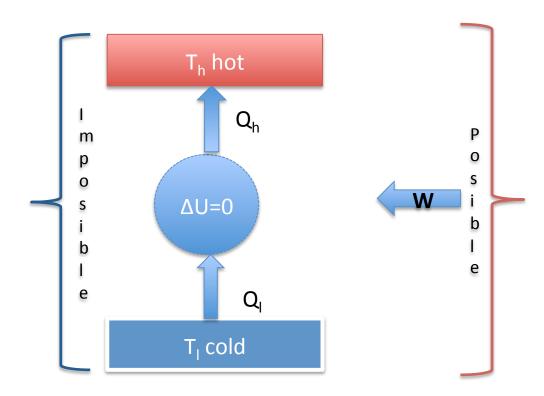
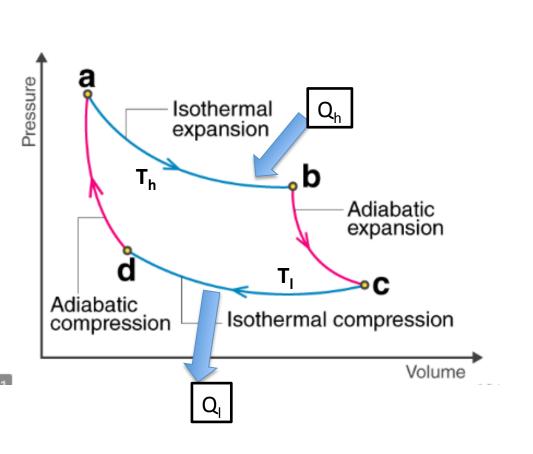

Segunda ley de la termodinámica

Carlos Cárdenas


Kelvin y Clausius

Kelvin: Es imposible, para un sistema que opere en un **ciclo**, tomar calor de un reservorio y convertirlo en trabajo a los alrededores sin el mismo tiempo transferir calor a un reservorio de menor temperatura

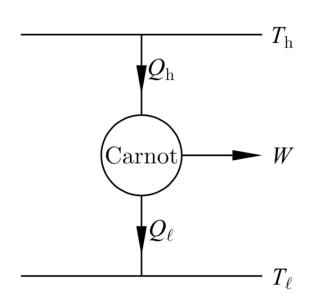


Kelvin y Clausius

Clausius: Es imposible, para un sistema que opere en un **ciclo**, tomar calor de un reservorio frio y transferirlo a uno caliente sin, al mismo tiempo, convertir algo de trabajo en calor.

Ciclo de Carnot en un gas ideal

• A->b
$$Q_h = RT_h \ln \left(\frac{V_B}{V_A} \right)$$


• B->c
$$\frac{T_h}{T_l} = \left(\frac{V_C}{V_B}\right)^{\gamma - 1}$$

• c>d
$$Q_l = -RT_l \ln \left(\frac{V_d}{V_c} \right)$$

• d->a
$$\frac{T_l}{T_h} = \left(\frac{V_a}{V_d}\right)^{\gamma - 1}$$

$$\frac{Q_h}{Q_l} = \frac{T_h}{T_l}$$

Eficiencia de la maquina de Carnot

$$\eta = \frac{W}{Q_h} < 1$$

$$\eta_{Carnot} = 1 - \frac{T_l}{T_h}$$

Teorema Carnot

Ninguna máquina trabajando entre dos temperaturas es más eficiente que una máquina de Carnot

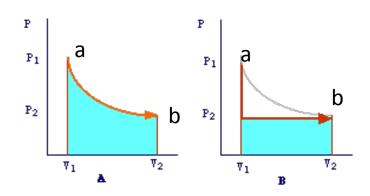
Colorario

Todas las máquinas reversibles tienen la misma eficiencia que una máquina de Carnot

Cambio de entropía

Recordemos

$$\frac{Q_h}{Q_l} = \frac{T_h}{T_l} \qquad \qquad \frac{Q_h}{T_h} - \frac{Q_l}{T_l} = 0$$


Ahora, como Q_h y Q_l son los calores reversible sobre un ciclo:

$$\oint \frac{dQ}{T} = 0 \qquad \qquad \frac{dQ}{T} \qquad \text{Es función de estado}$$

$$dS \equiv \frac{dQ}{T} \equiv cambio \ de \ entropía \ (S)$$

Desigualdad de Clausius

$$\oint \frac{dQ}{T} \le 0$$

Reversible

Irreversible

La igualdad es válida sólo para procesos reversibles

$$W_{rev} < W_{irrev}$$

pero ΔU es lamisma

$$Q_{irrev} + W_{irrev} = Q_{rev} + W_{rev} \rightarrow$$

$$Q_{rev} > Q_{irrev}$$

$$\oint \frac{dQ}{T} \le 0$$