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We study the effect of a resonant frequency disorder on the eigenstates and the transport of magnetic 
energy in a two-dimensional (square) array of split-ring resonators (SRRs). In the absence of disorder, 
we find the dispersion relation of magneto-inductive waves and the mean square displacement (MSD) in 
closed form, showing that at long times the MSD is ballistic. When disorder is present, we consider two 
types: the usual Anderson distribution (uncorrelated monomers) and 2 × 2 units assigned at random to 
lattice sites (correlated tetramers). This is a direct extension to two dimensions of the one-dimensional 
random dimer model (RDM). For the uncorrelated case, we see saturation of the MSD for all disorder 
widths, while for the correlated case we find a disorder window, inside which the MSD does not saturate 
at long times, with an asymptotic sub-diffusive behavior M S D ∼ t0.26. Outside this disorder window, the 
MSD shows the same kind of saturation as in the monomer case. We conjecture that the sub-diffusive 
behavior is a remanent of a weak resonant transmission of a 2D plane wave across a tetramer unit.

 2021 Elsevier B.V. All rights reserved.

Introduction The current ability to tailor material properties at 
will has lead to a whole class of artificial materials, termed meta-
materials, characterized by unprecedented thermal, optical, and 
transport properties that make them attractive candidates for cur-
rent and future technologies. Among them, we have magnetic 
metamaterials (MMs) that consist of an array of metallic split-ring 
resonators (SRRs) coupled inductively [1–3]. This type of system 
can, for instance, feature negative magnetic response in some fre-
quency window, making them attractive for use as a constituent 
in negative refraction index materials [4–7]. The usual theoreti-
cal treatment of such structures is an effective medium approx-
imation where the composite is treated as a homogeneous and 
isotropic medium, characterized by effective macroscopic param-
eters. Of course, this approach is valid, as long as the wavelength 
of the external electromagnetic field is much larger than the linear 
dimensions of the MM constituents.

One of the simplest two-dimensional MM models consists of 
a periodic square array of split-ring resonators (SRRs) lying on a 
common plane, where each resonator consists of a small, conduct-
ing ring with a slit (Fig. 1). Each SRR unit in the array is equivalent 
to a resistor-inductor-capacitor (RLC) circuit featuring self- induc-
tance L, ohmic resistance R , and capacitance C built across the 
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slit [8,9]. If we assume a negligible resistance, each unit will pos-
sess a resonant frequency ω = 1/

√
LC . Under this condition and in 

the absence of driving, the evolution equations for the charge Q n

residing at the nth ring are given by

dQ n

dt
= In (1)

L
dIn

dt
+ Q n

C
= −M

∑

m

dIm

dt
(2)

where M is the mutual inductance and the sum is restricted to 
nearest-neighbors of n. These equations can be cast in dimension-
less form as

d2

dt2

(

qn + λ
∑

m

qm

)

+ ω2
nqn = 0 (3)

where qn denotes the dimensionless charge of the nth ring, n =
(nx, ny), λ is the coupling between neighboring rings that origi-
nates from the dipole-dipole interaction, and ω2

n is the (square of) 
resonant frequency of the nth ring, normalized to a characteristic 
frequency of the system, 〈ω2

n〉 = (1/N) 
∑

n ω2
n . These equations can 

also be derived from the Hamiltonian H = ∑
n Hn where Hn is the 

Hamiltonian density

Hn = 1
2

(

q̇2
n + λq̇n

∑

m

q̇m + ω2
nq2

n

)

, (4)
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Fig. 1. Two-dimensional split-ring resonator array.

where q̇n ≡ (d/dt)qn . We assume that the magnetic component 
of any incident external electromagnetic wave is perpendicular to 
the SRRs’ plane and that the electric field of the incoming wave 
is perpendicular to the electric field induced along the slits. This 
insures that only the magnetic component of the incoming wave 
creates an electromotive force on the rings, giving rise to an oscil-
lating current in each SRR and to an oscillating voltage difference 
across the slits. Also, it is a good idea to reduce electric dipole-
dipole effects coming from the strong electric fields at the slits 
by a judicious placing of the SRRs in the common plane to keep 
the slit-to-slit distance as large as possible (Fig. 1). However, large 
Ohmmic and radiative losses remain as the main drawback of the 
SRR array. A possible way to deal with this problem that has been 
considered is to endow the SRRs with external gains, such as tun-
nel (Esaki) diodes [10,11] to compensate for such losses.

