Bounded dynamics of finite PT-symmetric magnetoinductive arrays
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We examine the conditions for the existence of bounded dynamical phases for finite PT-symmetric
arrays of split-ring resonators. The dimer (N = 2), trimer (N = 3) and pentamer (N = 5) cases
are solved in closed form, while for N > 5 results were computed numerically for several gain/loss
spatial distributions. It is found that the parameter stability window decreases monotonically with

the size of the array.

The study of PT-symmetric systems has attracted a
lot of attention during the past few years. In these sys-
tems, the effects of loss and gain can balance each other
and, as a result, give rise to a bounded dynamics. These
studies are based on the seminal work of Bender and
coworkers[1, 2] who showed that non-hermitian Hamil-
tonians are capable of displaying a purely real eigen-
value spectrum provided the system is symmetric with re-
spect to the combined operations of parity (P) and time-
reversal (T) symmetry. For one-dimensional systems the
PT requirement leads to the condition that the imaginary
part of the potential term in the Hamiltonian be an odd
function, while the real part be even. The system thus
described can experience a spontaneous symmetry break-
ing from a PT symmetric phase (all eigenvalues real)
to a broken phase (at least two complex eigenvalues),
as the gain/loss parameter is varied. To date, numer-
ous PT-symmetric systems have been explored in several
fields, from optics[3-7], electronic circuits[§], solid-state
and atomic physics[9, 10], to magnetic metamaterials[11],
among others. The PT symmetry-breaking phenomenon
has been observed in several experiments[7, 12, 13].

Magnetic metamaterials, on the other hand, consist of
artificial structures whose magnetic response can be tai-
lored to a certain extent. A common realization of such
system consist of an array of metallic split-ring resonators
(SRRs) coupled inductively[14-16]. This type of system
can feature negative magnetic response in some frequency
window, making them attractive for use as a constituent
in negative refraction index materials[17]. A common
problem with SRRs is the heavy ohmmic and radiative
losses. One possible solution is to endow the SRRs with
external gain, such as tunnel (Esaki) diodes[18, 19] to
compensate for such losses.

In the case of some one-dimensional coupled discrete
systems, such as a harmonic oscillator array, it has
been observed that in the limit of an infinite size ar-
ray, the system belongs to the broken PT phase, i.e.,
there are complex eigenvalues making the dynamics
unbounded[11, 20]. In this work we examine the case
of short SRRs arrays, and determine the parameter win-
dow inside which the system exhibits a bounded dynam-

ics, and how this window decreases with the size of the
system.

Let us consider a simple model of a magnetic meta-
material consisting of a finite one-dimensional array of
split-ring resonators including gain/loss terms:
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where A is the magnetic interaction coefficient or cou-
pling, and =, positive (negative) denotes a ring with
loss (gain). In order to satisfy the requirements for PT-
symmetry, the spatial distributions of the gain/loss must
be odd, y_,, = —7. In this work we will focus in binary-
like systems with two gain/loss terms and thus examine
arrays of the form ... — vy, —v2, —v1,0,v1,7v2,71, - . ., for
arrays with an odd number of rings. For arrays with
even number of rings the distribution of gain/loss is of
the form ... —y1, =2, —v1,71,72, 71, ... This distinc-
tion is only meaningful for small arrays and disappears
for system of infinite size. Hereafter, and without loss of
generality, we will focus on arrays with an odd number
of sites (except for the dimer case). Results for the case
with an even number of sites are similar. Since the values
of 41 and 7y, are arbitrary, the gain/loss distribution thus
introduced allows for many interesting cases to be exam-
ined. In particular we will focus on three cases. The first
one is y1 =7, ¥2 = —7, giving rise to the distribution

e Y = =, 0,7, —y,7, —y.... The second one is
v = 7 and 2 = 0, which gives rise to the distri-
bution ...0,—v,0,—7v,0,7,0,7,0,.... Another interest-
ing case is the one with vy = v = 72 that gives
=Y =Y =Y =%, 0,%,%, 7Y, Y- . .. For this last case, we’ll
see that in spite of the concentration of loss and gain on
opposite sides, the dynamics does possess a stability win-
dow for finite arrays lengths.

Dimer case (N =2): In this case, the only possible case
is 7, —v. The dynamical equations read:
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Figure 1: Dimer array. Left: Stability region (shaded) in
gain/loss-coupling space. Right: Mode frequency squared as
a function of the gain/loss parameter for A = 0.3.

We look for stationary modes ¢1,2(7) = qi,2 exp(i€7).
This leads to the equations,

— (g1 +A2) + 7+ @1 = 0 (4)
~Q%(g2 + A1) — 72 + g2 = 0. (5)

The condition of the vanishing of the determinant of this
linear system leads to a quadratic equation for Q2, with
solutions:

1/2
2 — 42 £ /vt — 442 4 4)2

Q== 2(1— \?)

(6)

We denote the four solutions as QF+ QF— Q-+ and
Q~~. The stable phase (unbroken PT symmetry) cor-
responds to the cases where () is a real quantity. From
straightforward examination of Eq.(6), one concludes
that the stability window in -\ space is given by the area

V/2(1 =1 =A%), for 0 < A < 1.
Outside v = 7.()), the system is unstable. Figure 1
shows the stability region and also the square frequencies
as a function of the gain/loss parameter. Due to symme-
try considerations, only the positive y-A sector needs to
be explored.

