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1. Introduction

Magnetic metamaterials (MMs) constitute a class of novel 
arti!cial materials characterized for having a negative magn-
etic permeability over a frequency range. A usual realization 
of such a system consists of an array of metallic split-ring 
resonators (SSRs) that are coupled inductively [1]. One of the 
most attractive features of SRRs is the possibility of a negative 
magnetic response over a given frequency region, which might 
overlap the frequency region where the dielectric constant of 
the material is negative. This gives rise to a negative index 
of refraction inside that frequency interval and thus, makes 
SRRs attractive for use as a constituent in negative refraction 
index materials [2]. Their magnetic response can be tailored 
to certain extent, although there are heavy Ohmmic and radia-
tive loses. A possible solution that is to endow the SRRs with 
some sort of external gain, such as tunnel (Esaki) diodes [3] to 
compensate for such loses.

A periodic array of SRRs has, in principle, an energy spec-
trum composed of a number of bands. The breaking of the 
translational invariance, by means of impurities or disorden, 
gives rise to localization. Recently, attention was called to 
another way to achieve localization in a periodic system: 

"atbands. Simply stated, a "atband lattice is a periodic system 
characterized by having one or more "atbands in its spectrum. 
Since the group velocity of a state belonging to one of these 
bands is zero, any "atband eigenstate or a superposition of 
them will exhibit no mobility. This allows for the formation 
of compacton-like structures, which are completely localized 
in space, exhibiting no dynamical evolution thus, constituting 
a new form of localized state in the continuum [4]. Some sys-
tems where "atbands have been studied and observed include 
optical [5, 6] and photonic lattices [7–9], graphene [10, 11], 
superconductors [12–15], fractional quantum Hall systems 
[16–18], and exciton-polariton condensates [19, 20]. The 
origin of the "atbands states can be traced back to an exact 
geometrical interference condition.

The existence of "atbands in certain magnetic SRR arrays 
imply the existence of eigenmodes that do not diffract across 
the array. A linear combination of these modes will also be 
degenerate and will not diffract as well. Thus, it is possible, in 
principle, to store magnetic energy in certain spatial con!gura-
tions that will remain inmobile in time. This feature will only be 
of practical use if this difractionless character is stable against 
perturbations that arise naturally in real life magnetic arrays, 
such as fabrication defects or errors in the initial conditions.
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In this work we analyze the important problem of the sta-
bility of these states under perturbations of the initial charge, 
the presence of anisotropy of the couplings, or noise in the 
coupling between magnetic units, for three ribbon arrays of 
different geometry. As we will see, two out of the three sys-
tems examined proved to be stable. This gives us hope that 
these systems could be at the heart of future magnetic storage 
devices.

2. The model

The simplest MM model consists of a quasi-onedimensional 
lattice (ribbon) of metallic split-ring resonators (SRRs), cou-
pled inductively [21], in the absence of dissipation, driving 
and nonlinearity (!gure 1). Each SRR can be thought of as an 
approximate RCL circuit and thus, possessing a capacitance, 
an inductance and a resistence. They are further characterized 
by a resonance frequency ω0 ∼ 1/

√
LC .

The evolution of the charge Q residing on the nth-ring is 
given by

d2

dt2



LQn +
∑

m!=n

MnmQm



+
Qn

C
= 0, (1)

where L is the self-induction of the nth-ring and Mnm is the 
mutual inductance between rings n and m. We can express this 
in dimensionless form by de!ning τ ≡ ω0 t , qn ≡ Qn/CU0, 
λnm ≡ Mnm/L, with U0 a characteristic voltage across the slit 
of the ring. Equation (1) becomes

d2

dτ 2



qn(τ) +
∑

m!=n

λnmqm(τ)



+ qn(τ) = 0. (2)

Here, λnm represents the ratio between the mutual and the 
self inductance of the rings, and its value depends on the pre-
cise geometry of the rings as well as on the mutual distance 
between nearby rings. Hereafter, and for the sake of simplicity 
we will consider coupling to nearest-neighbors only: λn,m = λ 
if n, m are nearest neighbors, zero otherwise.