The dimensionless stationary state equation is obtained from 
Eq. (3) after posing qn(t) = qn exp[i(#t + φ)]:

−#2

(

qn + λ
∑

m

qm

)

+ ω2
nqn = 0. (5)

The frequency ω2
n can be changed by varying the capacitance of 

the ring, which is accomplished by altering the slit width or by 
inserting a dielectric in the slit. For a homogeneous array, ω2

n = 1.
On the other hand, the effect of disorder on the stationary and 

transport properties of a discrete, periodic system, is an old topic, 
but its importance has not waned throughout the years due to its 
fundamental importance in several fields. The most relevant result 
in this area is Anderson localization which asserts that the pres-
ence of disorder tends to inhibit the propagation of excitations. In 
fact, for 1D systems, all the eigenstates are localized and transport 
is completely inhibited [12–14]. This was also proven to be true 
for two-dimensional systems, while in three-dimensions a mobility 
edge is formed. Now, Anderson localization is based on the notion 
that the disorder is “perfect” or uncorrelated. However, it has been 
noted that in one-dimensional lattices with a correlated disorder, 
a degree of transport is still possible. This happens, for instance, in 
the random dimer model (RDM) for the usual tight-binding model. 
It consists of a binary lattice for the site energies where site en-
ergy is assigned at random to pairs of lattice sites. This leads to a 
mean square displacement of an initially localized excitation that 
grows asymptotically as t3/2 at low disorder levels, instead of the 
saturation behavior predicted by Anderson’s theory [15–17].

An experimental demonstration of the RDM prediction has been 
made in an optical setting [18]. A straightforward extension of 
these ideas to random arrays of larger units (n-mers), has also 
been theoretically explored [19]. For a disordered, one-dimensional 
SRR array, it was found that an uncorrelated disorder always leads 
to localization of magnetic energy at any disorder strength, with a 
transmission that decreases exponentially with the size of the sys-
tem. For correlated disorder and small and medium disorder levels, 

Fig. 2. Random realization of an uncorrelated (left) and a correlated (right) distribu-
tion of random resonant frequencies.

however, it becomes possible for a fraction of states to have reso-
nant transmission, leading to a power-law decrease of the overall 
transmissivity with system size [20].

In this work, we examine the localization of the magnetic 
modes and the transport of magnetic excitations in a two-
dimensional disordered square array of split-ring resonators, where 
the resonant frequencies ω2

n in Eq. (5) are taken as random quan-
tities. We will consider two cases: A completely uncorrelated one 
where the ω2

n are assigned at random to individual units, or 
‘monomers’ and a correlated case, consisting of a straightforward 
2D generalization of the well-known random dimer model used in 
one-dimensional systems: Site frequencies ω2

n assigned at random 
to 4 nearby units, or ‘tetramers’ (Fig. 2) [21].

A usual indicator of localization is given by the participation 
ratio (PR), that measures the extent of the electric charge distribu-
tion stored in the capacitors (or magnetic energy density stored in 
the inductors):

P R =
(

∑

n

|qn(t)|2
)2

/
∑

n

|qn(t)|4 (6)

For a completely localized excitation, P R = 1, while for a complete 
delocalized state, P R = N .

