AYUDANTÍA 3 – ANÁLISIS 2 POSTGRADO

DAVID IGNACIO URRUTIA VERGARA

Como es habitual, la sigla **e.n.v** corresponde a la de Espacio Vectorial Normado. Por otro lado, el espacio E^* corresponde al Dual topológico de E mientras que E^* es el Dual algebraico.

Ejercicio 1

Sea $(E, ||\cdot||)$ un \mathbb{R} -e.v.n y F un subespacio vectorial de E. Muestre que si $f \in E^*$, entonces, existe $g \in F^*$ tal que $f|_F = g$. Concluya que

$$E^* = \{ f : E \to \mathbb{R} : f \text{ es lineal y existe } q \in F^* \text{ con } f|_F = q \}.$$

Demostración. En efecto, si $f \in E^*$, entonces, $f : E \to \mathbb{R}$ es un funcional lineal continuo en E, en particular, f es continuo en F, lo cual implica que al definir $g : F \to \mathbb{R}$ por g(x) := f(x), se tiene que g es continua en F y es lineal, es decir, $g \in F^*$. Además, la definición de g implica inmediatamente que $f|_F = g$ y por ende, se tiene la existencia de $g \in F^*$ con $f|_F = g$.

Para probar que

$$E^* = \{ f : E \to \mathbb{R} : f \text{ es lineal y existe } g \in F^* \text{ con } f|_F = g \},$$

gracias al párrafo anterior, tenemos la contención:

$$E^* \subseteq \{f : E \to \mathbb{R} : f \text{ es lineal y existe } g \in F^* \text{ con } f|_F = g\}.$$

Para demostrar la segunda contención, si $f: E \to \mathbb{R}$ es lineal con $f|_F = g$ para algún $g \in F^*$, se tiene en particular, que g es continua en 0 y por tanto, f es continua en cero, lo cual implica que f es continua en el espacio completo E y por tanto, $f \in E^*$.

Ejercicio 2

Sea $D \subseteq E^*$ un subconjunto denso de E^* . Suponga que si $\xi \in E$ es tal que $f(\xi) = 0$ para todo $f \in D$, entonces, $\xi = 0$.

Demostración. Supongamos que $\xi \neq 0$. Por un lado, recordemos que una consecuencia del Teorema de Hanh-Banach analítico establece la existencia de un funcional lineal continuo $f: E \to \mathbb{R}$ tal que $f(\xi) = ||\xi||^2$ y $||f||_{E^*} = ||\xi||$. Por otro lado, como D es denso en E^* , existe una sucesión $\{f_n\}_{n\in\mathbb{N}} \subseteq D$ tal que $f_n \to f$ en E^* . Eso implica que para todo $\varepsilon > 0$ existe $N \in \mathbb{N}$ tal que

$$||f_n - f||_{E^*} < \frac{\varepsilon}{||\xi||}$$
 para cualquier $n \ge N$

lo cual implica que para todo $n \geq N$ se tiene que

$$\frac{||f_n(\xi) - f(\xi)||}{||\xi||} \le \sup_{x \ne 0} \frac{||f_n(\xi) - f(\xi)||}{||\xi||} = ||f_n - f||_{E^*} < \frac{\varepsilon}{||\xi||},$$

es decir, para cada $\varepsilon > 0$ existe $N \in \mathbb{N}$ tal que

$$||f_n(\xi) - f(\xi)|| \le \varepsilon$$
 para todo $n \ge N$,

lo cual se traduce en que $\lim_{n\to+\infty} f_n(\xi) = f(\xi)$, sin embargo, se obtiene que

$$0 = \lim_{n \to +\infty} f_n(\xi) = f(\xi) = ||\xi||^2,$$

lo cual implica que $\xi = 0$, lo cual es una contradicción con $\xi \neq 0$.

