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We examine the bound state!s" associated with a single cubic nonlinear impurity, in a one-dimensional
tight-binding lattice, where hopping to first- and second-nearest neighbors is allowed. The model is solved in
a closed form vı̀a the use of the appropriate lattice Green function, and a phase diagram is obtained showing
the number of bound states as a function of the nonlinearity strength and the ratio of second- to first-nearest-
neighbor hopping parameters. Surprisingly, a finite amount of hopping to second-nearest neighbors helps the
formation of a bound state at smaller !even vanishingly small" nonlinearity values. As a consequence, the
self-trapping transition can also be tuned to occur at relatively small nonlinearity strength, by this increase in
the lattice dispersion.
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The effects of impurities on the transport properties of
materials continues to be an interesting subject. When the
concentration of impurities inside a material is finite, we
speak of a disordered system. In one-dimensional systems,
this disorder gives rise to the well-known phenomenon of
Anderson localization, where all states acquire a finite local-
ization length. This precludes any amount of transport in the
system. More recently, the problem of nonlinear impurities
has received considerable attention. In a condensed matter
context, they appear in strongly coupled electron-vibration
systems, when the vibrational degrees of freedom have the
ability to adapt quickly to the presence of the electron, giving
rise to a polaronic behavior.1 Nonlinear impurities also ap-
pear in other fields, such as nonlinear optics. For instance, an
array of linear waveguides containing a single or several
nonlinear, Kerr-like guides. The transversal dynamics de-
scribing the energy exchange among waveguides is formally
identical to the dynamics of an excitation propagating in a
linear tight-binding lattice in the presence of one or more
nonlinear impurities.2
In systems where an electron !or excitation" is propagat-

ing while strongly interacting with vibrational degrees of
freedom, an ‘‘effective’’ nonlinear evolution equation for the
electron can be obtained, under the assumption that the vi-
brations adapt instantly to the presence of the electron.1 This
equation, known as the discrete nonlinear Schrödinger
!DNLS" equation, has the form

i! dCndt ""V#
n.n.

Cm!$n#Cn#2Cn !%&1 ", !1"

where Cn is the probability amplitude of finding the electron
on lattice site n at time t, V is the nearest-neighbor hopping
parameter, and $n is the nonlinearity parameter at site n pro-
portional to the square of the electron-vibration coupling. In
the conventional DNLS equation, the sum in Eq. !1" is re-
stricted to nearest neighbors !n.n.".
For the case of a single nonlinear impurity in a one-

dimensional lattice ($n"'n ,0$), we have obtained in a pre-
vious work3 its bound state analytically, vı̀a lattice Green
functions, and have shown that a bound state is possible
provided #$/2V##1. This result deviated markedly from the
well-known linear impurity case where, a bound state exists

for any impurity strength. The extension to an impurity of
arbitrary nonlinear exponent ( )i.e., #Cn#( instead of #Cn#2 in
Eq. !1"*, revealed4,5 that for ($2 there is always a bound
state for any finite $/V . At ("2 !the standard DNLS case"
there is one bound state for #$/2V##1, while for (#2 there
is a critical curve in $-( space, below which there is no
bound state, while above it, there are two bound states. On
the critical curve, there is a single bound state.
When this nonlinear impurity is embedded in a square

lattice,6 the $-( bound state phase diagram shows a single
curve separating two regimes. Below the curve, there are no
bound states; on the curve there is a single bound state, while
above the curve there are two bound states. One of these
become more localized upon increment of the nonlinearity
parameter while the other becomes more delocalized. Bound
states for single nonlinear impurities have also been com-
puted for other systems, including a Cayley tree,7 a triangular
lattice,9 and a cubic lattice.8,9
In all the studies above, only dispersion to first nearest-