To monitor the degree of mobility of a magnetic excitation we 
resort to the mean square displacement (MSD) of the charge, de-
fined as

〈n2〉 =
∑

n

n2|qn(t)|2/
∑

n

|qn(t)|2 (7)

Typically 〈n2〉 ∼ tα at large t , where α is known as the transport 
exponent. The types of motion are classified according to the value 
of α: ‘localized’ (α = 0), ‘sub-diffusive’ (0 < α < 1), ‘diffusive’ (α =
1), ‘super-diffusive’ (1 < α < 2) and ‘ballistic’ (α = 2).

Homogeneous case Before embarking into the effects of disorder 
on the system, let us begin by examining the phenomenology in 
the absence of disorder, ω2

n = 1, in order to have a proper compar-
ison context.

After posing qn ∼ exp(ik · n) and solving for #2, we obtain the 
dispersion relation in d-dimensions as

#2
k = 1

1 + λ
∑

m exp(ik · m)
(8)

where the sum is restricted to nearest neighbors.
The time evolution of a completely localized initial charge 

qn(0) = Aδn,0, and no currents, (dqn(0)/dt) = 0, is given by

qn(t) = (A/v)

∫

F B Z

ei(k·n−#kt)dk

2
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Fig. 3. Dispersion relation for homogeneous case: (a) λ = 0.05 (b) λ = 0.1, (c) λ =
0.2 (d) Bandwidth as a function of inductive coupling.

+ (A/v)

∫

F B Z

ei(k·n+#kt)dk (9)

where v is the volume of the first Brillouin zone (FBZ), and #2
k is 

given by Eq. (8). After replacing this form for qn(t) into Eq. (7), one 
obtains after some algebra, a closed form expression for 〈n2〉:

〈n2〉 = (1/v)
∫

F B Z (∇k#k)2(1 − cos(2 #k t))

1 + (1/v)
∫

F B Z cos(2 #k t)
t2. (10)

At long times 〈n2〉 approaches a ballistic behavior

〈n2〉 =



 1
v

∫

F B Z

(∇k#k)2dk



 t2 (t → ∞) (11)

while at short times,

〈n2〉 =



 1
v

∫

F B Z

#2
k(∇k#k)2dk



 t4 (t → 0). (12)

For a square lattice (d = 2),

#2
k = 1

1 + 2λ
[
cos(kx) + cos(ky)

] (13)

where, k = (kx, ky). We see that the system is capable of support-
ing magnetoinductive waves, if |λ| < 1/4. Fig. 3 shows the band 
#2

k , as well as the bandwidth, defined as |#2
0 − #2

±π |, is given by 
8λ/(1 − 16λ2). We see that at the edges of the Brillouin zone, the 
bandwidth diverges at |λ| = 1/4, but Figs. 3 (a), (b) and (c) show 
that the increase in bandwidth is mostly concentrated in the im-
mediate vicinity of (kx, ky) = (±π , ±π).

Disorder We introduce now disorder into our system by consid-
ering the case when the resonant frequencies ω2

n are taken as 
random. This can be done in practice by altering the spacing be-
tween the slits, or by inserting different dielectrics in the slits. For 
the numerical computations of quantities of interest, we use a self-
expanding square lattice with open boundary conditions. That is, 

Fig. 4. Average density of states for the uncorrelated (top) and correlated (bottom) 
cases for several impurity width values ω (N = 30 × 30, number of realizations=
50).

at the beginning of the computation the lattice is relatively small 
and grows in size as time evolves, to contain the expanding wave-
front. For the evolution times used here, t ∼ 1000, a typical final 
lattice dimension is about 64 ×64, with open boundary conditions. 
The open geometry is more desirable when one looks to potential 
applications to magnetic card devices.