The stationary modes are obtaining by posing a solution of 
the form qn(τ) = qn exp(iΩτ), where the qn amplitudes obey

−Ω2

(
qn + λ

∑

nn

qm

)
+ qn = 0, (3)

where the sum is restricted to nearest neighbors only. Since 
each ribbon is a an arrangement of unitary cells periodic in the 
horizontal direction, we set in equation  (3) qj = Aj exp(ikn) 
where n is the position of the unitary cell and j labels the rings 
inside the unitary cell. Using this form into equation (3) leads 
to a M × M  system of equations for the Aj  amplitudes, where 
M is the number of rings inside a unitary cell. After imposing 
that the determinant of this system be zero in order to have 
nontrivial solutions, one arrives to a polynomial equation for 
Ω2 whose solutions gives us the shape of the M allowed bands 
Ω2(k).

We proceed now to examine analytically and numerically 
the spectral properties of three quasi-one-dimensional (rib-
bons) split-ring resonator lattices: stub, Lieb and kagome lat-
tices, which are characterized for containing "atbands in their 
spectrum.

3. The stub ribbon

We begin by examining the stationary modes of the stub 
ribbon, whose geometry is shown in !gure 1(a). The ribbon 
has a unitary cell that contains three rings, implying an spec-
trum with three bands. They are given by

Ω2 = 1

Ω2 =
1

1 ±
√

3 + 2 cos(2k) λ
. (4)

The condition Ω2 > 0, leads to the condition |λ| < 1/
√

5 = 
0.447. Under this constraint, we have all three bands real. 
Figure 2 shows the three bands.

After solving numerically the stationary equation (3) for the 
stub geometry, we obtain all the modes for this ribbon. Results 
are shown in !gure 3. The top part shows all the eigenvalues 

Figure 1. Quasi-onedimensional arrays of SRRs. (a) Stub ribbon, (b)Lieb ribbon, (c) kagome ribbon.
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ordered in descending order. The "at band is clearly visible. 
The center part shows all the modes in space, where we have 
placed each eigenvector in correspondence with its associated 
eigenvalue. The complexity of the !gure  is only apparent. 
The plot appears divided into sectors because of the particular 
numbering employed for the sites. While for a 1D lattice each 
site can be numbered in an unambiguous manner, and one 
can hang the plot of the eigenmodes one behind the other, in 
our case, the geometry is not quite 1D, and we have labelled 
all sites of the !rst row as 1, 2, · · ·P. The sites on the second 
(diluted) row were labelled P + 1, P + 2, · · ·N . An example 
of this numbering is shown at the top of !gure 3. Thus, on our 
plot the amplitudes for the !rst 85 sites or so, correspond to 
the amplitudes on the !rst row, while the amplitudes for sites 
85–130 correspond to the amplitudes on the second row of the 
stub ribbon.

The modes between n = 45 and n = 85 belong to the 
degenerate eigenvalue Ω2 = 1 and they are highly local-
ized and form a Stark-like ladder [22] with each mode being 
shifted by one lattice site. The rest of the modes belonging to 
the dispersive bands, show extended states as usual. In addi-
tion we observe the existence of edge modes (marked by red 
circles), whose shape is shown in the lower part of the !gure, 
where each color denotes the value of the charge residing at a 
particular ring. Thus, green corresponds to qn = 0, yellow to 
qn = 1 and black to qn = −1.

The localized modes belonging to the "at band can be 
combined to yield compacton-like eigenmodes. The dynamics 
of such eigenmode shows no evolution, because of an exact 
phase cancellation: The phase distribution of a compacton-
like state is such that during the time evolution, they cancel on 
all nearest-neighbor sites, impeding in this manner the time 
evolution of the mode. Some examples of this are shown at the 
bottom part of !gure 3 and at the top of !gures 4(a) and (b). 
The evolution of these two modes is shown in the bottom half 
of the !gure, which shows the participation ratio (PR) versus 
time. The PR is a measure of localization of a state and is 
de!ned as PR = (

∑
i |qi(t)|2)2/

∑
i |qi(t)|4. Roughly, it meas-

ures the number of sites in a lattice that are effectively excited 
by a mode. For a completely localized mode on a single site, 
PR = 1, while for a completely delocalized state, PR = N , 
where N is the number of lattice sites. In our case we see that 
the PR of the two modes does not change with time. As a 

contrast, we also plot the PR of an initial pro!le consisting of 
a single site initially charged. In this case, as time increases 
the excitation expands in space !lling eventually the whole 
SRR array.