neighbors has been considered. For systems with long-range
dispersion, a continuumlike approximation that employs a
nonlocal nonlinear Schrödinger equation has been
proposed.10 For the case of a discrete system with a hopping
parameter of the form Vnm"V/#n!m#s, another study11 fol-
lowed a variational approach, based on a plausible ansatz for
the localized state. Among other things, they found that there
is a critical scr such that all dispersive interactions decreas-
ing faster than r!scr lead to similar qualitative behavior as
the DNLS with only nearest neighbor transfer. In this work
we solve in closed form vı̀a Green functions, the case of a
single DNLS impurity in a tight-binding lattice, including
hopping to first- and second-nearest neighbors. This configu-
ration and similar others with a nonlinear topology appear
naturally in quasi onedimensional systems, such as ‘‘zigzag’’
or coiled structures. In this last case, it is possible to engineer
the main interactions to be between first neighbors and be-
tween mth neighbors, where m is the ‘‘period’’ of the helix.
Now, since the phenomenon of selftrapping is the result of a
struggle between the tendency to spread !dispersion" and the
tendency to localize !nonlinearity", one might surmise that
any increase in dispersion will have the simple effect of in-
creasing the nonlinearity needed to selftrap. However, as we
will see, this is not necessarily the case and a small incre-
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ment in dispersion can actually favor the formation of a
bound state at smaller nonlinearity strength.

I. ONE-DIMENSIONAL LATTICE WITH DISPERSION

Let us consider the problem of determining the existence
of bound states and dynamic selftrapping characteristics for
an electron !or an excitation" moving on a one-dimensional
dispersive lattice with hopping up to second- nearest neigh-
bors, which contains a single DNLS impurity at the origin
n"0. DNLS equation !1" reduces to

i! dCn

dt ""V1!Cn%1%Cn!1"%V2!Cn%2%Cn!2"

!$#C0#2C0'n ,0 . !2"

For stationary states, one puts Cn(t)"exp(!iEt)+n , obtain-
ing

E +n"V1!+n%1%+n!1"%V2!+n%2%+n!2"

!$#+0#2+0'n0 . !3"

The Hamiltonian that gives rise to Eq. !2" is

H"H0%H1 , !4"

where

H0"V1#
n

! #n,-n%1#%#n%1,-n#"

%V2#
n

! #n,-n%2#%#n%2,-n#" !5"

and
H1"!$#+0#2#0,-0#. !6"

.#n,/ represent Wannier electronic states and V1(V2) is the
nearest- !next-to-nearest-" neighbor transfer matrix element.
In the absence of impurity, the energy band is given by

E!k ""2 V1 cos!k "%2 V2cos!2k ". !7"

A simple analysis shows that, for positive '&V2 /V1, the
upper and lower band edges obey

zmax!'"&Emax /V1"2!1%'", !8"

zmin!'"&Emin /V1"$ !2!1!'", '$1/4
!!1/4'"!2' , '#1/4.

!9"

As a result, while the upper edge always increase linearly
with V2, the lower edge shows the presence of a ‘‘waist’’: At
first it decreases !in magnitude", reaching a minimum value
of 2)1!(1/!8)*V101.29V1 at V2"(1/!8)V1. Afterwards,
the lower edge increases in magnitude with V2. At large V2,
this increase will be almost linear. These features will of
importance in Sec. I A, where we determine the position of
the impurity bound state!s".

A. Bound states

We use lattice Green functions as described in Refs. 3 and
12, where the perturbative series for the Green function is
resumed to all orders, to obtain

Gmn!z ""Gmn
(0)!z "!

1#+0#2Gm0
(0)!z "G0n

(0)!z "

1%1#+0#2G00
(0)!z "

, !10"

where Gmn"-m#G#n, , 1"$/V1, and

Gmn
(0)!z ""

1
22%!2

2
d+

exp) i+!m!n "*

)z!cos!+"!' cos!2+"*
!11"

is the Green function in the absence of nonlinearity (1
"0). By using residues, we evaluate it in a closed form,

Re)G00
(0)!z "*"$ 2!2')!11'%12"!1!'!4'!2z%11"%!11'!12"!1%'!!4'%2z%11"*

!1, z#zmax!'"

!2!2')!11'%12"!1!'!4'!2z%11"!!11'!12"!1%'!!4'%2z%11"*
!1, z$zmin!'"