Let us get back to the stationary equation (5) which can be 
rewritten as

−
(

1
#2

)
qn +

(
1

ω2
n

)
qn + λ

(
1

ω2
n

)∑

m

qm = 0 (14)

We see right away that the equation corresponds to an Anderson 
tight-binding model, with a site energy term equal to 1/ω2

n , and 
a site-dependent coupling λ/ω2

n . That is, the “diagonal” term and 
the “off-diagonal” term are completely correlated, and their values 
appear “inverted” when compared to a usual tight-binding model. 
This implies that the high disorder limit corresponds to small ω2

n , 
while large ω2

n values leads to the small disorder limit.
We will explore two kinds of disorder: an uncorrelated one, 

where the site frequencies ω2
n are assigned at random from a con-

tinuous distribution [1, ω2] for a 50 − 50 impurity fraction. Clearly, 
for ω2 = 1, we recover the homogeneous case. The second kind of 
disorder we will explore is a correlated one, consisting of a gener-
alization to two dimensions of the one-dimensional Random Dimer 
Model (RDM) of Kundu and Philips [16]. While in the RDM one as-
signs random site frequencies at pairs (dimers) of lattice sites, in 
our case we will assign (random) site energies to 4 nearby sites 
or ‘tetramers’ of lattice sites. Fig. 2 shows an example of a disorder 
realization for the uncorrelated and correlated cases. We notice the 
presence of 4-sites clusters that constitute the new, bigger ‘point 
impurities’.

3
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Fig. 5. Comparison of the average participation ratio for the uncorrelated (left col-
umn) and the correlated case (right column) (N = 22× 22, number of realizations 
= 30.)

Fig. 4 shows the average density of states (DOS)

D(#2) =
〈

(1/N2)
∑

m

δ(#2 − #2
m)

〉

(15)

where N2 is the number of sites, the sum is over all modes, and 
the average is over all random realizations. The shape of the curve 
for the ordered case (ω2 = 1) seems to hint at the existence of van 
Hove-like singularities, which are rounded-off here due to finite-
size effects. In both cases, uncorrelated and correlated disorder, the 
density of states shows a maximum whose position increases from 
a small frequency to larger frequencies, as the disorder w is in-
creased. The position of the DOS maxima seems to converge to a 
fixed frequency value, close to unity. On the other hand, in the 
limit ω → 0, the DOS converges to a Dirac delta function. This can 
be proven from Eq. (5) where, for ω2

n → 0, the eigenvalue equa-
tions reduce to

−#2

(

qn + λ
∑

m

qm

)

= 0, (16)

which implies # = 0 and D(#2) = δ(#2).
The width of the DOS increases with an increase in disorder, as 

expected. In general, there is no appreciable difference in the DOS 
between the disordered monomer and tetramer cases.

For a square lattice of N × N sites, the participation ratio of 
mode α is

P Rα =




∑

nx,ny

|qα
nx,ny

|2



2

/
∑

nx,ny

|qα
nx,ny

|4. (17)

For a homogeneous square lattice, we have qk
n ∼ sin(kxnx) sin(kyny), 

and P R(α) = (4/9)N × N in the limit of a large number of sites. 
Fig. 5 shows the average participation ratio 〈〈P R〉〉 averaged over 
all mode frequencies and over all disorder realizations, as a func-
tion of disorder width, for the uncorrelated and correlated cases. 
The overall shape of the 〈〈P R〉〉 looks quite similar in both cases, 
with an 〈〈P R〉〉 that decreases steadily towards both sides around 
ω = 1, the homogeneous case. This is to be expected since, as we 
commented before, a deviation from ω = 1 to smaller ω values 
leads to an effective increase in disorder, while something similar 
happens at values of ω greater than unity, although in this case 
the disorder is less drastic than for the other case. Now, we see 
that the amplitudes of the curves are different for both cases, with 
the correlated case showing higher 〈〈P R〉〉 values for all the fre-
quency range. This implies a smaller wave localization, on average 
than for the uncorrelated case.

Fig. 6. Comparison of the average MSD for the correlated (left column) and the 
uncorrelated (right column) disorder cases, for several disorder width values. The 
black curve denotes the average value. (a) and (b): ωn ∈ [0.1, 1]. (c) and (d): ωn ∈
[1, 4] (N = 64 × 64, number of realizations= 20.)

Fig. 7. Asymptotic fit M S D ∼ Atb of the average MSD for the correlated (top) and 
uncorrelated (bottom) cases.

