, for the hexagonal asymmetric pattern, the topo-
logical charge only can be observable in the region where
the field amplitude is significant.

In all cases, without exception, the power curves shift
down as « is decreased. Another observation concerns
the limit s — 0. In that limit, the range of the coupling
diverges and, as a result, all sites are coupled with each
other. Assuming that the amplitude at each site is nearly
identical, the stationary equations (14) reduce to (—\ +
4)p + x¢® ~ 0. For ¢ # 0 we have (4 — \) + x¢? =~ 0.
Using P ~ Z¢? where Z is the number of sites initially
excited, we have P = (Z/x)(A —4). For A < 4, we must
take ¢ = 0, which implies P = 0. This linear dependence
can be clearly seen in all plots of Fig.4 at small a values.

Conclusions. In this work we considered the existence
and stability of discrete vortex solitons of the discrete
nonlinear Schrodinger (DNLS) equation, when the usual
Laplacian A,, is replaced by a fractional version (Ay)®
with 0 < a < 1. We employed a square lattice and
a Kerr nonlinearity and computed discrete vortex modes
and their stability for different values of the fractional ex-
ponent «.. Discrete vortex solitons reported here, namely,
the diamond, off and on-site square and hexagonal shape,
exist for any value of fractional exponent and S =1 and
S = 2 topological charges. However, those with dia-
mond and off-site square shape, are only stable for S = 1.
On the contrary, the on-site square and hexagonal shape
cases are stable for S = 2. The existence and stability
of these modes are strongly related to their spatial dis-
tribution, as well as to the lattice geometry. In all cases
examined, a decrease of the fractional exponent o causes
the power stability curves to shift to lower values.

In general, the basic properties of discrete vortices
observed before for the standard Laplacian exponent
(o« = 2) are more or less maintained in the case a frac-
tional Laplacian. This is in itself interesting, since it
suggests that the discrete vortex soliton properties are
robust against mathematical “perturbations”.
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