Discrete Photonics in Waveguide Arrays

Mario I. Molina

Departamento de Física, MSI-Nucleus on Advanced Optics, and Center for Optics and Photonics (CEFOP), Facultad de Ciencias, Universidad de Chile, Santiago, Chile

http://fisica.ciencias.uchile.cl/nonopt/NLOG.html http://www.cefop.cl//

Why study physics of discrete systems?

Testbed to test general phenomenology Richer physics than continuous counterpart Greater potential for applications

Waveguides in fused silica

A. Szameit et al, Opt. Express 13,10552 (2005).

9-ring structure

3-ring structures (densification, refractive index increase)

Waveguides in fused silica

Waveguides in fused silica

AS et al., Opt. Lett. **33**, 663 (2008). AS et al., Appl. Phys. B **82**, 507 (2006).

Semiconductor Waveguides

P. Millar, J.S. Aitchson, J.U. Kang, G.I. Stegeman, J. Opt. Soc. Am. B 14, 3224 (1997).

Substrate: Ga As Cladding: Al_{0.24}Ga_{0.76}As Waveguide layer:Al_{0.18}Ga_{0.82}As

Photorefractive Waveguides

Light \rightarrow releases electrons \rightarrow drift \rightarrow local E fields \rightarrow electrooptic effect \rightarrow distribution of refractive indices

Maxwell:

Teoría de modos acoplados

Discrete nonlinear Schrodinger (DNLS) equation

$$P = \sum_{n} |C_n|^2$$

$$H = \sum_{n} \{V(C_n C_{n+1}^* + C_n^* C_{n+1}) + (\gamma/2)|C_n|^4\}$$
 Conserved quantities

$$q_n=C_n; \qquad p_n=i \; C_n^*$$
 Hamiltonian $(d/dt)q_n=\partial H/\partial p_n \qquad (d/dt)p_n=-\partial H/\partial q_n$ system

$$C_n = u_n \exp(i\beta z)$$
 Stationary mode

$$-\beta u_n + (u_{n+1} + u_{n-1}) + \chi |u_n|^2 u_n = 0$$

Nonlinear eigenvalue equation

Finding the localized nonlinear mode

$$-EC_n + V(C_{n+1} + C_{n-1}) + \chi |C_n|^2 C_n = 0$$
$$\lambda \equiv E/V, \quad \phi_n \equiv \sqrt{\chi/V} C_n$$
$$-\lambda \phi_n + (\phi_{n+1} + \phi_{n-1}) + |\phi_n|^2 \phi_n = 0$$
$$\vec{F}(\vec{\phi}) = 0 \text{ use Newton-Raphson}$$

Need good seed (anticontinuous limit) Find many solution families (characterized by power vs prop.const. curve

Example: Graphene ribbon

Linear stability

$$C_{n}(z) = \phi_{n} e^{-i\lambda z} \quad \text{sol. of DNLS}$$

$$C_{n}(z) \rightarrow (\phi_{n} + \delta\phi_{n}) e^{-i\lambda z}, \quad |\delta\phi_{n}/\phi_{n}| \ll 1$$

$$\implies \text{Equation for } \delta\phi_{n} = \delta u_{n} + i\delta v_{n}$$
define $\delta \vec{u} = (\delta u_{1}, \delta u_{2}, ..., \delta u_{N}), \quad \delta \vec{v} = (\delta v_{1}., \delta v_{2}, ..., \delta v_{N})$

$$\mathcal{A}_{nm} = \delta_{n,m+1} + \delta_{n,m-1} + (\lambda + \phi_{n}^{2})\delta_{n,m}$$

$$\mathcal{B}_{nm} = \delta_{n,m+1} + \delta_{n,m-1} + (\lambda + 3\phi_{n}^{2})\delta_{n,m}$$

$$\boxed{\delta \vec{U} + \mathcal{B}\mathcal{A} \ \delta \vec{U} = 0 \text{ and } \delta \vec{V} + \mathcal{A}\mathcal{B} \ \delta \vec{V} = 0}$$

$\{m\}$ =eigenvalues of \mathcal{AB} = eigenvalues of \mathcal{BA}

instability gain

$$G^* = \operatorname{Max}\left\{ \sqrt{(1/2)(-\operatorname{Re}[m] + \sqrt{\operatorname{Re}[m]^2 + \operatorname{Im}[m]^2)}} \right\}$$
$$G^* = 0 \quad \text{stable}$$
$$G^* > 0 \quad \text{unstable}$$

Numerical propagation

Discrete soliton formation

First experimental observation of discrete soliton

Difraccion discreta

Soliton discreto

H. Eisenberg at al, PRL 81, 3383 (1998).