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Fractional dynamics in nonlinear magnetic metamaterials 
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A B S T R A C T   

We examine the existence of nonlinear modes and their temporal dynamics, in arrays of split-ring resonators, using a fractional extension of the Laplacian in the 
evolution equation. We find a closed-form expression for the dispersion relation as a function of the fractional exponent as well as an exact expression for the critical 
coupling between rings, beyond which no fractional magnetoinductive waves can exist. We also find the low-lying families of bulk and surface nonlinear modes and 
their bifurcation diagrams. Here the phenomenology is similar for all exponents and resembles what has been observed in other discrete evolution equations, such as 
the DNLS equation. The propagation of an initially localized magnetic excitation is always ballistic, with a ‘speed’ that is computed in exact form as a function of the 
fractional exponent. For a given exponent, it increases with an increase in coupling up to a critical coupling value, beyond which the ballistic speed could diverge 
inside the fractional interval [0,1]. Examination of the modulational instability shows that it tends to increase with an increase in the fractional exponent, where the 
decay proceeds via the formation of filamentary structures that merge eventually and form pure radiation. The dynamical selftrapping around an initially localized 
excitation increases with the fractional exponent, but it also shows a degree of trapping in the linear limit. This trapping increases with a decrease in the exponent and 
can be explained by near-degeneracy arguments.   

1. Introduction 

Metamaterials constitute a class of man-made materials that are 
characterized by having enhanced thermal, optical, and transport 
properties that make them attractive candidates for current and future 
technologies. Among them, we have magnetic metamaterials (MMs) that 
consist of artificial structures whose magnetic response can be tailored 
to a certain extent. A simple realization of such a system consists of an 
array of metallic split-ring resonators (SRRs) coupled inductively [1–3]. 
This type of system can, for instance, feature negative magnetic response 
in some frequency window, making them attractive for use as a con
stituent in negative refraction index materials [4]. In order for SRRs to 
be practical, one must overcome the problem of ohmmic and radiative 
loss. A possible solution that has been considered is to endow the SRRs 
with external gain, such as tunnel (Esaki) diodes [5,6] to compensate for 
such losses. The theoretical treatment of such structures relies mainly on 
the effective-medium approximation where the composite is treated as a 
homogeneous and isotropic medium, characterized by effective macro
scopic parameters. The approach is valid, as long as the wavelength of 
the electromagnetic field is much larger than the linear dimensions of 
the MM constituents. The simplest model uses an array of split-ring 
resonators (Fig. 1), with each resonator consisting of a small, con
ducting ring with a slit. Each SRR unit in the array can be mapped to a 
resistor-inductor-capacitor (RLC) circuit featuring self-inductance L, 
ohmic resistance R, and capacitance C built across the slit. In our case, 
we will consider the case of negligible resistance R, and thus each unit 

will possess a resonant frequency ω0 ∼ 1/
̅̅̅̅̅̅
LC

√
. We insert a nonlinear 

dielectric (Kerr) inside the slits with permittivity ∊ = ∊l + a|E|2, where 
E is the electric field inside the slit [7], and ∊l is the linear permittivity. 
Positive (negative) values of a corresponds to focussing (defocussing) 
nonlinearity. Thus, the charge Qn on the capacitor of the nth SRR has the 
form Qn = Cl(1+bU2

n)Un where Un is the voltage across the nth capac
itor. In the weak nonlinear limit, we can express this voltage in terms of 
the charge as Un ≈ (1/Cl)Qn − (b/C3

l )Q
3
n . 

To keep things simple, we assume that the magnetic component of 
the incident electromagnetic wave is perpendicular to the SRRs plane. In 
that case, E originates from the oscillations of the magnetic field only 
and is parallel to the slit. In addition, the configuration shown in Fig. 1 
with alternating orientations of the slits serves to decrease electrical 
dipole–dipole effects. 

