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We study a fractional version of the two-dimensional discrete nonlinear Schrödinger (DNLS) equation, 
where the usual discrete Laplacian is replaced by its fractional form that depends on a fractional 
exponent s that interpolates between the case of an identity operator (s = 0) and that of the usual 
discrete 2D Laplacian (s = 1). This replacement leads to a long-range coupling among sites that, at low 
values of s, decreases the bandwidth and leads to quasi-degenerate states. The mean square displacement 
of an initially-localized excitation is shown to be ballistic at all times with a ‘speed’ that increases 
monotonically with the fractional exponent s. We also compute the nonlinear modes and their stability 
for both, bulk and surface modes. The modulational stability is seen to increase with an increase in the 
fractional exponent. The trapping of an initially localized excitation shows a selftrapping transition as 
a function of nonlinearity strength, whose threshold increases with the value of s. In the linear limit, 
there persists a linear trapping at small s values. This behavior is connected with the decrease of the 
bandwidth and its associated increase in quasi-degeneracy.

 2020 Elsevier B.V. All rights reserved.

Introduction. Let us consider the discrete nonlinear Schrödinger 
(DNLS) equation in d-dimensions [1–3]:

i
dCn

dτ
+

∑

m

Cm + χ |Cn|2Cn = 0 (1)

where the sum is over the nearest-neighbor sites. Parameters 
V and χ represent the coupling between nearest neighbor sites 
and the nonlinear coefficient, respectively. The DNLS equation has 
proven useful in describing a variety of phenomena in nonlin-
ear Physics, such as propagation of excitations in a deformable 
medium [4,5], dynamics of Bose-Einstein condensates inside cou-
pled magneto- optical traps [6,7], transversal propagation of light 
in waveguide arrays [8–11], self-focusing and collapse of Langmuir 
waves in plasma physics [12,13] and description of rogue waves in 
the ocean [14], among others. Its main features include the exis-
tence of localized nonlinear solutions with families of stable and 
unstable modes, the existence of a selftrapping transition [15,16]
of an initially localized excitation, and a degree of excitation mo-
bility in 1D [17]. All these characteristics have made the DNLS into 
a paradigmatic equation that describes the propagation of excita-
tions in a nonlinear medium under a variety of different physical 
scenarios.

E-mail address: mmolina@uchile.cl.

Recently, the topic of fractional derivatives has gained increased 
attention. It started with the observation that a usual integer-order 
derivative could be extended to a fractional-order derivative, that 
is, (dn/dxn) → (ds/dxs), for real s, which is known as the fractional 
exponent. The topic has a long history, dating back to letters ex-
changed between Leibnitz and L’Hopital, and later contributions by 
Euler, Laplace, Riemann, Liouville, and Caputo to name some. In 
the Riemann-Liouville formalism [18–20], the s-th derivative of a 
function f (x) can be formally expressed as

(
ds

dxs

)
f (x) = 1

#(1 − s)
d

dx

x∫

0

f (x′)
(x − x′)s dx′ (2)

for 0 < s < 1. For the case of the laplacian operator $ = ∂2/∂r2, its 
fractional form (−$)s can be expressed as [21]

(−$)s f (x) = Ld,s

∫
f (x) − f (y)

|x − y|d+2s
(3)

where,

Ld,s = 4s#[(d/2) + s]
πd/2|#(−s)| (4)

where #(x) is the Gamma function, d is the dimension, and 0 <
s < 1 is the fractional exponent. Fractional order differential equa-
tions constitute useful tools to articulate complex events and to 
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model various physical phenomena. In particular, the fractional 
Laplacian (3) has found many applications in fields as diverse as 
fractional kinetics and anomalous diffusion [22–24], Levy processes 
in quantum mechanics [25], fluid mechanics [26,27], strange ki-
netics [28], fractional quantum mechanics [29,30], plasmas [31], 
biological invasions [32] and electrical propagation in cardiac tis-
sue [33].

In this work we examine the consequences of replacing the 
usual two-dimensional discrete Laplacian by its fractional form, fo-
cusing on the effects on the existence and stability of nonlinear 
modes, as well as in the transport of excitations in a square lattice. 
In general, we find that the known DNLS phenomenology is more 
or less preserved, although there is a marked tendency towards 
band flattening as the fractional exponent s decreases. This causes 
an increase in the system’s degeneracy and affects its capacity to 
selftrap excitations.