0 otherwise,
!12"

where 11(z)&!8%(1/'2)%(4z/') and 12(z)&1!4'2%2'z , and

Im)G00
(0)!z "*"

3)!1/4"!'*.3)z!2!'!1 "*!3)z!2!1%'"*/

2!1!d1!z "2#1%4' d1!z "#
%

3)'!!1/4"*.3„z%)1/!4'"*%2'…!3)z!2!1%'"*/

2!1!d1!z "2#1%4' d1!z "#

%
3)'!!1/4"*.3„z%)1/!4'"*%2'"…!3)z!2!'!1 "*/

2!1!d2!z "2#1%4' d2!z "#
, !13"

where d1(z)&(1/4 ')„!1%!1%8 ')'%(z/2)*… and d2(z)&(1/4 ')„!1!!1%8 ')'%(z/2)*….
The !dimensionless" energy of the bound state, zb is obtained from the poles of Gmn(z), while the bound state amplitudes

+n
(b) are obtained from the residues of Gmn(z) at z"zb . This leads to a nonlinear equation for zb :
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1
1

"
G00
(0)3!zb"

G
00

!(0)
!zb"

. !14"

For a complete parameter space examination of all possible
eigenvalues, we only need to consider a fixed sign for the
dispersion parameter ' !say, positive" and the two possible
signs of 1 . A graphical examination of Eq. !14" !not shown"
reveals that, when 1#0 and as ' increases from zero, the
right hand side of Eq. !14" moves toward the origin and
increases its height, until ' reaches 1/4, where the height
diverges. Further increase in ' decreases the height of the
curves, but they continue to approach the origin until '
"1/!8. Afterwards, the curves move away from the origin
while their heights continue to decrease. For the case of 1
$0, the situation is quite different: For a given ' value,
there is a minimum #1a# at which there is a bound state.
Further increase in #1# creates two bound states, one of
which will ultimately disappear at a further finite #1b# value,
leaving only a single bound state. These results are nicely
summarized in Fig. 1, which shows a phase diagram in
nonlinearity-dispersion space showing the number of bound
state!s". For positive nonlinearity, the critical curve separat-
ing the region with no bound states from the region with one
bound state, decreases with increasing ' , and reaches zero at
'"1/4. Afterwards, it increases monotonically with further
dispersion. Thus, there is a finite dispersion interval, 0$'
$1/4 where, contrary to what might be expected, an increase
in dispersion actually reduces the nonlinearity needed to cre-
ate a bound state. This can also be seen in Fig. 2!a", which
shows the bound state energy as a function of !positive" non-
linearity, for several values of dispersion ' . This reduction in
nonlinearity needed to sustain a bound state is, of course due
to the reduction in the width of the negative portion of the
band with a small positive dispersion, and thus, it has a lin-
ear origin.15 In the negative nonlinearity sector, in Fig. 1 we
have two critical curves separating regions with no bound
states, two bound states, and one bound state. Here an in-
crease in dispersion causes a corresponding increase in the
minimum nonlinearity needed for the creation of a bound

FIG. 2. Bound state energy as a function of positive !a" and
negative!b" nonlinearity, for several dispersion values.

FIG. 3. Probability at the impurity site as a function of nonlin-
earity, in the negative nonlinearity sector, for several dispersion
values.

FIG. 1. Bound state phase diagram in nonlinearity-dispersion
space (1&$/V1 ,'&V2 /V1).
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state!s". This is correlated with the fact that the width of the
positive portion of the band always increases linearly with ' .
Figure 2!b" shows the bound state energy as a function of
nonlinearity, for negative 1 . Here, for a given value of ' ,
there exists a critical nonlinearity value 1a for which there is
a bound state, with energy outside the band. Further increase
in nonlinearity creates two bound states, one of which in-
creases its energy monotonically with nonlinearity while the
other state decreases its energy toward the band, reaching it
at a finite nonlinearity value 1b . As Fig. 3 shows, in the
regime with two bound states, as the magnitude of the non-
linearity is increased, one of the states becomes more local-
ized on the impurity site, while the other becomes more de-
localized, ultimately disappearing into the continuum at a
finite nonlinearity value.