Under these conditions, and in the absence of driving and ohmic 
losses, the dimensionless evolution equations for the charge qn residing 
at the nth ring are [8] 

d2

dt2 (qn + λ(qn+1 + qn− 1))+ qn + χ q3
n = 0 (1)  

where qn is the dimensionless charge of the nth ring, λ is the coupling 
between neighboring rings which originates from the dipole–dipole 
interaction, and χ is the nonlinear parameter that originates from the 
Kerr nonlinearity of the permittivity of the medium inside the slits. Even 
though model (1) is quite simple, it still retains the main physics while 
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making possible to obtain analytical results. 
On the other hand, the subject of fractional derivatives has gained 

increased attention in the last years. It all started with the observation 
that the usual, integer-order derivative can be extended to a fractional- 
order derivative, that is, (dn/dxn

)→(ds/dxs
), for real s. The sth order 

derivative of a function f(x) can be formally expressed as [9–11] 
(

ds

dxs

)

f (x) =
1

Γ(1 − s)
d
dx

∫ x

0

f (x′

)

(x − x′
)

sdx
′ (2)  

where 0 < s < 1. For the one-dimensional Laplacian operator Δ =

d2/dx2, its fractional form (− Δ)
s can be expressed as [12] 

(− Δ)
sU(x) = Ls

∫
U(x) − U(y)
|x − y|n+2s dy (3)  

where, 

Ls =
4sΓ(s + (1/2))

̅̅̅
π

√
|Γ(− s)|

,

Γ(x) is the gamma function and 0 < s < 1 is called the fractional order of 
the Laplacian. This fractional Laplacian operator has found useful ap
plications to fluid mechanics [13], fractional kinetics and anomalous 
diffusion [14–16], strange kinetics [17], fractional quantum mechanics 
[18,19], Levy processes in quantum mechanics [20], plasmas [21], 
electrical propagation in cardiac tissue [22] and biological invasions 
[23]. 

The term λ(qn+1 +qn− 1) in Eq. (1) is essentially a discrete laplacian 
Δnqn = qn+1 − 2qn + qn− 1. Thus, we can rewrite Eq. (1) as 

d2

dt2 (qn + 2λqn + λΔnqn)+ qn + χq3
n = 0 (4)  

In this paper we examine the effects of a general fractional exponent s on 
the nonlinear modes, trapping, and transport of magnetic excitations of 
a coupled SRR array described by a discrete, fractional Laplacian. The 
idea is to ascertain the degree of ‘robustness’ of the SRR phenomenology 
when confronted with a perturbation not of its parameters, but of its 
underlying mathematical description, in the form of a nontrivial math
ematical change in the form of the discrete laplacian. 

2. The model 

We now proceed to replace Δn by its fractional form (Δn)
s in Eq. (4). 

The discrete fractional laplacian is given by [24] 

(− Δn)
sqn =

∑

m∕=n

Ks(n − m)(qn − qm), 0 < s < 1 (5)  

where, 

Ks(m) = Ls
Γ(|m| − s)

Γ(|m| + 1 + s)
. (6)  

Eq. (1) becomes 

d2

dt2(qn + 2λqn + λ
∑

m∕=n

Ks(m − n)(qm − qn))+ qn + χ q3
n = 0. (7)  

The equation of motion Eq. (7) can be derived from the dimensionless 
Hamiltonian 

H =
∑

n

(
1
2

)(

q2
n + (1 + 2λ)q̇2

n + λq̇n

∑

m
Ks(m − n)(q̇m − q̇n)

)

+(χ
/

4)q4
n

(8)  

and q̇n = ∂H/∂pn, ṗn = − ∂H/∂qn, and the definition pn = ∂H/∂q̇n. This 
implies that H is a constant of motion: dH/dt= 0. Since in all of our 
dynamical computations later on, we will choose qn(0) = δn,0,q̇n(0) = 0, 
this implies H = (1/2) + (χ/4). 

