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We examine a fractional version of the discrete nonlinear Schrodinger (dnls) equation, where the usual
discrete laplacian is replaced by a fractional discrete laplacian. This leads to the replacement of the
usual nearest-neighbor interaction to a long-range intersite coupling that decreases asymptotically as
a power-law. For the linear case, we compute both, the spectrum of plane waves and the mean square
displacement of an initially localized excitation in closed form, in terms of regularized hypergeometric

functions, as a function of the fractional exponent. In the nonlinear case, we compute numerically the
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low-lying nonlinear modes of the system and their stability, as a function of the fractional exponent of
the discrete laplacian. The selftrapping transition threshold of an initially localized excitation shifts to
lower values as the exponent is decreased and, for a fixed exponent and zero nonlinearity, the trapped
fraction remains greater than zero.
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1. Introduction

Let us consider the discrete nonlinear Schrédinger (dnls) equa-
tion that describes the motion of a nonlinear excitation propagat-
ing along a discrete lattice [1-3]

an

dt + V(Cat1 + Cn— 1)+X|Cn| G, =0 (1)
This equation has been used to describe the propagation of ex-
citations in a deformable medium [4,5], transversal propagation of
light in waveguide arrays [6-9], dynamics of Bose-Einstein conden-
sates inside coupled magneto-optical traps [10,11], self-focusing
and collapse of Langmuir waves in plasma physics [12,13] and de-
scription of rogue waves in the ocean [14], among others. Its most
distinctive feature is the existence of localized solutions, termed
discrete solitons, with families of stable and unstable modes that,
in general, exist above a certain nonlinearity strength. The dynam-
ics of the dnls equation shows the existence of a selftrapping tran-
sition [15,16] for an initially localized excitation, as well as a de-
gree of mobility (in 1D) across the lattice [8]. Because of all these
properties, the dnls equation has gained the status of a paradig-
matic equation that describes the propagation of excitations in a

nonlinear medium in a variety of different physical scenarios.
On the other hand, the topic of fractional derivatives has gained
increased attention in the last years. It started with the obser-
vation that a usual integer-order derivative could be extended to
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a fractional-order derivative, (d"/dx") — (d°/dx®), for real s. For
instance, the s-th derivative of a function f(x) can be formally ex-

pressed as [17-19]
f(X) N
—5) dx/ (x—x/)s @)

(£) =

for 0 < s < 1. For the case of the laplacian operator A = 32/9r?, its
fractional form (—A)® can be expressed (in one dimension) as [20]

Ux) —U
arueo =t [ S0 T0ay 3)
|X — y|n+ S
where,
BT +(1/2)

T UmIN(=s)|

I'(x) is the gamma function and 0 < s < 1 is called the order of the
laplacian. This form of the fractional laplacian have proved useful
in applications to fluid mechanics [21,22], fractional kinetics and
anomalous diffusion [23-25], strange kinetics [26], fractional quan-
tum mechanics [27,28], Levy processes in quantum mechanics [29],
plasmas [30], electrical propagation in cardiac tissue [31] and bio-
logical invasions [32].

In this work we aim at examining the consequences of the use
of a fractional discrete laplacian on the existence and stability of
nonlinear modes of the discrete nonlinear Schrodinger (dnls) equa-
tion, as well as in the transport of excitations in this system. As we
will see, the usual phenomenology of the dnls equation is more
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or less preserved, although there are changes in the spectrum of
plane waves, becoming completely flat (i.e., degenerate) at s — 0.
This flattening tendency also affects the capacity of the system to
selftrap nonlinear excitations.

2. The model

The kinetic energy term in Eq. (1), V(Ch+1 + Cy—1), is nothing
else but a discretized form of the laplacian A,;C; = Cpp1 — 2Cy +
Cn—1, so that Eq. (1) can be cast as
.dCp

1?+2VCn+VAnCn+X|Cn|ZCn:0. (4)

We wonder now about the effect of replacing A, by its fractional
form (Ap)’ in Eq. (4). The form of this fractional discrete laplacian
is given by [33]:

(—An)*Co=Y K’(n—m)(Cp —Cm), O0<s<1 (5)
m#n
where,
Sy I(lm| —s)
=t S m 159 ©

After replacing Eqs. (5) and (6) into Eq. (4) and searching for a
stationary-state mode Cp(t) = exp(iAt)¢,, we obtain the following
system of nonlinear difference equations for ¢,:

(=2 4+2V) gn+V Y K —m)Gm— )+ X $p=0  (7)
m##n

where, without loss of generality ¢, can be chosen as real. We see
that the immediate effect of the fractional discrete laplacian is to
introduce nonlocal interactions via a symmetric kernel K*(n —m).

