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We study the e↵ect of a resonant frequency disorder on the eigenstates and the transport of mag-
netic energy in a two-dimensional (square) array of split-ring resonators (SRRs). In the absence
of disorder, we find the dispersion relation of magneto-inductive waves and the mean square dis-
placement (MSD) in closed form, showing that at long times the MSD is ballistic. When disorder
is present, we consider two types: the usual Anderson distribution (uncorrelated monomers) and
2⇥ 2 units assigned at random to lattice sites (correlated tetramers). This is a direct extension to
two dimensions of the one-dimensional random dimer model (RDM). For the uncorrelated case, we
see saturation of the MSD for all disorder widths, while for the correlated case we find a disorder
window, inside which the MSD does not saturate at long times, with an asymptotic sub-di↵usive
behaviour MSD ⇠ t0.26. Outside this disorder window, the MSD shows the same kind of saturation
as in the monomer case. We conjecture that the sub-di↵usive behaviour is a remanent of a weak
resonant transmission of a 2D plane wave across a tetramer unit.

Introduction. The current ability to tailor material
properties at will has lead to a whole class of artificial ma-
terials, termed metamaterials, characterized by unprece-
dented thermal, optical, and transport properties that
make them attractive candidates for current and future
technologies. Among them, we have magnetic metamate-
rials (MMs) that consist of an array of metallic split-ring
resonators (SRRs) coupled inductively [1–3]. This type
of system can, for instance, feature negative magnetic re-
sponse in some frequency window, making them attrac-
tive for use as a constituent in negative refraction index
materials [4–7]. The usual theoretical treatment of such
structures is an e↵ective medium approximation where
the composite is treated as a homogeneous and isotropic
medium, characterized by e↵ective macroscopic param-
eters. Of course, this approach is valid, as long as the
wavelength of the external electromagnetic field is much
larger than the linear dimensions of the MM constituents.

One of the simplest two-dimensional MM models con-
sists of a periodic square array of split-ring resonators
(SRRs) lying on a common plane, where each resonator
consists of a small, conducting ring with a slit (Fig. 1).
Each SRR unit in the array is equivalent to a resistor-
inductor-capacitor (RLC) circuit featuring self- induc-
tance L, ohmic resistance R, and capacitance C built
across the slit [8, 9]. If we assume a negligible resistance,
each unit will possess a resonant frequency ! = 1/

p
LC.

Under this condition and in the absence of driving, the
evolution equations for the charge Qn residing at the nth

ring are given by

dQn

dt
= In (1)

L
dIn

dt
+

Qn

C
= �M

X

m

dIm

dt
(2)

where M is the mutual inductance and the sum is re-

stricted to nearest-neighbors of n. These equations can
be cast in dimensionless form as

d
2

dt2

 
qn + �

X

m

qm

!
+ !

2
nqn = 0 (3)

where qn denotes the dimensionless charge of the nth

ring, n = (nx, ny), � is the coupling between neighboring
rings that originates from the dipole-dipole interaction,
and !

2
n is the (square of) resonant frequency of the nth

ring, normalized to a characteristic frequency of the sys-
tem, h!2

ni = (1/N)
P

n !
2
n. These equations can also be

derived from the Hamiltonian H =
P

n Hn where Hn is
the Hamiltonian density

Hn =
1

2

 
q̇
2
n + �q̇n

X

m

q̇m + !
2
nq

2
n

!
, (4)

where q̇n ⌘ (d/dt)qn. We assume that the magnetic com-
ponent of any incident external electromagnetic wave is
perpendicular to the SRRs’ plane and that the electric
field of the incoming wave is perpendicular to the elec-
tric field induced along the slits. This insures that only
the magnetic component of the incoming wave creates an
electromotive force on the rings, giving rise to an oscil-
lating current in each SRR and to an oscillating voltage
di↵erence across the slits. Also, it is a good idea to reduce
electric dipole-dipole e↵ects coming from the strong elec-
tric fields at the slits by a judicious placing of the SRRs
in the common plane to keep the slit-to-slit distance as
large as possible (Fig. 1). However, large Ohmmic and
radiative losses remain as the main drawback of the SRR
array. A possible way to deal with this problem that
has been considered is to endow the SRRs with external
gains, such as tunnel (Esaki) diodes [10, 11] to compen-
sate for such losses.
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Figure 1. Two-dimensional split-ring resonator array.