Now we look for stationary modes qn(t) = qncos(Ωt + ϕ). After 
replacing this form into Eq. (7) and after using Eq. (5), one obtains the 
following system of nonlinear difference equations for {qn}: 

− Ω2(qn + 2λqn + λ
∑

m∕=n

Ks(m − n)(qm − qn))+ qn +(3

/

4) χ q3
n = 0

(9)  

where we have also made use of the rotating wave approximation 
(RWA): cos(x)3

≈ (3/4)cos(x). This is necessary in order to obtain 
closed-form expressions later on. Numerically, the RWA has proven 
accurate in many cases [25]. 

Let us first look for linear waves. We set χ = 0 and pose a solution of 
the form qn = Acos(kn). After simple algebra, one obtains the dispersion 
relation for the magnetoinductive waves, in closed form: 

Ω2 =

(

1 + 2λ − 4λ
∑∞

m=1
Ks(m) sin2[(1

/

2)k m]

))

− 1 (10)  

The condition Ω2 > 0 leads to a constraint on the coupling values: 

λ >

(

4
∑∞

m=1
Ks(m) sin2[(1

/

2)k m] − 2

)− 1

. (11)  

Since the extremes of the band occurs at k = 0,π, we evaluate Eq. (11) at 
these points, obtaining the critical coupling conditions as functions of s: 

λ > − 1

/

2 and λ <

(

4
∑∞

m odd
Ks(m) − 2

)− 1

(12)  

In particular, for s→1 one recovers the well-known condition |λ| < 1/2. 
A further reduction on Eqs. (10) and (12) is possible, in terms of well- 
known special functions:  

Fig. 1. One-dimensional split-ring resonator arrays. Top: All SRRs lying on a 
common plane (λ < 0). Bottom: All SRRs parallel but centered around a com
mon axis (λ > 0). 

Ω2 =

(

1 + λ
(

2 +
2e− ikΓ(1 − s)Γ(2s)(− eik(1 + s) + s 2F1(1, 1 − s, 2 + s, e− ik) + e2iks 2F1(1, 1 − s, 2 + s, eik)))

|Γ(− s)|Γ(1 + s)Γ(2 + s)

))− 1

(13)   
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where Γ(x) is the gamma function and 2F1(a, b, c; z) is the hypergeo
metric function. The critical coupling values can be reduced to 

λ > − 1
/

2 and λ < −
1

2 + 4s sign (Γ(− s))
(14)  

Examination of this expression reveals that, if we choose to stick to |λ| <
1/2 the dispersion will always be real for all values 0 < s < 1. In that 
case, we have well-defined ‘fractional magnetoinductive waves’. Fig. 2 
shows the dispersion relation Ω2 as a function of (k, s) for several 
coupling values λ. The bandwidth increases with s, while the average 
gradient increases with increasing λ. Fig. 3 shows density plots for the 
mode profiles, for several values of the fractional exponent s. Here, for a 
given s, we stack the mode profiles one after the other according to their 
eigenvalues. As can be seen, an increase in the fractional exponent, in
creases the bandwidth. Fig. 4 shows the allowed regions in coupling- 
exponent space, for propagation of these fractional magnetoinductive 
waves. 

3. Root mean square (RMS) displacement 

A common way to quantify the degree of mobility of an excitation, is 
by means of its mean square displacement 〈n2〉. In our case,〈n2〉 measure 
the spread of the charge among the rings: 

〈n2〉 =
∑

n
n2|qn(t)|2

/
∑

n
|qn(t)|2 (15)  

For a completely localized initial charge qn(0) = A δn0 and no currents, 
(dqn/dt)(0) = 0, we have formally 

qn(t) = (A
/

4π)
∫ π

− π
ei(kn− Ωk)tdk+(A

/

4π)
∫ π

− π
ei(kn+Ωk)t (16)  

where Ωk is given by Eq. (13). After replacing this form for qn(t) into Eq. 
(15), one obtains after some algebra, a closed form expression for 〈n2〉: 