Ejercicio 3

Sean p,q>1 tales que $\frac{1}{p}+\frac{1}{q}=1$. Consideremos un espacio de medida (C,Σ,μ) y $E=L^p(C,\mu)$, el cual es un espacio de Banach con la norma

$$||f||_p = \left(\int_C |f|^p\right)^{\frac{1}{p}}.$$

Sea $g \in L^q(C,\mu)$ no nulo y consideremos $T: E \to \mathbb{R}$ definido por

$$T(f) := \int_C f(x)g(x) \, d\mu(x).$$

Demuestre que $T \in E^*$ y calcule $||T||_{E^*}$.

Demostraci'on. La linealidad de T se obtiene por la distributividad del producto en \mathbb{R} y por la linealidad de la integral.

Por otro lado, para demostrar que $T \in E^*$, notemos que la desigualdad de Hölder establece que

$$|T(f)| = \left| \int_C fg \right| \le \int_C |fg| \le ||f||_p ||g||_q,$$

y usando $M = ||g||_q > 0$, se obtiene que T es un funcional lineal acotado, es decir, $T \in E^*$.

Si $f \in E$ es tal que $||f||_p = 1$, la misma desigualdad de arriba nos ayuda a deducir que $|T(f)| \le ||g||_q$, lo cual implica lo siguiente

$$||T||_{E^*} = \sup\{|T(f)| \colon ||f||_p = 1\} \le ||g||_q.$$

Ahora, consideremos $f: C \to \mathbb{R}$ definida por

$$f(x) = \left[\frac{|g(x)|}{||g||_q}\right]^{\frac{q}{p}} \quad \text{para cualquier } x \in C.$$

Notemos por un lado, que

$$||f||_p^p = \int_C |f|^p = \int_C \frac{|g|^q}{||g||^q} = \frac{||g||_q^q}{||g||_q^q} = 1,$$

y por tanto, $||f||_p = 1$.

Por otro lado, notemos que $\frac{1}{p} + \frac{1}{q} = 1$ implica $\frac{q}{p} = q - 1$ y por ende

$$|T(f)| = \int_C \frac{|g|^{\frac{q}{p}+1}}{||g||_q^{\frac{q}{p}}} = \frac{1}{||g||_q^{q-1}} \int_C |g|^q = \frac{||g||_q^q}{||g||_q^{q-1}} = ||g||_q,$$

lo cual demuestra que existe $f \in E$ con $||f||_p = 1$ y

$$||g||_q = |T(f)| \le ||T||_{E^*},$$

lo cual demuestra que $||g||_q = ||T||_{E^*}$ lo cual obtiene lo que se quería.

Ejercicio 4

Se dice que el \mathbb{R} -e.v.n $(H, ||\cdot||_H)$ es ESTRICTAMENTE CONVEXO si para todo $u, v \in H$ con $u \neq v$ y $||u||_H = ||v||_H = 1$ satisface

$$||tu + (1-t)v||_H < 1$$
 para todo $t \in]0,1[$.

Suponga que el \mathbb{R} -e.n.v $(E, ||\cdot||)$ es tal que $(E^*, ||\cdot||_{E^*})$ es estrictamente convexo. Sea F subespacio de E y $g \in M^*$. Recordemos que una consecuencia del Teorema de Hahn-Banach es la existencia de $f \in E^*$ con $f|_{M} = g$ y $||f||_{E^*} = ||g||_{M^*}$. Demuestre que tal extensión es única.

Proof. Sean f_1 y f_2 dos elementos de E^* tales que

$$f_1(w) = f_2(w) = g(w)$$
 para todo $w \in F$ y $||f_1||_{E^*} = ||g||_{F^*} = ||f_2||_{E^*}$.

Por un lado, si $f_1 = 0$, se tiene que

$$0 = ||f_1||_{E^*} = ||g||_{F^*} = ||f_2||_{E^*}$$

y por ende, $f_1 = 0 = f_2$.