The dimensionless stationary state equation is ob-
tained from Eq.(3) after posing qn(t) = qn exp[i(⌦t+�)]:

� ⌦2

 
qn + �

X

m

qm

!
+ !

2
nqn = 0. (5)

The frequency !
2
n can be changed by varying the capac-

itance of the ring, which is accomplished by altering the
slit width or by inserting a dielectric in the slit. For a
homogeneous array, !2

n = 1.
On the other hand, the e↵ect of disorder on the sta-

tionary and transport properties of a discrete, periodic
system, is an old topic, but its importance has not waned
throughout the years due to its fundamental importance
in several fields. The most relevant result in this area is
Anderson localization which asserts that the presence of
disorder tends to inhibit the propagation of excitations.
In fact, for 1D systems, all the eigenstates are localized
and transport is completely inhibited [12–14]. This was
also proven to be true for two-dimensional systems, while
in three-dimensions a mobility edge is formed. Now, An-
derson localization is based on the notion that the dis-
order is “perfect” or uncorrelated. However, it has been
noted that in one-dimensional lattices with a correlated
disorder, a degree of transport is still possible. This hap-
pens, for instance, in the random dimer model (RDM)
for the usual tight-binding model. It consists of a binary
lattice for the site energies where site energy is assigned
at random to pairs of lattice sites. This leads to a mean
square displacement of an initially localized excitation
that grows asymptotically as t

3/2 at low disorder levels,
instead of the saturation behavior predicted by Ander-
son’s theory [15–17].

An experimental demonstration of the RDM prediction
has been made in an optical setting [18]. A straightfor-
ward extension of these ideas to random arrays of larger
units (n-mers), has also been theoretically explored [19].
For a disordered, one-dimensional SRR array, it was
found that an uncorrelated disorder always leads to local-
ization of magnetic energy at any disorder strength, with
a transmission that decreases exponentially with the size
of the system. For correlated disorder and small and
medium disorder levels, however, it becomes possible for

Figure 2. Random realization of an uncorrelated (left) and a
correlated (right) distribution of random resonant frequencies.

a fraction of states to have resonant transmission, lead-
ing to a power-law decrease of the overall transmissivity
with system size [20].

In this work, we examine the localization of the mag-
netic modes and the transport of magnetic excitations in
a two-dimensional disordered square array of split-ring
resonators, where the resonant frequencies !

2
n in Eq.(5)

are taken as random quantities. We will consider two
cases: A completely uncorrelated one where the !

2
n are

assigned at random to individual units, or ‘monomers’
and a correlated case, consisting of a straightforward 2D
generalization of the well-known random dimer model
used in one-dimensional systems: Site frequencies !

2
n

assigned at random to 4 nearby units, or ‘tetramers’
(Fig.2)[21].

A usual indicator of localization is given by the par-
ticipation ratio (PR), that measures the extent of the
electric charge distribution stored in the capacitors (or
magnetic energy density stored in the inductors):

PR =

 
X

n

|qn(t)|2
!2

/

X

n

|qn(t)|4 (6)

For a completely localized excitation, PR = 1, while for
a complete delocalized state, PR = N .

To monitor the degree of mobility of a magnetic exci-
tation we resort to the mean square displacement (MSD)
of the charge, defined as

hn2i =
X

n

n2|qn(t)|2/
X

n

|qn(t)|2 (7)

Typically hn2i ⇠ t
↵ at large t, where ↵ is known as

the transport exponent. The types of motion are clas-
sified according to the value of ↵: ‘localized’ (↵ = 0),
‘sub-di↵usive’ (0 < ↵ < 1), ‘di↵usive’ (↵ = 1), ‘super-
di↵usive’ (1 < ↵ < 2) and ‘ballistic’ (↵ = 2).
Homogeneous case. Before embarking into the e↵ects

of disorder on the system, let us begin by examining the
phenomenology in the absence of disorder, !