〈n2〉 =
(1
/

2π)
∫ π
− π dk(dΩk/dk)2

(1 − cos(2 Ωk t)) t2

1 + (1
/

2π)
∫ π
− π dk cos(2 Ωk t)

(17)  

As we can see from the structure of Eq. (17), as time t increases, the 
contributions from the cosine terms to the integrals decrease and, at long 
times, 〈n2〉 approaches a ballistic behavior 

〈n2〉 =

[
1

2π

∫ π

− π

(
dΩ(k)

dk

)2

dk

]

t2(t→∞), (18)  

while at short times, 

〈n2〉 =

[
1

2π

∫ π

− π

(

Ωk
dΩk

dk

)2

dk

]

t4(t→0 (19)  

Since the transport exponent is defined as the one corresponding to the 
dominant behavior at long times, we can say that the transport in our 
system is ballistic: 〈n2〉 ∼ g(s)t2, where we can identify 

̅̅̅̅̅̅̅̅
g(s)

√
as a kind of 

characteristic ‘speed’ for the ballistic propagation. 
Results are shown in Fig. 4, which shows g(s) for several coupling 

values. We see that a well-defined speed is only possible for exponents 
greater that a minimum one, s > 0.253. We also observe for a given s, 
this speed increases with the coupling λ, which is not surprising since a 
larger coupling facilitates the motion between neighboring sites. For 

Fig. 2. Left: Dispersion relation Ω(k, s)2 for several different coupling values. Top left: λ = 0.1, Top right: λ = 0.2, Bottom left: λ = 0.3, Bottom right: λ = 0.5.  
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very small λ, the speed seems to converge to a set of closely-spaced 
values. Also, for λ < 1/2, g(s) remains finite throughout the entire frac
tional domain. However, for λ > 1/2, g(s) diverges at some s value. 

4. Nonlinear modes 

We now look at stationary modes when χ ∕= 0. Eqs. (9) constitute a 
system of nonlinear coupled difference equations, of the form F(q) = 0, 
where q = (q1,q2,…,qN). The form of the cubic terms originates from the 
insertion of a nonlinear (Kerr) dielectric inside the slit of the capacitors, 

in the weak nonlinear limit. Numerical solutions are obtained by the use 
of a multidimensional Newton–Raphson scheme. This method solves the 
system of nonlinear equations using a seed, which is supposed to be an 
approximate solution. If the initial guess is close to the real solution, a 
convergence to the solution will be quickly reached. For instance, if we 
want to find the fundamental solution in the bulk which is localized and 
with a single maximum, we use as a guess something like (0,0,…,A,0,0,
…). This extreme guess is indeed a solution in the large Ω2 limit where 
A2 = (4/3χ)(1+2λ)Ω2 and is a starting point or seed to find the funda
mental nonlinear mode for a finite Ω2. For a surface mode, we employ 

Fig. 3. Density plots of the spatial profiles q2
n of the linear modes ordered according to their eigenvalue, for different fractional exponents. Horizontal axis denotes the 

sites of the array, while the vertical axis contains the frequencies in increasing order (N = 133, λ = 0.4). 

Fig. 4. Left: Critical coupling as a function of the fractional exponent. Inside the shaded region, no wave propagation is allowed. Right: Ballistic speed g(s)1/2 as a 
function of the fractional exponent s, for several coupling values λ. As λ→1/2, g(s) diverges at s→1. 
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(A,0, 0,…,0) as an initial condition. Other solutions can be reached 
starting from different decoupled configurations: (0, 0,…,A,A,0,…,0)
for an ‘even’ mode, (0,0,…,A, − A,0,…,0) for a ‘twisted’ mode, etc. 