The model. For a square lattice (d = 2), the kinetic energy term ∑
m Cm in Eq. (1), can be written as 4Cn + $nCn where $n is the 

discretized Laplacian

$nCn = C p+1,q + C p−1,q − 4 C p,q

+C p,q+1 + C p,q−1, (5)

where n = (p, q). Equation (1) can then be written in dimension-
less form as

i
dCn

dt
+ 4Cn + $nCn + χ |Cn|2Cn = 0, (6)

where t ≡ V τ and χ ≡ γ /V . We proceed now to replace $n by its 
fractional form ($n)s in Eq. (6). The form of this fractional discrete 
Laplacian for d = 2 is given by [35,36]

($n)sCn =
∑

m%=n

(Cm − Cn) K s(n − m) (7)

where,

K s(m) = 1
|#(−s)|

∞∫

0

e−4t Im1(2t) Im2(2t) t−1−s dt (8)

with m = (m1, m2) and Im(x) is the modified special Bessel func-
tion. An alternative expression for ($n)s is

($n)sCj = L2,s

∑

m%=j

(Cm −Cj) G 2,2
3,3

(
1/2,−( j2−m2+1+s, j2−m2+1+s)

1/2+s, j1−m1,−( j1−m1)

∣∣∣ 1
)

(9)

where j = ( j1, j2) and m = (m1, m2), and G(...) is the Meijer G-
function. The symmetric kernel K s(m) plays the role of a long-
ranged coupling. Near s = 1, K (m) → δm,u where u = (1, 0) or u =
(0, 1), i.e., coupling to nearest neighbors only. Let us look at its 
asymptotic form at long distances. Using

Iν(z) ∼ 1
2πν

( ez
2ν

)
ν → ∞, (10)

plus #(n) ∼ n1/2 (n/e)n and #(n + s) ∼ ns #(n) for n → ∞, one 
obtains

K s(m) ∼
(

m1 + m2

m1m2

)
4−(m1+m2)

|#(−s)|
(m1 + m2)

m1+m2

mm1
1 mm2

2

(11)

where m = (m1, m2). Thus, for the ‘diagonal’ case m1 = m2 = m, 
one obtains

K s(m) ∼ 1
|#(−s)|

2−2m
√

m
(m → ∞). (12)

Fig. 1. Effective coupling K (m1,m2) for several fractional exponents. N = 11 × 11.

This decay is faster than in the one-dimensional case [34]. We con-
sider now stationary modes defined by Cn(t) = eiλt φn , which obey

(−λ + 4)φn +
∑

m%=n

(φm − φn)K s(m − n) + χ |φn|2φn = 0 (13)

It should be mentioned that in expressions (6) and (13) the 
term 4 is to be replaced by 3 (2) for sites at the edge (cor-
ner), when dealing with a finite square lattice. Fig. 1 shows K (m), 
where we see how the range of the coupling increases as s de-
crease. This has the effect of increasing the coupling between dis-
tant sites, leading to deep consequences, as we will show below.

Plane waves. Let us set χ = 0 and look for plane wave solutions, 
φn = A exp(ik.n), where we are assuming an infinite square lat-
tice. After a short algebra, one obtains the dispersion relation,

λ(k) = 4 +
∑

m

(
eik.m − 1

)
K s(m) (14)

Unfortunately, in this case it is not possible to rewrite Eq. (14)
in closed form in terms of special functions, as in the one-
dimensional case. Fig. 2 shows the bandwidth along two differ-
ent directions in k-space. For both cases the bandwidth decreases 
monotonically as s decreases. This flattening of the band increases 
the degeneracy of the modes, and the system becomes closer to 
an ideal model known as the ‘simplex’ [37,38] where every site 
is coupled to every other site with equal strength. This leads to a 
strong localization of an initially localized excitation. In our case, 
this will become evident when we look at selftrapping.