2
n = 1, in

order to have a proper comparison context.
After posing qn ⇠ exp(ik · n) and solving for ⌦2, we
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obtain the dispersion relation in d-dimensions as

⌦2
k =

1

1 + �
P

m exp(ik ·m)
(8)

where the sum is restricted to nearest neighbors.
The time evolution of a completely localized initial

charge qn(0) = A�n,0, and no currents, (dqn(0)/dt) = 0,
is given by

qn(t) = (A/v)

Z

FBZ
e
i(k·n�⌦kt)

dk

+ (A/v)

Z

FBZ
e
i(k·n+⌦kt)

dk (9)

where v is the volume of the first Brillouin zone (FBZ),
and ⌦2

k is given by Eq.(8). After replacing this form for
qn(t) into Eq.(7), one obtains after some algebra, a closed
form expression for hn2i:

hn2i =
(1/v)

R
FBZ(rk⌦k)2(1 � cos(2 ⌦k t))

1 + (1/v)
R

FBZ cos(2 ⌦k t)
t
2
. (10)

At long times hn2i approaches a ballistic behavior

hn2i =


1

v

Z

FBZ
(rk⌦k)2dk

�
t
2 (t ! 1) (11)

while at short times,

hn2i =


1

v

Z

FBZ
⌦2

k(rk⌦k)2dk

�
t
4 (t ! 0).

(12)
For a square lattice (d = 2),

⌦2
k =

1

1 + 2� [cos(kx) + cos(ky)]
(13)

where, k = (kx, ky). We see that the system is capa-
ble of supporting magnetoinductive waves, if |�| < 1/4.
Figure 3 shows the band ⌦2

k, as well as the bandwidth,
defined as |⌦2

0 �⌦2
±⇡|, is given by 8�/(1� 16�2). We see

that at the edges of the Brillouin zone, the bandwidth
diverges at |�| = 1/4, but Figs. 3 (a), (b) and (c) show
that the increase in bandwidth is mostly concentrated in
the immediate vicinity of (kx, ky) = (±⇡,±⇡).

Disorder. We introduce now disorder into our system
by considering the case when the resonant frequencies
!

2
n are taken as random. This can be done in practice

by altering the spacing between the slits, or by inserting
di↵erent dielectrics in the slits. For the numerical compu-
tations of quantities of interest, we use a self-expanding
square lattice with open boundary conditions. That is, at
the beginning of the computation the lattice is relatively
small and grows in size as time evolves, to contain the
expanding wavefront. For the evolution times used here,
t ⇠ 1000, a typical final lattice dimension is about 64⇥64,
with open boundary conditions. The open geometry is
more desirable when one looks to potential applications
to magnetic card devices.

(a) (b)

(c) (d)

⌦2
k ⌦2

k

⌦2
k

Figure 3. Dispersion relation for homogeneous case: (a) � =
0.05 (b) � = 0.1, (c) � = 0.2 (d) Bandwidth as a function of
inductive coupling.

Let us get back to the stationary equation (5) which
can be rewritten as

�
✓

1

⌦2

◆
qn +

✓
1

!2
n

◆
qn + �

✓
1

!2
n

◆X

m

qm = 0 (14)

We see right away that the equation corresponds to an
Anderson tight-binding model, with a site energy term
equal to 1/!2

n, and a site-dependent coupling �/!
2
n. That

is, the “diagonal” term and the “o↵-diagonal” term are
completely correlated, and their values appear “inverted”
when compared to a usual tight-binding model. This
implies that the high disorder limit corresponds to small
!

2
n, while large !2

n values leads to the small disorder limit.