We employ open boundary conditions and examine two-mode fam
ilies, “bulk” modes, which are located far from the boundaries, and 
“surface modes” when the mode is located at or near one of the ends of 
the array. Fig. 5 shows some low-lying nonlinear bulk and surface modes 
for s = 0.4, for the two possible signs of the magnetic coupling λ. Fig. 6 
shows bifurcation diagrams of the mode families shown in Fig. 5. These 
are obtained, by plotting the sum of the electric power content of the 
uncoupled rings 

∑
nq2

n , as a function of the mode frequency. We observe 
that the fundamental mode reaches down to the band edge, at low 
powers, while the rest of the modes lie outside the band for any amount 
of power. The behavior evidenced in Figs. 5, 6 is reminiscent of the 
behavior seen in the fractional discrete nonlinear Schrödinger equation 
[26]. For surface modes there is a family of fundamental surface solu
tions located at ever-increasing distances from the boundary. After a few 
sites from the boundary, they become indistinguishable from bulk 
modes. Also, it should be mentioned that all these surface modes need a 
minimum value of power strength to exist. This can be explained from 
the observation that when we have a mode at the surface, the concen
tration of magnetic energy produces an effective surface impurity at the 
edge. The rest of the lattice is left with a very small magnetic energy, i.e., 
it becomes an effective linear lattice. As is well-known, a linear lattice 
with an impurity at the edge needs a minimum amount of ‘strength’ to 
give rise to a localized mode. 

The existence of these localized nonlinear modes implies a spatial 
concentration of charge and current, which in turn produces a spatial 
localization of magnetic energy. This phenomenology of mode locali
zation seems ‘robust’ against the particular value of a fractional 

exponent. 

5. Modulational stability 

As we have seen, our system is able to support the existence of 
localized magnetic energy excitations, which can exist around any ring 
in principle. We wonder now about the possible existence and stability 
of nonlinear extended uniform excitations. To do that, we consider Eq. 
(4) in the form: 

d2

dt2(qn + 2λqn + λ
∑

m∕=n

Ks(m − n)(qm − qn))+ qn + χ q3
n = 0 (20)  

Now we pose a solution in the form of a uniform profile qn(t) =

Acos(Ωt + ϕ). Inserting this solution form into Eq. (20), followed by the 
RWA approximation, we obtain 

Ω2 =
1 + (3

/
2)χA2

1 + 2λ
. (21)  

Thus, the uniform profile is possible only if 1+(3/2)χ |A|2 > 0 (we are 
assuming |λ| < 1/2). We compute qn(t)2 numerically from t = 0 up to a 
t = tmax and examine its numerical stability. The computation is quite 

Fig. 5. Examples of low-lying nonlinear modes of the SRR array for fractional 
exponent s = 0.4. On each plot, the vertical axes denotes the mode amplitude, 
while the horizontal axis indicate positions along the SRR array. First row: Bulk 
modes for λ = 0.4 and χ = − 1. From left to right: ‘odd’ mode, even’ mode and 
‘twisted’ modes, respectively. Second row: Bulk modes for λ = 0.4 and χ = 1. 
Third row: Modes at and below the surface for λ = 0.4 and χ = 1. Fourth row: 
Modes at and below the surface for λ = 0.4 and χ = − 1. A reduced portion of 
the entire lattice is shown (N = 55). 

Fig. 6. Bifurcation diagram for the power content versus mode frequency for 
some families of nonlinear modes, for fractional exponent s = 0.4. Curves 
marked ’O’, ‘E’ and ‘T’ denote odd, even and twisted modes, respectively. The 
shaded regions mark the position of the corresponding linear bands. 
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standard and calls out for an integrator like a fourth-order Runge–Kutta, 
or the use of a symbolic operator available in some symbolic mathe
matics programs, such as Mathematica or Matlab. 

Fig. 7 shows some examples of results obtained from this procedure, 
where we plot the time-evolution of the SRRs spatial profile, for several 
fractional exponents. From Fig. 7 we see that the evolution of a uniform 
unstable profile consists in the persistence of the initial profile up to 
some time, where it decays into radiation, after a very short transient. 
The most interesting feature is the decay of the unstable state into fila
mentary structures that, as time runs, merge and ultimately form un
differentiated radiation. This contrast with other (no fractional) models 
[27,28], where these filaments are also observed that persist in time and 
give rise to discrete solitons embedded in radiation. In fact, this has been 
proposed as a mechanism for producing discrete solitons 
experimentally. 