3. Plane waves

Let us start by taking x = 0 and looking for solutions of the
form ¢, = A exp(ikn). After some simple algebra, one obtains the
dispersion relation for plane waves

(k) =2V —4V " KS(m)sin((1/2)mk)> (8)

m=1
or, in closed form,
16 (s +(1/2))
VT T(1+5)
X (1 —exp(—ik) sT(1+s)[ R(1,1 —s,2 + s; exp(—ik))

Alk)=2—

+ exp(2ik) R(1,1 — s, 2 + s; exp(ik)) ]) (9)

where R(a, b, c;z) =,F1(a, b, c; z)/T(c) is the regularized hyperge-
ometric function.

Using lim, ..o ['(n + s) = I'(n)n’, one obtains the asymptotic
form K(m) — 1/|m|'*25, evidencing a power-law decrease of the
coupling with distance. The dispersion A(k) is well-defined for
s > 0. For s approaching unity, we have lim,_, ;- K(m) = 8,,1, while
near s =0 we have limg_, o+ K(n) — sign(n)s/n. Thus, near s =1
the coupling is mainly between nearest neighbors, while near zero
it becomes long-ranged. Fig. 1 (left panel) shows dispersion curves
for different fractional exponents s, ranging from s = 0% up to
s = 17. The bandwidth AA = A(0) — A(+m) changes with s, in-
creasing from a minimum value of V (at s=0) up to 4V (ats=1).
The decrease of the kernel K(m) with distance is also shown in
Fig. 1 (middle panel). We note that as s decreases, the range of
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Fig. 1. Left: Dispersion relation A(k) for several different fractional exponents s
marked on each curve (V = 1). Middle: Decrease of kernel K(m) with distance for
several fractional exponents. Right: Propagation speed of an excitation as a function
of the fractional exponent. The shaded area denotes values of s where the RMS is
not well defined.
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Fig. 2. Density plot of the spatial profiles |¢,|2 of the linear modes ordered accord-

ing to their eigenvalue. For s ~0 (s ~ 1) the bandwidth is V (4V) (N =133).

K (m) increases causing an increase in the effective range of the
coupling among sites. In the limit s — 0, all sites become simi-
larly coupled, and the resulting system is similar to what is known
in the literature as a simplex [35,36]. We will come back to this
point later on. Fig. 2 shows density plots for the mode profiles,
for several values of the fractional exponent s. Here, for a given s,
we stack the mode profiles one after the other according to their
eigenvalues. As we can see, and in consonance with Fig. 1, the
bandwidth A increases from a minimum value of V (at s =0) to
a value of 4V (at s=1).

4. Root mean square (RMS) displacement

A way to quantify the transport across the system is by means
of the root mean square (RMS) displacement of an initially local-
ized excitation. For a periodic lattice with a well-defined dispersion
relation that satisfies the general conditions A(—k) = A(k), (k) =
Ak +2mq), q € Z, and (3/3k)L(k)|x=0 = (3/3k)A(k)|k=+7 = O, it
can be proven that the mean square displacement

%) =Y "’ 1pn®OF/ Y lgn(0)? (10)
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is always ballistic and given by [34]

o |1 T rdado\? ;
n?) = 2n/< o ) dk | (Vo)2, (11)

for a localized initial excitation (¢,(0) = 8,.0). Using the form of
L(k) given by Eq. (8), one obtains

(n? =2 Z(ml(s(m))z(Vt)z. (12)

m=1

Using the asymptotic form K*(n) — 1/n'*25, we have (nK*(n))% —
1/n*. This implies that (n2) is well-defined for s > 1/4 only. The
square of the ‘speed’ (n?)/(Vt)? can be written in closed form as

n? _ 1Y a1 2

VoI <n> sT(s+(1/2))
{ 1 8s(s — 1)2

“1Ta+52 "TG+s2 ?

where, {a} ={3,2—5,2 -5}, {b} ={3+5,3+5s} and ,Fq({a}, {b}; 2)
is the generalized hypergeometric function. Fig. 1 (right panel)
shows this speed versus the fractional exponent s for 0 <s < 1.
At s =1/4 the speed is 4 while at s =1, the speed is 2. Minimum
propagation speed of 0.680364 is attained at s = 0.5457.