We will explore two kinds of disorder: an uncorrelated
one, where the site frequencies !2

n are assigned at random
from a continuous distribution [1,!2] for a 50�50 impu-
rity fraction. Clearly, for !2 = 1, we recover the homoge-
neous case. The second kind of disorder we will explore
is a correlated one, consisting of a generalization to two
dimensions of the one-dimensional Random Dimer Model
(RDM) of Kundu and Philips[16]. While in the RDM one
assigns random site frequencies at pairs (dimers) of lat-
tice sites, in our case we will assign (random) site energies
to 4 nearby sites or ‘tetramers’ of lattice sites. Figure 2
shows an example of a disorder realization for the un-
correlated and correlated cases. We notice the presence
of 4-sites clusters that constitute the new, bigger ‘point
impurities’.
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Figure 4. Average density of states for the uncorrelated (top)
and correlated (bottom) cases for several impurity width val-
ues ! (N = 30⇥ 30, number of realizations=50)

Figure 4 shows the average density of states (DOS)

D(⌦2) =

*
(1/N2)

X

m

�(⌦2 � ⌦2
m)

+
(15)

where N
2 is the number of sites, the sum is over all

modes, and the average is over all random realizations.
The shape of the curve for the ordered case (!2 = 1)
seems to hint at the existence of van Hove-like singulari-
ties, which are rounded-o↵ here due to finite-size e↵ects.
In both cases, uncorrelated and correlated disorder, the
density of states shows a maximum whose position in-
creases from a small frequency to larger frequencies, as
the disorder w is increased. The position of the DOS
maxima seems to converge to a fixed frequency value,
close to unity. On the other hand, in the limit ! ! 0,
the DOS converges to a Dirac delta function. This can
be proven from Eq.(5) where, for !2

n ! 0, the eigenvalue
equations reduce to

� ⌦2

 
qn + �

X

m

qm

!
= 0. (16)

which implies ⌦ = 0 and D(⌦2) = �(⌦2).

Figure 5. Comparison of the average participation ratio for
the uncorrelated (left column) and the correlated case (right
column) (N = 22⇥ 22, number of realizations = 30.)

The width of the DOS increases with an increase in
disorder, as expected. In general, there is no appreciable
di↵erence in the DOS between the disordered monomer
and tetramer cases.

For a square lattice of N ⇥ N sites, the participation
ratio of mode ↵ is

PR
↵ =

0

@
X

nx,ny

|q↵
nx,ny

|2
1

A
2

/

X

nx,ny

|q↵
nx,ny

|4. (17)

For a homogeneous square lattice, we have q
k
n ⇠

sin(kxnx) sin(kyny), and PR
(↵) = (4/9)N ⇥ N in the

limit of a large number of sites. Figure 5 shows the aver-
age participation ratio hhPRii averaged over all mode fre-
quencies and over all disorder realizations, as a function
of disorder width, for the uncorrelated and correlated
cases. The overall shape of the hhPRii looks quite simi-
lar in both cases, with an hhPRii that decreases steadily
towards both sides around ! = 1, the homogeneous case.
This is to be expected since, as we commented before, a
deviation from ! = 1 to smaller ! values leads to an ef-
fective increase in disorder, while something similar hap-
pens at values of ! greater than unity, although in this
case the disorder is less drastic than for the other case.
Now, we see that the amplitudes of the curves are dif-
ferent for both cases, with the correlated case showing
higher hhPRii values for all the frequency range. This
implies a smaller wave localization, on average than for
the uncorrelated case.
Disordered transport. Let us now compute the spread-

ing of an initially localized magnetic excitation and ob-
serve its time evolution. For our SRR array, we will focus
on the the mean square displacement (MSD) of the mag-
netic energy density

hn2i =
X

n

n2|Hn(t)|2/
X

n

|Hn(t)|2 (18)
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Figure 6. Comparison of the average MSD for the correlated
(left column) and the uncorrelated (right column) disorder
cases , for several disorder width values. The black curve
denotes the average value. (a) and (b): !n 2 [0.1, 1]. (c) and
(d): !n 2 [1, 4] (N = 64⇥ 64, number of realizations=20.)