From Eq.(4) (or Eq.(5)) and Eq.(6), it is easy to obtain
|g2/q1] = 1 and thus, ¢; and go differ by a phase only.
We have four branches for the phase, corresponding to
each of the four solutions. Figure 2 shows the phase of
all solutions as a function of the gain/loss parameter.

under the curve v, =

Trimer case (N = 3): Here the gain/loss distribution
has the form —~v,0,7v. The stationary state equations
have the form

(1 + @)+ +q1 = 0 (
(@2 + M +q)+q =0 (
—Q%(q3 + Ag2) — ivQq3 + g3 = 0. (

© oo
= I —

-
-
e
17, N Ot
52 B R
—
5 =L
—
-
A ———
-
-
—
—
- e e

Figure 2: Dimer array. Mode phase as a function of the
gain/loss parameter. Solid: Q1 mode. Dotted: 27~ mode.
Short dash: Q77 mode. Long dash: Q=1 mode. (A = 0.33)

with eigenvalues

Q= +£1 (10)
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The condition that all 2 be real leads to the condi-
tions A < 1/v/2 and v < 7. = V2 — V4 — 8)2. Figure
3 shows the window of real eigenvalues in gain/loss-
coupling space. It is qualitatively similar to the dimer
case, but the allowed coupling interval is smaller. The
figure also shows the square of the real frequency as a
function of gain/loss, for a given coupling value.

Pentamer case (N = 5): Here the gain/loss distribu-
tion can have three possible forms: ~,—~,0,~,—7, or
0,—7v,0,7,0, or —v,—v,0,v,+7v. We will focus on the
first case since is more amenable to an exact form so-
lution (Numerical results show that the other two cases
display similar behavior). The stationary state equations
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Figure 3: Trimer array. Left: Stability region (shaded) in
gain/loss-coupling space. Right: Mode frequency squared as
a function of the gain/loss parameter, for A = 0.3.
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Figure 4: Pentamer array. Left: Stability region (shaded) in
gain/loss-coupling space. Right: Mode frequency squared as
a function of the gain/loss parameter, for A = 0.3.

have the form

— P +A)+iQq +q =0 (12)
— (@2 + Ma1 +¢3) — Q2 +q2 = 0 (13)
— (g3 + Mgz +aq1) +g3s = 0 (14)
— (@ + Mas +¢5) +i9Qqa+q = 0 (15)
—0%(g5 + Aqa) —i7Qqg5 + g5 = 0. (16)
with eigenvalues
0 = +1 (17)
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The condition that all Q2 be real leads to the conditions
A< 1/v3and v < 7. = 4/2(1 — /1= \2). Figure 4
shows the stability window in gain/loss-coupling space,
as well as the square frequency as a function of gain/loss,
for a fixed coupling value. As we can see, the stabil-
ity window is substantially smaller than the one for the
dimer and trimer cases.

Short chains (N > 5): Let us consider now the case
of finite arrays, where the stationary-state equations are
given by

— (g + M@nt1 + @n—1)] + (L + i), = 0.. (20)
The {~,} distribution we consider has the general form:
e =71, Y2, =1, 0,71, 72, Y1, - - - We will compute the
relevant eigenvalues numerically from the vanishing of
the determinant of linear system (20) and will focus on
the parameter values in gain/loss - coupling space where
the eigenvalues are purely real, thus denoting a bounded
dynamical regime.
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Figure 5: Stability regions (area under curve) in gain/loss-
coupling space for several array lengths, for the case
"'a777+’\/>7’7707“”77777“”77""

Case a. We start with the case v =
—v9 = v that gives rise to the distribution
e =YY, =7, O 4y, =y, 4y, Some results

are shown in Fig.5. It is clear that, as the size of
the array increases, the stability region shrinks, and
disappears altogether around N = 20. This is consistent
with a previous result[11] stating that in the infinity
size limit, the dynamics is always unstable (that is, the
system belongs to the broken PT phase).

Case b. Now we take 72 — 0 and ;3 = 7, that is, the
distribution ...,0,—7,0,—v, O, +v,0,+v,0,4+7v,0,....
Notice how the gain and loss portions are now separated
and on each side they are rather diluted. The stability
phase diagrams for this case (not shown) are qualita-
tively similar to the previous case, although, for a given
array size, the stability windows are smaller.

Case c¢. Now we take v2 = v; = v. The gain/loss distri-
bution is

=Y = =Y =, O, 4+, +7, +7, +7, . .. Now the gain
and loss on each side are densely populated and the re-
sulting area of the stability windows (not shown) while
qualitatively similar to the previous cases, drop even
faster.

Figure 6 shows a summary of the results obtained for
the size of the stability window as a function of the array
length, for the three cases considered. We clearly see that
the stability region decreases rather abruptly with N,
and that for a given N, we have area a < area b < area c,
for N > 5.
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Figure 6: Normalized size of area in gain/loss-coupling space
with purely real eigenvalues as a function of array size for the
gain/loss distributions “a” (squares), “b” (circles), and “c”
(triangles).

Conclusions. We have examined the dynamics of finite,
one-dimensional PT-symmetric arrays of split-ring res-
onators, that constitute the simplest model of a mag-
netic metamaterial, and have focussed on the conditions
in parameter space where this dynamics is bounded, i.e.,
all eigenvalues are real. The dimer, trimer and pentamer
cases were solved in closed form, while for larger but finite
arrays, results were obtained numerically. It was found
that in general, the stability region decreases abruptly
with an increase in system size. This tendency seems
generic for gain/loss distributions based on two gain/loss
parameters, and is in agreement with recent results for
infinite discrete arrays[11, 20].
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