Sin embargo, si $f_1 \neq 0$ y $f_1 \neq f_2$, usando el mismo argumento se obtiene que $f_2 \neq 0$, de modo que

$$u = \frac{f_1}{||f_1||_{E^*}}$$
 y $v = \frac{f_2}{||f_2||_{E^*}}$

safistacen $||u||_{E^{\star}} = ||v||_{E^{\star}} = 1$. Además, como E^{\star} es estrictamente convexo, se verifica que

$$||tu + (1-t)v||_{E^*} < 1,$$

lo cual implica que

$$||tf_1 + (1-t)f_2||_{E^*} < ||g||.$$

Además, para todo $t \in]0,1[$ y todo $w \in F$, el elemento, $tf_1 + (1-t)f_2 \in E^*$ satisface

$$tf_1(w) + (1-t)f_2(w) = tg(w) + (1-t)g(w) = g(w),$$

lo cual implica que $tf_1 + (1-t)f_2$ es otra extensión de E^* .

Entonces, dado que se tiene $F \leq E$, se verifica que

$$||g||_{F^*} = \sup \left\{ \frac{|g(w)|}{||w||} : w \in W \setminus \{0\} \right\} \le ||tf_1 + (1-t)f_2||_{E^*},$$

es decir,

$$||g||_{F^*} \le ||tf_1 + (1-t)f_2||_{E^*} < ||g||_{F^*},$$

lo cual es una clara contradicción. De este modo, se tiene que $f_1 = f_2$ y la extensión de g es única.

Ejercicio 5

Sea $(E, ||\cdot||)$ un \mathbb{R} -e.v.n. Suponga que F es un \mathbb{R} -subespacio vectorial de E. Demuestre que la clausura \overline{F} de F también es un \mathbb{R} -subespacio vectorial de E.

Demostración. Notemos que como $0 \in F \subseteq \overline{F}$, tenemos que $0 \in \overline{F}$.

Ahora, consideremos $x, y \in \overline{F}$ y $\lambda \in \mathbb{R}$. Entonces, existen sucesiones $\{x_n\}_{n \in \mathbb{N}}$ e $\{y_n\}_{n \in \mathbb{N}}$ tales que $x_n \to x$ e $y_n \to y$. Luego, para cada $n \in \mathbb{N}$, se tiene que $x_n + \lambda y_n \in F$ y además,

$$\lim_{n \to +\infty} [x_n + \lambda y_n] = \lim_{n \to +\infty} x_n + \lambda \lim_{n \to +\infty} y_n = x + \lambda y.$$

Entonces, si $w_n := x_n + \lambda y_n$, se verifica la existencia de una sucesión $\{w_n\}_{n \in \mathbb{N}}$ tal que $w_n \in F$ y $w_n \to x + \lambda y$ y por ende, $x + \lambda y \in \overline{F}$ y este último es un \mathbb{R} -subespacio vectorial de E.

Ejercicio 6

Sea $(E, ||\cdot||)$ un \mathbb{R} - e.n.v y sea F un \mathbb{R} -subespacio vecotial de E. Demuestre que son equiventes:

- (A) F es denso en E.
- (B) El único funcional $f \in E^*$ con f(x) = 0 para todo $x \in F$ es el nulo.

Demostración. Demostremos (A) \Longrightarrow (B).

Sea $h \in E^*$ con h(w) = 0 para todo $w \in F$ y consideremos $x \in E$. Dado que F es denso en E, existe una sucesión $\{x_n\}_{n\in\mathbb{N}}\subseteq F$ tal que $x_n\to x$ y por ende,

$$h(x) = \lim_{n \to +\infty} h(x_n) = \lim_{n \to +\infty} 0 = 0$$

y por ende, h=0 en E^* lo cual implica que el único funcional $h\in E^*$ que se anula en F es el nulo, es decir, suponiendo (A), hemos demostrado (B).

Ahora, demostraremos la implicancia (B) \Longrightarrow (A). Primero, es importante señalar que el ejercicio anterior nos dice que \overline{F} es un subespacio vectorial de E. Entonces, si \overline{F} no fuese todo E, existe $x \in E$ con $x \notin \overline{F}$.

Si definimos $d:=\inf_{w\in\overline{F}}||x-w||$ y suponemos que d=0, entonces, para todo $\varepsilon>0$ existe $w_{\varepsilon}\in\overline{F}$ tal que

 $||x-w_\varepsilon||<\varepsilon$ lo cual equivale a que $x\in\overline{F}$ lo cual no es cierto.