3.1. Dynamical stability

Let us now focus on the three-sites fundamental stub mode 
(!gure 4(a)) and how its evolution is affected by the presence 
of several perturbations. First, let us disturb the value of the 
initial charge on the SRRs: qj = Aj + δj, where Aj = ±1 and 
δj ∈ [−w, w], where 2w is the disorder width. Figure 5 shows 
the evolution of the PR of this perturbed compact mode, for 
several disorder widths. As we can see, the mode is quite 
robust, even for large disorder widths and only for t < 100 
there are strong "uctuations signaling the redistribution of 
charge among the SRRs. Eventually, the system converges 
to the non-disordered compact mode, plus some small oscil-
lations. The general features of the evolution in this case 
can be traced back to the fact that the initial condition can 
be expanded in modes belonging to all the bands, "at and 

Figure 2. The bands for the stub ribbon (λ = 0.3).

Figure 3. Top: Eigenvalues of the stub ribbon, arranged in order 
of decreasing value. The "at band is clearly appreciable at Ω = 1. 
The top part shows the numbering scheme used to label the sites. 
Center: Density plot of the eigenvectors of the stub ribon, arranged 
in order of increasing eigenvalue. Bottom: Form of the edge modes 
marked in red.
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dispersive and thus, the only portion of the disturbed ring 
that will evolve away from the ring is the noise part, leaving 
behind the original ring. In this sense, the disturbed ring is 
stable. This argument applies to any array, so we can predict 
stability for all three geometries.

Next, we analyze the effect of a degree of anisotropy. 
We now allow two different couplings: λh , the coupling 
between nearest neighbors along the horizontal direction, 
and λv, the coupling between nearest neighbors in the ver-
tical direction. In a real system this could be due to a uni-
form stretching of the array, if it is lying on a substrate. 
Let us de!ne an anisotropy parameter as δ = λh/λv. From 
!gure 6 we see that a degree of anisotropy does not destroy 
the "at band.

The evolution of the PR of the perturbed compact mode, 
shows that it just oscillates around a constant value, but it 
does not decay. In this case, the oscillation is about PR ∼ 2, 
instead of 3, which is due to the fact that for δ = 0.5 the 
horizontal sites are farther apart and so, more charge needs 
to accumulate at the middle site in order to maintain the 
phase relation necessary for a compact mode to persist. 
Given that the PR is stable, we can estimate the value 
around which the PR oscillates as follows: By imposing 
the condition that under the new couplings, the charge is 
redistributed in such a way as to satisfy the interference 
condition, one obtains

PR(δ) =
(2δ2 + 1)2

2δ4 + 1.
 (5)

For δ = 1/2 this gives 2 which almost coincide with the time 
average of the PR.

Now, let us consider a different and more interesting type of 
perturbation: Noise in the mutual couplings. This is given by 
λij → λij + δλij with λij = λ and δλij ∈ [−w, w]. In practice, 
this type of perturbation could be due to a random variation of 
the array inter distances coming from a defectively built array. 
As we can see from !gure 7, the inclusion of coupling noise 
does not destroy the "at band, but strongly affects the modes 
in the dispersive bands. These modes show now the phenom-
enon of localization. This is nothing else than off-diagonal 
Anderson localization. It is quite visible here since we have 
chosen a large value for the disorder width, w = 0.25. The 
degenerate modes with Ω2 = 1 still show the stark ladder-like 
spatial distribution. The dynamical evolution of the PR shown 
in !gure  8 shows that the PR is stable, albeit with oscilla-
tions. The fact that the PR never surpasses de value of 3 when 
oscillating tell us that the charge is being distributed back and 
forth among the three SRRs only. Given the large amount of 
disorder involved (w = 0.25), the robustness of the dynamical 
evolution is impressive [23].