Root mean square (RMS) displacement. One of the ways to quan-
tify the propagation of an excitation across a lattice, is by the Root 
Mean Square (RMS) displacement, defined as

〈n2〉 =
∑

n

n2 |φn|2/
∑

n

|φn|2. (15)

A general result concerning RMS in lattices is that if λ(−k) = λ(k), 
λ(k) = λ(k + 2πq) and ∇λ(k)|F B Z = 0, where FBZ is the first Bril-
louin zone, then it can be proven that the RMS for an initially 
localized excitation (φn(0) = δn,0) is always ballistic and given (in 
2D) by [39]

〈n2〉 =



 1
4π2

∫

FBZ

(∇λ(k))2 d k



 t2 (16)

where FBZ is the first Brillouin zone. Using the form of λ(k) given 
by Eq. (14), we obtain

〈n2〉 =
∑

m

m2 K s(m)K s(−m) (17)

The parity properties of the modified Bessel functions, imply that 
K s(−m) = K s(m). Therefore,

〈n2〉 =
[

∑

m

m2(K s(m))2

]

t2 (18)
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Fig. 2. Left: Bandwidth along three k-space directions, as a function of the frac-
tional exponent s. Right: Characteristic ballistic speed (square) as a function of 
the fractional exponent. Note that as s → 1, this speed approaches 2, as expected. 
(N = 11 × 11).

Fig. 3. Contour plot of λ(kx,ky) for several fractional exponents. N = 11 × 11.

where m = (m1, m2). The quantity inside the square brackets can 
be interpreted as the square of a characteristic ballistic speed. 
Given the rapid decrease of K s(m) with distance, 〈n2〉 becomes 
well-defined for all 0 < s < 1. Fig. 2b shows this speed square as 
a function of the fractional exponent s. The speed rises from zero 
at s = 0 up to 4 at s = 1, which is the usual ballistic value. The 
vanishing of the speed at s = 0 implies that, in this limit, the ex-
citation is unable to move and remain localized at the initial site. 
In fact, at s = 0 any initial condition, which is a combination of all 
plane waves, will be unable to diffuse way. This result is in con-
sonance with the observation that, at s → 0, the band becomes 
completely degenerate, λ(k) → 4 causing the group velocity ∇λ(k)
to vanish. In addition to the decrease in bandwidth, we also ob-
serve a steepening of the dispersion relation with a decrease in 
the fractional exponent, see Fig. 3.

Nonlinear modes. Let us consider now nonlinear modes (χ %= 0), 
i.e., solutions to Eqs. (13). They constitute a system of N × N non-
linear algebraic equations, where the form of the nonlinear term 
adopted here corresponds to Kerr nonlinearity found in coupled 
waveguide arrays, as well as in the semi classical description of an 
electron propagating in a deformable lattice. Numerical solutions 
are obtained by the use of a multidimensional Newton-Raphson 
scheme, using as a seed the solution obtained from the decou-
pled limit, also known as the anticontinuous limit. We take a finite 
N × N lattice with open boundary conditions and examine two-

mode families, “bulk” modes, located far from the boundaries and 
“surface” modes located near the beginning (or end) of the lat-
tice. The stability of these nonlinear modes is carried out in the 
standard manner, which we sketch here for completeness: We per-
turb our stationary solution Cn(t) = (φn + δn(t)) exp(iλt), where 
|δn(t)| - |φn|. We replace this in the evolution equation (6) [with 
$n replaced by ($n)s]. After a linearization procedure, where we 
neglect any powers of δn(t) beyond the linear one, we obtain a 
linear evolution equation for δn(t). Next, we decompose δn(t) into 
its real and imaginary parts: δn(t) = xn(t) + i yn(t). To simplify 
the notation we map the sites of the two-dimensional square lat-
tice into those of an open one-dimensional chain: (n1, n2) → n ≡
n1 + (n2 − 1)N , with 1 ≤ n1, n2 ≤ N . Then, the equations for xn(t)
and yn(t) can be written in the form:

d2

dt2
/x − A B /x = 0,

d2

dt2
/y − B A /y = 0, (19)

where /x = (x1, x2, · · · xN×N ) and /y = (y1, y2, · · · yN×N ). Matrices A
and B are given by