Luego, d > 0 y existe $f \in E^*$ con

- a) $||f||_{E^*} = 1$,
- b) f(x) = d,
- c) f(x) = 0 para todo $x \in F$

pero (B) implicaría inmediatamente que f tiene que ser la función nula, es decir, $0 = ||f||_{E^*} = 1$ lo cual es una contradicción. Entonces, $\overline{F} = E$ y F es denso en E lo cual demuestra (A) y damos por terminada la demostración.

Ejercicio 7

Recordemos que dado un \mathbb{R} -e.v.n $(E, ||\cdot||)$, una base de Schauder de E es un conjunto numerable $\{\xi_n\}_{n\in\mathbb{N}}$ tal que cada vector $x\in E$ se puede asociar de forma única a una sucesión de números reales $\{\alpha_n\}_{n\in\mathbb{N}}$ por medio del límite

$$x = \lim_{k \to +\infty} \sum_{n=1}^{k} \alpha_n \xi_n = \sum_{n=1}^{+\infty} \alpha_n \xi_n.$$

Demuestre que si E posee una base de Schauder, E es separable.

Demostración. Sea $x \in E$, como E tiene una base de Schauder, digamos, $\{x_n\}_{n\in\mathbb{N}}$, existe una única sucesión $\{\alpha_n\}_{n\in\mathbb{N}}$ de números reales tal que

$$\lim_{n \to +\infty} \sum_{k=1}^{n} \alpha_k x_k = x.$$

Es decir, para todo $\varepsilon > 0$ existe $N \in \mathbb{N}$ tal que

$$\left| \left| x - \sum_{k=1}^{n} \alpha_k x_k \right| \right| < \frac{\varepsilon}{2} \quad \text{para todo } n \ge N.$$

Además, como $\{x_n\}_{n\in\mathbb{N}}$ es una base de Schauder, la unicidad de las familias $\{\alpha_n\}_{n\in\mathbb{N}}$ para cada $x\in E$ establece que el conjunto $\{x_n\}_{n\in\mathbb{N}}$ DEBE ser linealmente independiente, lo cual implicaría inmediatamente que $x_n\neq 0$ para todo $n\in\mathbb{N}$. Entonces, la densidad de \mathbb{Q} en \mathbb{R} , establece la existencia de $q_n\in\mathbb{Q}$ tal que $|\alpha_n-q_n|<\frac{1}{2||x_n||}\frac{\varepsilon}{2^n}$. De este modo

$$\left\| x - \sum_{k=1}^{n} q_k x_k \right\| \leq \left\| x - \sum_{k=1}^{n} \alpha_k x_k \right\| + \left\| \sum_{k=1}^{n} \alpha_k x_k - \sum_{k=1}^{n} q_k x_k \right\|$$

$$< \frac{\varepsilon}{2} + \sum_{k=1}^{n} \left\| (\alpha_k - q_k) x_k \right\| = \frac{\varepsilon}{2} + \sum_{k=1}^{n} \left| \alpha_k - q_k \right| \left\| x_k \right\|$$

$$< \frac{\varepsilon}{2} + \sum_{k=1}^{n} \frac{1}{2||x_n||} \frac{\varepsilon}{2^n} \left\| x_k \right\| = \varepsilon,$$

De este modo, si escojemos la familia

$$D := \left\{ \sum_{k=1}^{n} q_k x_k \colon q_k \in \mathbb{Q} \text{ para todo } k \in \{1, \dots, n\} \right\},\,$$

se tiene que D es denso en E por lo realizado en la estimación de arriba y es numerable, lo cual implica que E es separable.

Ejercicio 8

Sea $(E, ||\cdot||)$ un \mathbb{R} —e.v.n y $F \subseteq E$. Demuestre que F es separable si y sólo si $\langle F \rangle$ es separable.