Figure 4. Top: Example of the two lowest-lying compact modes of 
the stub lattice. Bottom: Time evolution of the participation ratios 
(PR) of the two compact modes and comparison with the case of an 
initially localized pro!le. The inset shows a magni!cation of the PR 
of the two modes.

Figure 5. Participation ratio PR of the fundamental mode of the 
stub ribbon as a function of t for a random perturbation of the 
initial conditions. The width of the noise is w = 0.1 (top), w = 0.25 
(middle) and w = 0.5 (bottom).

J. Phys.: Condens. Matter 29 (2017) 475801
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4. The Lieb and kagome ribbons

For the Lieb and kagome geometrical arrays we repeat exactly 
the same procedure as the one carried out for the stub lattice 
(section 3). These arrays are shown in !gures  1(b) and (c). 
We shall proceed with summarizing the main results for these 
two arrays.

The Lieb ribbon can be considered as a depleted square 
lattice ribbon. Its unitary cell contains !ve sites (SRRs), 
implying an spectrum consisting of !ve bands:

Ω2 = 1

Ω2 =
1

1 ±
√

2(1 + cos(2k))λ

Ω2 =
1

1 ±
√

4 + 2 cos(2k)λ
.

 
(6)

We have a "at band at Ω2 = 1. The bands are real provided the 
coupling satis!es |λ| < 1/

√
6 = 0.408. On the other hand, the 

kagome ribbon also has !ve units (SRRs) in its unitary cell 
and its !ve bands are given by

Ω2 =
1

1 − 2λ

Ω2 =
1

1 ±
√

2(1 + cos(2k))λ

Ω2 =
1

1 +
(

1 ±
√

3 + 2 cos(2k)
)
λ

,

 

(7)

and shows a λ-dependent "at band Ω2 = 1/ 
(1 − 2λ). Again, to ensure the existence of the !ve real bands, 
−1/(1 +

√
5) < λ < 1/2.

The band structure of the Lieb and kagome ribbons are 
shown in !gure 9. The eigenmodes belonging to the "atbands 
of the Lieb and kagome ribbons are also highly localized, in 
a manner quite similar to the stub case (!gure 3) and [24]. 
Combinations of these modes give rise to compact modes in 
the form of closed rings, as the ones shown in the inset of 
!gure 10 for the Lieb case, and in !gure 11 for the kagome 
case. The fundamental Lieb mode is composed of four SRRs 

Figure 6. Top: Eigenvalues Ω2 for a long (N = 120) Stub ribbon 
for an isotropy parameter δ = 1/2. The eigenvalues are plotted in 
order of decreasing value and we show near the "at band region. 
Bottom: PR of the compact stub mode for an anisotropy parameter 
δ = 0.5.

Figure 7. Stub ribbon with coupling disorder width w = 0.25 and 
λ = 0.3. Top: Eigenvalues of the stub ribbon, ordered according to 
decreasing value. Bottom: Density plot of the eigenvectors of the 
stub ribon, arranged in order of increasing eigenvalue.

Figure 8. Evolution of the participation ratio PR for the 
fundamental compact mode of the stub ribbon subjected to coupling 
noise (λ = 0.3, w = 0.25). The inset shows the shape of the 
compact mode after a long evolution time (t = 1000).

J. Phys.: Condens. Matter 29 (2017) 475801
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forming a ring. Two of them have charge q and the other two 
charge −q. In the kagome case, the fundamental mode is com-
posed of six SRRs, where three of them have charge q while 
the rest have charge −q. The value and sign of the charges are 
chosen as to ensure that the sites outside the rings will receive 
no charge at any time, thus isolating the fundamental mode 
and ensuring its lack of dynamical evolution.