Fq({a}v {b}7 1)}

5. Nonlinear modes

Let us go back to the stationary Eq. (7) for x # 0. It consti-
tutes a system of coupled nonlinear equations, with a nonlocal
coupling. The form of the nonlinear term is typical for nonlin-
ear optical waveguide arrays and also in electron propagation in a
deformable lattice, in the semiclassical approximation. Numerical
solutions are obtained by the use of a multidimensional Newton-
Raphson scheme, using as a seed the form obtained from the de-
coupled limit (V — 0), also known as the anticontinuous limit. The
boundary conditions are open, with lattice sites ranging from n =1
up to n = N. We will examine two mode families, “bulk” modes,
located far from the boundaries and “surface” modes located near
the beginning (or end) of the lattice. Fig. 3 shows spatial profiles
of some nonlinear bulk modes, for s = 1/2. The shape of these
profiles is similar to the ones found for the dnls case (s = 1),
and are known in the literature as ‘odd’, ‘even’, ‘twisted—1' and
‘twisted—2’". For other values of s we find profiles modes have that
are similar (but no identical) to their dnls counterpart.

Fig. 4 shows some surface modes for s = 1/2. These modes, in
particular, correspond to those modes whose center is located at
the surface, one layer below the surface, two layers, etc. As ex-
pected, when the center of the surface mode is pushed farther and
farther from the surface, the mode begin resembling a bulk one.
Unlike the bulk case, these modes do not have common names as-
sociated with them, so it is better to classify them by the form
they adopt in the anti-continuous limit (sites completely decou-
pled). This form is also the form of the seed used for the Newton-
Raphson iteration. Thus, the mode at the very surface is denoted
by (1,0,0,0,---), and is obtained by iterating from an initial state
where only the boundary site is excited. The mode located one
layer below would be labeled as (0,1,0,0, ---). We have used this
notation scheme for all states displayed in Fig. 4.

6. Stability of nonlinear modes

The linear stability analysis of the nonlinear modes is carried
out by the well-known standard procedure which we sketch here
for completeness: We replace A, with (Ay)® in Eq. (4) and insert
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Fig. 3. Examples of spatial profiles of some low-lying bulk modes, for s=1/2 (N =
51, A=2.6).
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Fig. 4. Examples of spatial surface profiles of some low-lying surface modes, for s =
1/2. Surface is located at n = 1. The labels on each mode denote the anti-continuous
state they originated from (N =51, A = 2.6).

a perturbed solution C,(t) = (¢ + 8n(t)) exp(irt) (with |8,(t)| K
|¢n(t)]), followed by a linearization procedure where we neglect
any higher power of &, (t), save for the linear one. Next we decom-
pose §,(t) into its real and imaginary parts: 8, (t) = X, (t) + iyn(t).
This leads to a set of coupled real equations:

daz - d?

d? X — A B X = O, W
where X = (x1,X2,---Xy) and ¥y = (¥1, ¥2,--- yn), and A and B are
matrices given by

Anm =K (n—m) +[-2+2V+¢f =Y K= )] 6m  (14)
j#n

y—-BAy=0, (13)
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Fig. 5. Power content versus eigenvalue for some bulk and surface modes. Contin-
uous (dashed) curves denote stable (unstable) modes. Top left: bulk, s = 1/2. Top
right: bulk, s =17. Bottom left: surface, s =1/2. Bottom right: surface, s =1". The
labels on each mode denote the anti-continuous state they originated from. Vertical
axis scales are different for ease in visualization (V =1, N =51).