Demostraci'on. Supongamos que F es separable, es decir, existe D numerable y denso en F. Al escoger el conjunto

$$S := \left\{ \sum_{\ell=1}^{m} q_i x_i \colon m \in \mathbb{N}, \{q_i\}_{i=1}^{m} \subseteq \mathbb{Q} \quad \mathbf{y} \quad \{x_i\}_{i=1}^{m} \subseteq D \right\},$$

tenemos que S es numerable. Faltaría demostrar que S es denso en $\langle F \rangle$, para ello, consideremos $v \in \langle F \rangle$. Entonces, existe $n \in \mathbb{N}$, $\{\alpha_i\}_{i=1}^k \subseteq \mathbb{R}$ y $\{v_i\}_{i=1}^k \subseteq F$ tales que

$$v = \alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_n v_k.$$

Como D es denso en F y \mathbb{Q} es denso en \mathbb{R} , existen sucesiones $\{x_n(i)\}_{n\in\mathbb{N}}\subseteq D$ y $\{q_n(i)\}_{n\in\mathbb{N}}\subseteq \mathbb{Q}$ tales que

$$\lim_{n \to +\infty} x_n(i) = v_i \quad \text{y} \quad \lim_{n \to +\infty} q_n(i) = \alpha_i \quad \text{para todo } i \in \{1, \dots, n\},$$

de modo que, la sucesión $\{w_n\}_{n\in\mathbb{N}}$ definida por

$$w_n = \sum_{i=1}^k q_n(i)x_n(i)$$
 para todo $n \in \mathbb{N}$

verifica $w_n \in S$ para todo $n \in \mathbb{N}$ y además,

$$\lim_{n \to +\infty} w_n = \lim_{n \to +\infty} \sum_{i=1}^k q_n(i) x_n(i) = \sum_{i=1}^k \lim_{n \to +\infty} q_n(i) x_n(i) = \sum_{i=1}^k \alpha_i v_i = v,$$

es decir, $w_n \to v$ y tenemos que S es denso en $\langle F \rangle$ lo cual muestra la separabilidad de $\langle F \rangle$.

Por otro lado, si suponemos que $\langle F \rangle$ es separable, podemos hallar un denso numerable $D = \{x_n\}_{n \in \mathbb{N}}$ en $\langle F \rangle$. Entonces para todo $m \in \mathbb{N}$ y para cada $x \in \langle F \rangle$ existe $n \in \mathbb{N}$ tal que $||x - x_n|| < \frac{1}{m}$ (recordando que $x_n \in D$). Es decir, $\langle F \rangle \subseteq \bigcup_{n \in \mathbb{N}} B\left(x_n, \frac{1}{m}\right)$. Luego, $F \subseteq \bigcup_{n \in \mathbb{N}} B(x_n, \frac{1}{m})$.

Entonces, sea

$$\mathbb{N}_F := \bigcup_{m \in \mathbb{N}} \left\{ n \in \mathbb{N} \colon F \cap B\left(x_n, \frac{1}{m}\right) \neq \varnothing \right\}$$

y escojamos $y_n \in F \cap B(x_n, \frac{1}{m})$ para todo $n \in \mathbb{N}_F$. Consideremos el conjunto

$$S = \{y_n \colon n \in \mathbb{N}_F\}.$$

Por construcción, S es un subconjunto numerable de F. Además, S es denso en F, pues, si $x \in F$ y $\varepsilon > 0$ entonces, existe $m_0 \in \mathbb{N}$ y $n \in \mathbb{N}$ con

$$\frac{2}{m_0} < \varepsilon \quad \text{y} \quad x \in F \subseteq \langle F \rangle \subseteq \bigcup_{n \in \mathbb{N}} B\left(x_n, \frac{1}{m_0}\right)$$

y por consiguiente, existe $n_0 \in \mathbb{N}$ con $x \in B(x_{n_0}, \frac{1}{m_0})$, lo cual implica que $n_0 \in \mathbb{N}_F$ y por ende, al considerar $y_{n_0} \in S$, se verifica

$$||x - y_{n_0}|| \le ||x - x_0|| + ||x_0 - y_0|| < \frac{1}{m_0} + \frac{1}{m_0} < \varepsilon,$$

lo cual demuestra la existencia de $y \in S$ con $||x - y|| < \varepsilon$. Como $\varepsilon > 0$ fue arbitrario, tenemos demostrada la densidad de S en F y por consiguiente, tenemos demostrada la separabilidad de F.