In-phase and out-of-phase combinations of compact modes 
are degenerate stationary modes and therefore, they also do 
not diffract.

As we did for the stub ribbon, let us now look at the 
dynamical evolution of the fundamental compact modes 
under the in"uence of perturbations such as noise in the initial 
charge, anisotropy of the couplings and noise in the individual 

Figure 9. Top: The !ve bands of the Lieb ribbon. Bottom: The !ve 
bands of the kagome ribbon. The coupling value is λ = 0.5 in both 
cases.

Figure 10. Participation ratio as a function of time for several 
combinations of Lieb compact modes. The PR = 4 value 
corresponds to the fundamental mode. The case PR = 6 (4.5) 
corresponds to a linear combination of two fundamental modes in 
phase (antiphase).

Figure 11. Participation ratio as a function of time for two 
combinations of kagome compact modes. The PR = 6 value 
corresponds to the fundamental mode, while the PR = 10 
corresponds to a linear combination of two fundamental modes in 
antiphase.

Figure 12. Evolution of the participation ratio of the fundamental 
(a) Lieb and (b) kagome compact modes with an initial noise. 
(w = 0.5).

J. Phys.: Condens. Matter 29 (2017) 475801
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couplings. Figure  12 shows that both ribbons are robust 
against noise in the initial value of the charges.

Next, let us examine the stability against a degree of aniso-
tropy in the couplings. Now we have to de!ne two aniso-
tropy parameters. For the Lieb lattice, δl = λh/λv, where λh 
is the coupling between nearest neighbors in the horizontal 
direction and λv is the coupling between nearest neighbors 
in the vertical direction. For the kagome lattice we de!ne 
δk = λh/λd, where λh is the coupling between nearest neigh-
bors in the horizontal direction while λd is the coupling along 
the diagonal direction. As we can see from !gure 13, the "at 
band of the Lieb ribbon is robust against coupling anisotropy 
for several δ values, including large values compatible with 
the existence of the "at band. The evolution of the participa-
tion ratio of the compact Lieb mode (4 sites) show that it is 
stable, with oscillations around a new equilibrium value. As 
we did for the stub lattice, we estimate the equilibrium PR 
by imposing the condition that under the new couplings, the 
charge is redistributed in such a way as to satisfy the interfer-
ence condition. Thus, one obtains the estimate

PR(δ) = 2
(1 + δ2)2

1 + δ4 . (8)

For the cases shown in !gure 13, this estimate predicts that 
for δ = 2 the new stable PR should be PR = 2.94, while for 
δ = 1/2, the PR should also be 2.94, exactly as shown in the 
!gure. This is not a coincidence, since PR(δ) satis!es the 
symmetry PR(δ) = PR(1/δ).

A radically different situation occurs for the kagome ribbon 
[25]. As we can see from !gure 14, as soon as the aniso tropy 
value is different from one, the "at band is destroyed, even for 

very small anisotropy values. When one propagates the com-
pact kagome mode, it deforms quickly spreading its charge all 
over the lattice, as shown by the evolution of its PR. The oscil-
lations that appear for t > 600 are due to !nite-size effects, 
where the magnetoinductive wave bounces from the array 
boundary.

Finally, let us consider a random perturbation of 
the individual couplings, as we did for the stub lattice: 
λij → λij + δλij, where λij = λ and δλij ∈ [−w, w]. Results 
are shown in !gure 15. For the Lieb ribbon we can see that 
the "at band survives the addition of coupling noise, even 
for large disorder strength (w = 0.25) while for the kagome 
ribbon, the "at band is destroyed even for very small disorder 
strength (w = 0.05). The evolution of the PR for the Lieb 
ribbon shows that it is quite robust with a PR value around the 
one corresponding to the fundamental mode (PR = 4), while 
for the kagome case, the PR quickly reaches ‘macroscopic’ 
values, of the order of N. To summarize the stability results 
for all three ribbons, we show in table 1 the response of each 
lattice to the three types of perturbations considered in this 
work. While the stub and the Lieb ribbons are stable to all the 
perturbations, the kagome was only stable to the initial noise 
only, being unstable against the other two. Clearly, there is a 
strong geometrical element at play here.