6. Dynamical selftrapping 

We now examine the possible presence of magnetic energy self
trapping of an initially localized excitation. The local nonlinearity favors 
an accumulation of all energy at a given position. This in turn, causes an 
effective impurity embedded in an effective linear lattice. As is well 
known from linear theory, this creates a localized impurity mode which 
in our case would correspond to a selftrapped state. 

We create an initial magnetic localized excitation by inducing a 
single current around one of the rings (at n = n0), by means of an 
adequate antenna. We are interested in monitoring the amount of 
magnetic energy that remains at long times at the initial ring. To 

quantify the trapping of magnetic energy, we use the long-time average 
of the fraction of magnetic energy residing at the initial site: 

〈U0〉 =
1
T

∫ T

0
(h0

/

H) dt, (22)  

where 

Fig. 7. Modulational instability of a given uniform unstable profile for several fractional exponents. Top left: s = 0.2, Top right: s = 0.5, Bottom left: s = 0.9, Bottom 
right: s = 1. (N = 103, χ = 1, amplitude=4, λ = − 0.4). 

Fig. 8. Long-time average probability of the magnetic energy remaining at the 
initial ring, versus nonlinearity strength, for different fractional exponents. 
From left to right s = 0.2, 0.4,0.6,0.8 and 1.0. 
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h0 = (1

/

2)(q2
0 +(1+ 2λ)q̇2

0 + λq̇0

∑

m
K(m)(q̇m − q̇0))+ (χ

/

4)q4
0, (23)  

and H = (1/2) + (χ/4), as shown before. Fig. 8 shows 〈U0〉 as a function 
of χ, for several fractional exponents. For a given value of s, 〈U0〉 in
creases monotonically with χ, with a more or less well-defined transition 
around some χ-value. We also see that all selftrapping curves lie one on 
top of the other, with the highest one corresponding to the smallest s 
value. In the linear limit (χ = 0), we observe a non-zero value for 〈U0〉. 
This type of ‘linear’ trapping is stronger as s decreases. 

7. Conclusions 

We have examined the physics of an extended model of a coupled 
split-ring resonator array, by using a fractional form for the Laplacian 
operator. A closed-form expression for the dispersion of plane waves as a 
function of the fractional exponent is found, in terms of well-known 
special functions. The critical coupling among rings beyond which no 
magnetoinductive waves can exist was also obtained in closed form. The 
diffusion of an initially localized excitation was shown analytically to be 
ballistic at long time, with the fractional exponent only affecting the 
value of the ballistic speed. This result is generic for a whole family of 
tight-binding models obeying very general conditions. The selftrapping 
of an initial excitation shows the same features found in other nonlinear 
models, except for the presence of finite trapping in the linear limit for a 
finite fractional exponent. This can be understood as the consequence of 
the long-range coupling that is present when s→0. In this limit, the 
bandwidth converges to zero, and all sites are coupled to each other with 
similar couplings. The near-degenerate spectrum that results, leads to 
partial trapping of an initially localized excitation, as shown before in 
condensed matter for the simplex model [29]. 

Interestingly, the nonlinear phenomenology found in this model is 
similar for all fractional exponents. It would be interesting to ascertain 
whether the same is true in other different, but related models, such as 
an array of coupled-waveguide resonators with a Kerr nonlinearity. 
Here, the simultaneous coexistence of coherent and incoherent states 
and its associated phenomenology [30,31] is indeed an interesting 
ground on which to test the idea of a fractional Laplacian. The fact that a 
change in fractional exponent changes the effective range of the 
coupling -thus changing in this way the effective discreteness of the 
system- would suggest that it could have an impact on the stability of 
these (chimera) states. 
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