Observación: La propiedad de separabilidad que demostramos en el Ejercicio 8 también se puede extender a espacios métricos, en efecto, si d es una métrica sobre E, sólo nos basta con cambiar la notación ||u-v|| por d(u,v) para todo $u,v \in E$ y la demostración es idéntica.

Ejercicio 9

Si E^* es separable, entonces, demuestre que E lo es también.

Demostración. Supongamos que $D := \{f_n\}_{n \in \mathbb{N}}$ es el denso numerable de E^* , es decir, $\overline{D} = E^*$. Recordemos que para cada $n \in \mathbb{N}$, se tiene que

$$||f_n||_{E^*} = \sup \{|f_n(\xi)| \colon ||\xi|| = 1\},$$

lo cual implica que para cada $\varepsilon > 0$ existe $\xi \in E$ con $||\xi||_E = 1$ y $||f_n||_{E^*} < |f_n(\xi)| + \varepsilon$. En particular, considerando $\varepsilon = \frac{||f_n||_{E^*}}{2}$, se tiene que existe $\xi_n \in E$ con $||\xi_n||_E = 1$ y

$$||f_n||_{E^*} < |f_n(\xi_n)| + \frac{||f_n||_{E^*}}{2}$$

luego, existe $\xi_n \in E$ con $||\xi_n|| = 1$ y

$$\frac{||f_n||_{E^\star}}{2} < |f_n(\xi)|,$$

de este modo, la familia $\Xi = \{\xi_n\}_{n \in \mathbb{N}}$ es un subespacio métrico separable (pues, como subespacio métrico, él es su propia clausura y es numerable), de este modo, el ejercicio previo establece que $D := \langle \{\xi_n\}_{n \in \mathbb{N}} \rangle$ es separable y por propiedades de los espacios métricos, se tiene que $F := \overline{D}$ también lo es.

Como ya sabemos que F es separable, sólo tendremos que probar que F = E y lo haremos por aplicar el ejercicio 6. Es decir, demostraremos que la única función $f \in E^*$ que se anula en F es la nula.

Sea $f \in E^*$ tal que f(u) = 0 para todo $u \in F$.

Consideremos una sucesión $\{f_{\ell_n}\}_{n\in\mathbb{N}}\in D$ convergente a f (la cual existe por ser D denso en E^*). Por un lado, se tiene que

$$\frac{||f_{\ell_n}||_{E^*}}{2} \le |f_{\ell_n}(\xi_{\ell_n})| = |f(\xi_{\ell_n}) - f_{\ell_n}(\xi_{\ell_n})| = |(f - f_{\ell_n})(\xi_{\ell_n})| \le \sup\{|(f - f_{\ell_n})(\xi)| : ||\xi|| = 1\} = ||f - f_{\ell_n}||_{E^*},$$

por ende, $||f_{\ell_n}||_{E^\star} \leq ||f - f_{\ell_n}||_{E^\star}$, lo cual implica que

$$0 \le ||f||_{E^{\star}} = ||f - f_{\ell_n} + f_{\ell_n}||_{\star} \le ||f - f_{\ell_n}||_{E^{\star}} + ||f_{\ell_n}||_{E^{\star}} \le 3||f - f_{\ell_n}||_{E^{\star}},$$

y por el Teorema de Sandwich, tenemos que

$$0 \leq ||f||_{E^{\star}} = \lim_{n \to +\infty} 3||f - f_{\ell_n}||_{E^{\star}} = 0$$

lo cual se concluye en que f=0. De este modo, como el único funcional que se anula en F es el funcional cero, se concluye (por el ejercicio 6) que F es denso en E, es decir,

$$E=\overline{F}=\overline{\overline{D}}=\overline{D}=F.$$