5. Dissipation

It is well-known that in SRRs some degree of loss (radiative 
and resistive) is always present. It is natural then, to wonder 
whether our "atbands survive the addition of dissipation. In 

Figure 13. Top: Eigenvalues of the Lieb ribbon, ordered according to decreasing value, for two values of the anisotropy parameter: δ = 2 
(left) and δ = 1/2 (right). Bottom: Time evolution of the participation ratio of the Lieb compact mode for two anisotropy parameter values. 
The horizontal dashed lines mark the theoretical estimate for the PR of the deformed compact modes.

J. Phys.: Condens. Matter 29 (2017) 475801
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the presence of losses, the equation for the stationary modes 
changes to

−Ω2

(
qn + λ

∑

nn

qm

)
+ iγΩqn + qn = 0 (9)

where γ is the loss coef!cient. By means of elementary alge-
braic manipulations, one can recast equation (9) as

βqn + λ
∑

m!=n

qm = 0 (10)

i.e. the well-known tight-binding equation, where the eigen-
value β is given by

β = 1 −
(

1 + iγΩ
Ω2

)
. (11)

The mapping de!ned by equation  (11) allows us to transit 
between our SRRs ribbons with dissipation, and the tight-
binding ribbons, of the same geometry. We immediately see 

that the "atbands of the tight-binding system imply "atbands 
on the SRR system, which are complex as soon as the loss 
coef!cient is included. That is, the "atbands without losses 
‘survive’, meaning they do not become dispersive, but they 
become complex. The "atbands of the tight-binding ribbons 
were examined by us in a previous work [26]. These are β = 0 
(stub and Lieb), β = −2λ (kagome). From equation (11), we 
obtain the "atbands of the SRRs with losses:

Ω = (1/2)
(

iγ +
√

4 − γ2
)

 (12)

(stub and Lieb),

Ω =
i (γ/2)
1 − 2λ

+

√
1

1 − 2λ
− (γ/2)2

(1 − 2λ)2 (13)

(kagome). Comparison between equations  (12) and (13) 
shows that dissipation effects are stronger in the kagome lat-
tice than in the stub and Lieb lattices.

Figure 14. Top: Eigenvalues of the kagome ribbon for different anisotropy values. The inset shows the region where one has a "at band 
when δ = 1. Bottom: Evolution of the participation ratio for the compact mode of the kagome ribbon for two anisotropy values.

J. Phys.: Condens. Matter 29 (2017) 475801
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6. Conclusions

We have examined the spectral and dynamical properties of 
three quasi-onedimensional (ribbons) magnetic lattices that 
have a "atband in their spectra. It is observed that the degen-
erate eigenmodes of these "atbands form a Stark-like ladder 
where each mode is shifted by one lattice site. Their combina-
tion gives rise to compact modes that do not diffract due to an 
exact geometrical phase cancellation. For all three cases, we 
computed the stability of the fundamental band mode against 
perturbation of their initial charge value, the effect of possible 
anisotropy of the couplings, and the presence of small random 
perturbations of the individual couplings. We !nd that the stub 
and Lieb ribbons are stable against all three perturbations, 
while the kagome ribbon is only stable to the perturbation of 
the initial value. The fact that all three cases are stable against 
this type of perturbation could be traced back to the fact that, 
because of linearity and absence of gain/loss mech anisms, the 
perturbed initial mode will evolve as a linear combination of 
the evolution of the mode itself plus the evolution of the noise. 
The result is the original mode plus some small superimposed 
amount of noise. In addition, when loss effects are included 
into the picture, all "atbands remain "at, but with a complex 
eigenvalue, meaning that the eigenmode will decay in time. 

The fact that, in two out of three geometries, the "atband 
modes proved stable is highly interesting since it suggests 
that it would be possible in principle to store magnetic energy 
in certain carefully chosen con!gurations that would remain 
immobile in time, constituting in this way a basis for a future 
stable magnetic storage device.
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