Anm = [−λ − K s(0) + εn + 2|φn|2 − φ2
n ] δnm + K s(n − m) (20)

Bnm = [λ + K s(0) − εn − 2|φn|2 − φ2
n ] δnm − K s(n − m) (21)

where εn = α − ∑
j K s(n − j), with α = 2 for a corner site, α =

3 for an edge site, and α = 4 for a bulk site. Linear stability is 
determined by the eigenvalue spectra of the matrices AB (or BA). 
When all eigenvalues are real and negative, the system is stable, 
otherwise it is unstable. In the more general case that considers 
possible complex eigenvalues, one defines the instability gain G
as:

G = Max of
{

1
2

(
Re(g) +

√
Re(g)2 + Im(g)2

) }1/2

(22)

for all g , where g is an eigenvalue of AB (BA). Thus, when G = 0, 
the mode under inspection is stable; otherwise it is unstable. Re-
sults from the above procedure are shown in Fig. 5 which shows 
power versus eigenvalue bifurcation diagrams for some bulk and 
surface modes, and for several values of the fractional exponents. 
Also shown are generic shapes of the two-dimensional modes. For 
these plots we have taken smaller lattices to reduce computation 
time. The modes span few sites only. This is due to our taking 
medium power levels. This is in order to display the effect of the 
fractional exponent on the shape of the modes. At smaller power 
levels, all modes would look bigger and more continuous but very 
similar to each other. An example of this can be seen in Fig. 4. 
Since we are dealing with a finite square lattice with open bound-
aries, there are two surface modes: the ‘edge’ one, and the ‘corner’ 
one. It is observed (not shown) that, after some few layers below 
the boundary, the surface modes become almost indistinguishable 
from the bulk ones. Thus, there is a continuous transition from sur-
face to bulk modes. As for the bulk modes, we have focused on the 
‘odd’ mode, centered on a single site, the ‘even’ mode, centered on 
two nearest-neighbor sites, and the ‘ring’ mode, centered around a 
closed loop of 4 sites (the two first names originate from the us-
age employed for one-dimensional lattices). For the bulk modes, 
we observe that the fundamental mode is always stable for all s
values while the even and ring modes are unstable. All the bulk 
curves seem to touch the edge of the linear band, at low pow-
ers. As s is decreased, the modes become wider, but there are not 
other dramatic changes on the shape of the modes. The surface 
modes decay quickly away from the boundary, but their bifurca-
tions curves look rather similar as s is varied.

An interesting special case to examine is that of the stabil-
ity of a nonlinear uniform solution. In one-dimension, the insta-
bility of this mode has been observed to give rise to discrete 
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Fig. 4. Fundamental linear mode for several values of the fractional exponent. Left: 
Contour plots. Right: Three dimensional plots. N = 11 × 11.

solitons and has, in fact, been proposed as a practical way to 
produce them [40]. Let us consider a solution of the form Cn =
φ exp(iλt). After replacing into the evolution equation one obtains 
λ = 4 + χφ2. Thus, Cn(t) = φ exp(i(4 + χφ2)). After inserting this 
form into Eqs. (20) and (21), one obtains

Anm = [−
∑

j %=n

K s(n − j)] δnm + K s(n − m) (23)

Bnm = [−
∑

j %=n

K s(n − j) + 3 χ φ2] δnm + K s(n − m). (24)

As before, we look at the eigenvalues of AB (or BA) and record 
the instability gain G . Fig. 6a shows G as a function of the nonlin-
earity strength, χ |φ|2, for several fractional exponents. We notice 

Fig. 5. Power content versus eigenvalue for some bulk and surface modes, for dif-
ferent fractional exponents. Continuous (dashed) curves denote stable (unstable) 
modes. N = 5 × 5.

that, the stable region (G = 0) increases with an increase in the 
fractional exponent s. A possible explanation could be that, as s
is decreased from a large value (i.e., near s = 1), the range of the 
coupling among sites increases, causing that any perturbation on a 
given site is instantly felt on distant sites. This situation of mutual, 
long-range perturbations inhibits the stability of the uniform front, 
as opposed that case when a perturbation of a given site only af-
fects its immediate neighbors.