B. Transmission across the impurity

Again, following the formalism of Green functions,3,12 we
obtain the equation for the transmission coefficient t of plane
waves across the nonlinear impurity,

t"
1

#1%1 t G00
(0)#2

"
1

1%12 t2 Im)G00
0) !z "*2

, !15"

which leads to the cubic equation: 12t3Im)G00
0) (z)*2%t!1

"0. This is invariant under 1→!1 , implying that the trans-
mission does not depend on the sign of the nonlinearity pa-
rameter. The physical solution for t is

t"
!2 61/3%„18 1Im)G00

(0)!z "*%2!3!4%27 12Im)G00
(0)!z "*2…2/3

2 32/3 1 Im)G00
(0)!z "*„9 1Im)G00

(0)!z "*%!3!4%27 12Im)G00
(0)!z "*2…1/3 , !16"

with Im)G00
(0)(z)* given by Eq. !12". Figure 4 shows several

transmission curves as functions of the plane waves dimen-
sionless energy z, for several different dispersion ratios ' .
The most remarkable new feature is the appearance of an
abrupt ‘‘dip’’ on the transmission near the lower edge of the
band at '40.4. As ' increases further, the ‘‘dip’’ moves to
the right and eventually !not shown" approaches the upper
band edge and merges with it. This ‘‘dip’’ is related to the
creation of a secondary ‘‘branch’’ in Im)G00

(0)(z)* .

C. Dynamic self-trapping

We place the electron at the impurity site at t"0 and
observe its time evolution, according to Eq. !2". The observ-

able of interest here is the long-time average probability of
finding the electron on the initial site after a relatively long
time T:

P0" lim
T→5

!1/T "%
0

T
#C0! t "#2dt , #C0!0 "#"1. !17"

Following earlier works,4 we use a fourth-order Runge-Kutta
numerical scheme, whose accuracy is monitored through to-
tal probability conservation: 1"#n#Cn(t)#2. Figure 5 shows
P0 as a function of !positive" nonlinearity parameter 1 , for
several different dispersion ' values. As anticipated from the
bound state results, an increase of dispersion reduces the
critical nonlinearity for the onset of self-trapping. The mini-
mum threshold occurs around '00.3. In the immediate vi-
cinity of this value, the self-trapping transition also seems to

FIG. 4. Transmission coefficient of plane waves across the non-
linear impurity as a function of the plane wave dimensionless en-
ergy, for several dispersion values.

FIG. 5. Long-time average probability of finding the electron on
the impurity site, as a function of nonlinearity, for several different
dispersion values (T"203V1).
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lose some sharpness. A subsequent increase in ' increases
the critical nonlinearity 1c again and restores sharpness to
the P0 curve. At '01, the P0 curve almost coincides with
the '"0 case. Thereafter, 1c increases in an almost linear
fashion with ' . For the case of a negative nonlinearity pa-
rameter !not shown", the critical nonlinearity always in-
creases monotonically with dispersion. This case also corre-
sponds to 1#0,'$0.

II. DISCUSSION

We have analytically examined the conditions for the for-
mation of a bound state at a nonlinear impurity site, in a
one-dimensional linear lattice with hopping to first and sec-
ond nearest-neighbors. The formalism employed lattice
Green functions, which have been evaluated in closed form
for our system. We found a range in which this increment in
dispersion can actually favor the formation of a bound state
at smaller nonlinearity strength. As a consequence, the onset
of dynamical self-trapping at the impurity site can also be

shifted to lower nonlinearity thresholds. Given the paradig-
matic character of the DNLS equation, these results could be
applied to completely nonlinear optical or solid nanostruc-
tures, with nonlinear topology. For instance, a ‘‘zigzag’’ ar-
ray of waveguides in nonlinear optics,13 where one has cou-
pling to first- and second- nearest neighbors, or a triangular/
helicoidal stack of atoms, where the main couplings are to
first- and third-nearest neighbors, etc. In these and other
cases, the bound state profile found here could serve as a
good initial condition for the launching of a discrete excita-
tion !soliton" along a completely nonlinear system.14 The
transport properties of these nonlinear systems and the steer-
ing of their mobile excitations is currently an active field of
research.
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