1 Ayudantía 16/08

Ejercicio 1.1. Describir el cuerpo de cuatro elementos.

Desarrollo. Consideramos el polinomio $P(x) = x^2 + x + 1 \in \mathbb{F}_2[x]$. Como $P(0) \neq 0 \neq P(1)$, por teorema 1.1.13 de los apuntes obtenemos que $\mathbb{F}_4[x] := \mathbb{F}_2[x]/\langle P \rangle$ tiene de \mathbb{F}_2 -base al conjunto $\{1, \alpha\}$ con $\alpha = \overline{x}$, por lo tanto $\mathbb{F}_4 = \{0, 1, \alpha, \alpha + 1\}$. Para conocer su tabla aditiva basta recordar que tiene característica dos, y para conocer su tabla multiplicativa hay que recordar que $0 = P(\alpha) = \alpha^2 + \alpha + 1$.

Ejercicio 1.2. Encontrar un cuerpo de infinitos elementos de característica positiva.

Proof. Sea K un cuerpo de característica positiva, recordemos que conocemos cuerpos de característica p solo para cada p primo. Sabemos que K[x] tiene la misma característica, como es un dominio de integridad podemos considerar su cuerpo de fracciones K(x) que tendrá la misma característica. Luego, K(x) tiene infinitos elementos y es de la misma característica que K, más aún, K(x) tiene dimensión infinita sobre K.

Ejercicio 1.3. ¿Existe un homomorfismo de cuerpos entre dos cuerpos de distinta característica?

Proof. Sean K y F dos cuerpos de distinta característica. Inmediatamente se deduce que al menos uno de ellos tiene característica positiva. Luego, o bien existe $p \in \mathbb{N}$ primo que satisface (1), o bien existe $q \in \mathbb{N}$ primo que satisface (2).

$$0 = \underbrace{1_F + \dots + 1_F}_{p\text{-veces}} \qquad \land \qquad 0 \neq \underbrace{1_K + \dots + 1_K}_{p\text{-veces}}$$
 (1)

$$0 \neq \underbrace{1_F + \dots + 1_F}_{q\text{-veces}} \qquad \wedge \qquad 0 = \underbrace{1_K + \dots + 1_K}_{q\text{-veces}} \tag{2}$$

Si existiese un homomorfismo de cuerpos $\varphi: F \longrightarrow K$, primero recordemos que por ser homomorfismo de cuerpos es inyectiva y $\varphi(1_F) = 1_K$. Luego, o bien tendríamos (3), o bien (4).

$$0 = \varphi(0) = \varphi(\underbrace{1_F + \dots + 1_F}) = \underbrace{\varphi(1_F) + \dots + \varphi(1_F)}_{p\text{-veces}} = \underbrace{1_K + \dots + 1_K}_{p\text{-veces}} \neq 0$$
(3)

$$\varphi(0) \neq \varphi(\underbrace{1_F + \dots + 1_F}_{p\text{-veces}}) = \underbrace{\varphi(1_F) + \dots + \varphi(1_F)}_{p\text{-veces}} = \underbrace{1_K + \dots + 1_K}_{p\text{-veces}} = 0 = \varphi(0)$$
(4)

Dado que si o si se llega a una contradicción, concluimos que no existe homomorfismo de cuerpos entre cuerpos de distinta característica. \Box

Remark 1.1. Otra solución sería usar directamente la inyectividad. Si $\varphi : F \longrightarrow K$ es un homomorfismo de cuerpos entonces existe un subcuerpo L de K isomorfo a F. Luego, car(L) = car(F), y como L es subcuerpo de K entonces comparten el 1 y por lo tanto car(F) = car(K).

Ejercicio 1.4. Sean K y F cuerpos, sea $\varphi: K \longrightarrow F$ un homomorfismo de cuerpos. Demostrar que φ restringido al cuerpo generado por 1 es la identidad.

Proof. Por ser homomorfismo de cuerpos es inyectivo, por lo tanto podemos ver K como subcuerpo de F.

Ahora bien, denotamos por $L_0 := \mathbb{Q}$, $L_p := \mathbb{Z}/p\mathbb{Z}$ para todo $p \in \mathbb{N}$ primo y n := car(K). Así el subcuerpo generado por 1 es L_n . Como un homomorfismo de cuerpos preserva suma, multiplicación, el cero, el uno, inversos aditivos e inversos multiplicativos, concluimos que $\varphi(x) = x$ para todo $x \in L_n$.

Corollary 1.1. El único automorfismo de cuerpos de \mathbb{Q} y \mathbb{F}_p es la identidad, para todo p.