Selftrapping. One of the well-known effects of the Kerr non-
linearity is the onset of selftrapping where, for a nonlinearity 
strength above a threshold value, an initially localized excitation 
does not diffuse away completely when placed on a given site of 
the lattice. After some time, part of the excitation remains local-
ized in the immediate vicinity of the initial site, while the rest 
diffuse away in a ballistic manner. We want to examine the pos-
sible effect of a fractional exponent on this trapping phenomenon. 
To ascertain the presence of a selftrapping transition, one examines 
the long-time average probability at the initial site (site ‘zero’)

〈P0〉 = 1
T

T∫

0

|C0(t)|2 dt (25)

We have computed 〈P0〉 for several s values, comparing the differ-
ent selftrapping curves. Results are shown in Fig. 6b. We see that, 
as s is decreased from unity, the position of the selftrapping tran-
sition decreases as well and, in the linear limit we notice a degree 
of linear trapping that increases for lower values of s. These re-
sults can be explained as follows: as s is decreased, so does the 
width of the band (Fig. 2). This flattening of the bands originates a
smaller group velocity of the modes. On the other hand, the local 
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Fig. 6. Left: Modulational instability gain versus nonlinearity strength. From the 
leftmost to the rightmost curve s = 0.1, 0.2, 0.4, 0.6, 0.8, 1.0 (N × N = 25). Right: 
Time-averaged probability at the initial site as a function of nonlinearity, for several 
different values of the fractional exponent, s. From the leftmost to the rightmost 
curve s = 0.1, 0.2, 0.4, 0.6, 0.8, and 1.0 (T = 20, N × N = 81).

nonlinearity is roughly equivalent to a linear impurity of strength 
χ |φ0|2. Thus, we have an effective linear impurity embedded in 
a lattice whose modes have low group velocity (because of rela-
tively flat band). The combination of these two effects, facilitates 
the trapping of the excitation and thus, decreases the nonlinearity 
threshold needed. There is yet another effect we can see in Fig. 6: 
As s decreases, the amount of trapping in the limit of zero non-
linearity increases. This linear trapping approaches unity for s → 0
and is a consequence of the complete flattening of the band and 
a complete degeneracy of the modes. This special case has been 
examined before [37,38], with the result (adapted to our 2D case) 
that the time-averaged probability at the initial site is given by

〈|C0|2〉 = (N × N − 1)2 + 1
(N × N)2 (26)

Therefore, at large N the trapped fraction approaches unity.
Conclusions. We have examined the consequences of employing 

a fractional version of the usual discrete Laplacian, parametrized 
by a fractional exponent, on the existence and stability of nonlin-
ear modes, the free propagation of localized linear and nonlinear 
excitations, and the selftrapping of initially localized excitations, 
on a two-dimensional square lattice. We found that the main ef-
fect of a fractional exponent is to introduce a long-range coupling 
interaction among the sites of the lattice. The mean square dis-
placement is always ballistic with a speed that decreases with a 
decrease in the fractional exponent. At small values of s, one ob-
serves a decrease in the bandwidth with a corresponding increase 
in degeneracy. The stability of the low-lying excitations is not dis-
similar to the one found in the one-dimensional case, while the 
modulational stability increases with an increase in s. Finally, the 
selftrapping of an initially localized excitation shows a selftrapping 
transition with a threshold that increases with s, and shows a de-
gree of linear selftrapping at low s values. This was explained to 
be a consequence of the increase in degeneracy as the band gets 
flatter and flatter as s → 0.

The fact that the observed phenomenology observed for this 
two-dimensional system is not dissimilar to the one found for the 
one-dimensional analog, points out to the robustness of the dis-
crete soliton phenomenology (nonlinear mode existence and sta-
bility, selftrapping, etc) not only against different parameter values 
of the DNLS equation, but against different mathematical Laplacians. 
Also, the fact that the effect of the fractional Laplacian is to in-
troduce a long-range coupling means that one can reproduce ex-
perimentally the effect of a fractional Laplacian in an optical con-
text, by setting up an appropriate distribution of refractive indices 
and inter site distances between waveguides in a waveguide array. 
Thus, it is possible in principle, to explore the fractional dynamics 
via optical experiments.
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