Disordered transport Let us now compute the spreading of an ini-
tially localized magnetic excitation and observe its time evolution. 
For our SRR array, we will focus on the mean square displacement 
(MSD) of the magnetic energy density

〈n2〉 =
∑

n

n2|Hn(t)|2/
∑

n

|Hn(t)|2 (18)

where Hn is given by Eq. (4). We computed and compared the 
MSD for the uncorrelated and correlated cases. Results are shown 
in Fig. 6. We note the presence of strong fluctuations, where the 
MSD changes considerably from realization to realization. For the 
uncorrelated case, the MSD seems to saturate at long times for 
all disorder widths. A comparison of the MSD for different dis-
order widths reveals that the saturation value MSD is greater for 
the w > 1 case than for the case with w < 1. This can be under-
stood from Eq. (14) where we see that values of ω2

n > 1 results 
in effective low disorder, while values of ω2

n < 1 are equivalent to 
high disorder. For the tetramers case, we see evidence of a de-
parture from saturation for ω < 1, with a sub-diffusive transport 
M S D ∼ t0.26 (Fig. 7). For ω > 1, the MSD is greater than its uncor-
related counterpart and also seems to saturate at long times.

4
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Now, what is the origin of the propagating regime we see for 
the correlated case? Here, it might be useful to remember that 
for the one-dimensional traditional Anderson random dimer model 
(not SRR), there is a nontrivial difference between the uncorrelated 
and correlated case: The existence of resonant trajectories where a 
plane wave can propagate across the whole lattice without scatter-
ing. This happens for energies close enough to the resonant energy 
where a wave goes through a dimer with unity transmission. This 
gives rise to 

√
N of transmitting states [15–17] and to a MSD that 

behaves as t3/2 at long times. This effect was also observed nu-
merically in a one-dimensional disordered SRR array [22]. For our 
2D case, we could assume for simplicity that a 2D plane wave can 
be factored as 2 independent waves that propagate along the hor-
izontal and vertical axes. When this wave encounters a tetramer, 
it could pass unreflected if a resonance condition is obeyed, which 
involves the contrast between the background frequency (ω2 = 1) 
and the frequency of the tetramer. Since the frequency of the 
tetramers is extracted from a continuous distribution rather than 
a binary one, the effect will be small since after traversing a 
tetramer, the wave might not encounter a favorable transmitting 
condition until farther out. Anyway, this small resonance effect de-
creases the effective disorder of the system, leading to a number 
of states with larger localization lengths. This explains the higher 
〈〈P R〉〉 found for the correlated system (Fig. 5).

Conclusions We have compared the effect of two types of disorder 
on the eigenmodes and the transport of excitations, of a simplified 
model of a magnetic metamaterial consisting of a square array of 
split-ring resonators. The disorder consisted of random values of 
the resonant frequencies of the rings, taken from a continuous dis-
tribution, that are assigned to array sites completely at random 
(uncorrelated case), or by assigning ‘tetramers’ at random to the 
array sites (correlated case). The last case corresponds to a gener-
alization of the random ‘dimer’ model for one-dimensional systems 
of Dunlap and Wu [16]. Our system can be mapped to a tight 
binding system with site energies and couplings that are nearly 
identical and with effective disorder strength values that are ‘in-
verted’, Eq. (14). Thus, small (large) values of ω2

n lead to effective 
large (small) disorder. The computation of the mean square dis-
placement (MSD) shows that, in general, there is saturation at large 
times in both cases, but for the correlated case there appears to 
be a disorder window inside which the MSD increases in time in 
a sub-diffusive manner. We explained this feature as a possible 
remnant effect of plane wave resonance across a single tetramer. 
This conjecture also explains the features of the participation ra-
tio (PR) where for the correlated case we observe the existence of 
modes whose localization length is greater than for the uncorre-
lated case. These results could be of use for the future design of 
efficient magnetic energy confinement devices, and the harvesting 
and transport of magnetic energy.
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