Figure 7. Asymptotic fit MSD ⇠ Atb of the average MSD for
the correlated (top) and uncorrelated (bottom) cases.

where Hn is given by Eq.(4). We computed and com-
pared the MSD for the uncorrelated and correlated cases.
Results are shown in Fig.6. We note the presence of
strong fluctuations, where the MSD changes consider-
ably from realization to realization. For the uncorrelated
case, the MSD seems to saturate at long times for all
disorder widths. A comparison of the MSD for di↵erent
disorder widths reveals that the saturation value MSD
is greater for the w > 1 case than for the case with
w < 1. This can be understood from Eq.(14) where we
see that values of !2

n > 1 results in e↵ective low disorder,
while values of !

2
n < 1 are equivalent to high disorder.

For the tetramers case, we see evidence of a departure
from saturation for ! < 1, with a sub-di↵usive transport

MSD ⇠ t
0.26 (Fig.7). For ! > 1, the MSD is greater

than its uncorrelated counterpart and also seems to sat-
urate at long times.

Now, what is the origin of the propagating regime we
see for the correlated case? Here, it might be useful to re-
member that for the one-dimensional traditional Ander-
son random dimer model (not SRR), there is a nontrivial
di↵erence between the uncorrelated and correlated case:
The existence of resonant trajectories where a plane wave
can propagate across the whole lattice without scatter-
ing. This happens for energies close enough to the res-
onant energy where a wave goes through a dimer with
unity transmission. This gives rise to

p
N of transmit-

ting states[15–17] and to a MSD that behaves as t
3/2

at long times. This e↵ect was also observed numerically
in a one-dimensional disordered SRR array[24]. For our
2D case, we could assume for simplicity that a 2D plane
wave can be factored as 2 independent waves that prop-
agate along the horizontal and vertical axes. When this
wave encounters a tetramer, it could pass unreflected if
a resonance condition is obeyed, which involves the con-
trast between the background frequency (!2 = 1) and
the frequency of the tetramer. Since the frequency of
the tetramers is extracted from a continuous distribu-
tion rather than a binary one, the e↵ect will be small
since after traversing a tetramer, the wave might not en-
counter a favorable transmitting condition until farther
out. Anyway, this small resonance e↵ect decreases the
e↵ective disorder of the system, leading to a number of
states with larger localization lengths. This explains the
higher hhPRii found for the correlated system (Fig.5).

Conclusions. We have compared the e↵ect of two types
of disorder on the eigenmodes and the transport of ex-
citations, of a simplified model of a magnetic metamate-
rial consisting of a square array of split-ring resonators.
The disorder consisted of random values of the resonant
frequencies of the rings, taken from a continuous distri-
bution, that are assigned to array sites completely at
random (uncorrelated case), or by assigning ‘tetramers’
at random to the array sites (correlated case). The
last case corresponds to a generalization of the random
‘dimer’ model for one-dimensional systems of Dunlap and
Wu[16]. Our system can be mapped to a tight binding
system with site energies and couplings that are nearly
identical and with e↵ective disorder strength values that
are ‘inverted’, Eq.(14). Thus, small (large) values of !2

n
lead to e↵ective large (small) disorder. The computation
of the mean square displacement (MSD) shows that, in
general, there is saturation at large times in both cases,
but for the correlated case there appears to be a disor-
der window inside which the MSD increases in time in a
sub-di↵usive manner. We explained this feature as a pos-
sible remnant e↵ect of plane wave resonance across a sin-
gle tetramer. This conjecture also explains the features
of the participation ratio (PR) where for the correlated
case we observe the existence of modes whose localization
length is greater than for the uncorrelated case. These
results could be of use for the future design of e�cient
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magnetic energy confinement devices, and the harvesting and transport of magnetic energy.
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