Bun = KS(n—m) + [-A+2V 43¢ — > K1 — )] 8w  (15)
Jj#n

From Eq. (13) we see that the linear stability is determined by

the eigenvalue spectra of the matrices AB and BA (both have the

same spectrum). This means determining the largest growth rate,

for each mode. This is known as the instability gain, defined as

1/2
G = Max of{% (Re(g) + Re(g)2 + Im(g)2 ) } (16)

for all g, where g is an eigenvalue of AB (BA). When G =0 the
modes is stable; otherwise it is unstable. Fig. 5 shows the power
versus eigenvalues bifurcation curves for s =1/2 and s =1 (for
comparison), for some bulk and surface modes. We note that the
states with s =1/2 and their counterparts with s =1 exhibit gen-
eral similarities. For instance in both cases the odd and even bulk
modes reach all the way down to the band, while for the surface
modes, they all need a minimum value of nonlinearity (power) to
exist.

7. Selftrapping

One of the well-known facts about the dnls equation is that it
leads to selftrapping, where an initially localized excitation, does
not diffuse away completely and a finite fraction remains localized
at the initial site. This occurs for a nonlinearity strength greater
than a critical value. To find the selftrapping transition, one moni-
tors the time-averaged probability at the initial site,

T
1
(Po) = / |Co(t)|%dt (17)
0

where T is large and where, without loss of generality the exci-
tation has been initially placed at site n = 0. We have computed
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Fig. 6. Left: Mode width for the nonlinear odd and even modes as a function of the
fractional exponent. Right: Time-averaged probability at the initial site as a function
of nonlinearity, for several different values of the fractional exponent, s. From the
leftmost to the rightmost curve s =0.01,0.02,0.1,0.3,0.5,0.7,0.99 (V =1, VT =
60).

(Pg) for several s values, comparing the selftrapping curves ob-
tained. Results are shown in Fig. 6, where we see that the existence
of a selftrapping transition is preserved for all s values. An inter-
esting feature of these selftrapping curves is that the selftrapping
transition moves to smaller values as s is decreased. This can be
understood as the effect of the shrinking of the modes as s is de-
creased (Fig. 6). This mode shrinking facilitates the selftrapping of
the excitation, thus decreasing the threshold for trapping. The sec-
ond interesting feature is the existence of a fraction of linear trap-
ping at x = 0. The amount of trapping increases with a decrease
in s. As s decreases, this linear trapping approaches unity. In the
simplex analogy, all sites are coupled to each other with identical
couplings [35,36]. In that case, it is well known that when plac-
ing an excitation on a given site of the simplex, its time-averaged
value is given by

(N-1)2+1
(ICoO) = —15— (18)
where N is the number of sites. Thus, at large N the trapping frac-
tion approaches unity, as in our case.

8. Conclusions

We have examined the effect of replacing the discrete lapla-
cian operator, by a fractional discrete laplacian operator in the dnls
equation. In the linear case we have compared the spectra of linear
waves, the range of intersite coupling, and the RMS displacement
of an initially localized excitation. We found that the bandwidth
increases with the fractional exponent s, while the RMS is ballistic
for all s values, with a non-monotonic propagation ‘speed’. In the
nonlinear case, we examined the bulk and surface modes and their
stabilities, for different fractional exponents, not finding anything
substantially different from the dnls case, save for some shifting of
the power curves in power-eigenvalue space. The most important
influence of the fractional laplacian happens to be on the dynamics
of an initially-localized excitation, where the selftrapping curves
shift substantially as a function of s, decreasing the selftrapping
threshold as s is decreased. In particular, at small s values, linear
selftrapping becomes apparent. This fraction of linear selftrapping
reaches values close to unity for very small s values. We have at-
tributed this behavior to the extreme long-range of the coupling
that exists at very small s. From the shape of the dispersion A(k),
we see that, at k=0, A =2V, independent of s. However, for k # 0,
A(k) becomes arbitrarily close to V, forming a quasi-flat band, with
nearly degenerate states. Under those conditions, and based on the
simplex analogy, linear trapping is expected on general grounds.
The shifting of the selftrapping curves can be understood with the
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help of Fig. 6: As s decreases, the width of the pulse decreases
which facilitates trapping, hence a smaller critical nonlinearity is
needed.
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