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1 Group actions
Classically, topological dynamics is understood as the study of group (and semigroup) actions on topo-
logical spaces. It is an important chapter of modern mathematics originating from physics and the
theory of differential equations, and its theoretical and practical outreach need not be outlined here.
The point of view we adopt is that of the abstract theory, as exposed in references as [1, 3, 4, 6].

Basic to topological dynamics in the classical sense is the idea of global symmetry. However, many
interesting systems only present local (or partial) forms of symmetry. Partial symmetry is treated using
concepts as groupoids, partial group actions or inverse semigroup actions.

As a general convention, all the topological spaces (including the groupoids) are Hausdorff. Local
compactness is required only when needed.

A topological group is a groupoid G with a topology such that the inversion a 7→ a−1 and multipli-
cation (a, b) 7→ ab are continuous. The unit is denoted by e .

1.1 The framework
Definition 1.1. A group action (or a dynamical system) (G, θ,Σ) consists in a topological group G , a
topological space Σ and the continuous action map

θ : G×Σ ∋ (a, σ) 7→ θa(σ) ≡ a•θσ ∈ Σ (1.1)

satisfying for a, b ∈ G and σ ∈ Σ:

1. e•θσ = σ, ∀σ ∈ Σ ,

2. (ab)•θσ = a•θ (b•θσ) .

If the action θ is understood, we will write a • σ instead of a •θ σ.

Exercise 1.2. • Show that each θa is a homeomorphism.

• Write down the axioms of a dynamical system using the notation θa or the notation θ(a, σ) .

• This was ”a left action”. Define ”right actions”. Try to pass from right actions to left actions.
Define ”bi-transformation groups” (the left and the right action should commute; this will look
as a sort of associativity).

Example 1.3. The restricted action to an invariant subset Σ0 ⊂ Σ .

Example 1.4. The topological groupoid G also acts on itself, with a • b := ab .

Example 1.5. How to spend half of your life studying dynamical systems without mentioning the word
”group”? Consider a homeomorphism T : Σ → Σ . When T 3 := T ◦ T ◦ T appears, you do not agree
to cal it θ3 and when T−1 appears you do not accept to call it θ−1 . However: a single homeomorphism
means a Z-dynamical system. Use words as ”cascade”, ”discrete time”, etc.

Example 1.6. Autonomous systems of differential equations

ẋ = F (x) , Rn ⊃ D
F−→ Rn

define flows (continuous time dynamical systems), for which G = R . Suitable conditions on (D,F )
should be imposed to guarantee that solutions exist, are unique, depend continuous on initial conditions
and remain in D .
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Example 1.7. Products of dynamical systems. Let
(
G1, θ1,Σ1

)
and

(
G2, θ2,Σ2

)
two group actions.

Then
(
G1 × G2, θ1 × θ2,Σ1 × Σ2

)
is a group action with(

θ1 × θ2
)
(a1,a2)

(σ1, σ2) :=
(
θ1,a1

(σ1), θ2,a2
(σ2)

)
.

Example 1.8. Diagonal products of dynamical systems. Let
(
G, θ1,Σ1

)
and

(
G, θ2,Σ2

)
two group

actions with the same group. Then
(
G, θ1 × θ2,Σ1 × Σ2

)
is a group action with(

θ1 × θ2
)
a
(σ1, σ2) :=

(
θ1,a(σ1), θ2,a(σ2)

)
.

Example 1.9. Quotient dynamical systems. An equivalence relation R ⊂ Σ×Σ is invariant under the
action θ of G if

a ∈ G , (σ, τ) ∈ R ⇒ (a • σ, a • τ) ∈ R .

Set p : Σ → Σ/R be the canonical map. One defines an action of the discrete group G on Σ/R by

θ̃a
(
p(σ)

)
≡ a•̃σ := p(a • σ) .

Under certain assumptions, it is also continuous for the initial topology on G ((1) R open, (2) Σ compact
and Hausdorff and R closed).

Remark 1.10. The group action is called effective if θa = θb ⇔ a = b . This means that θG →
Homeo(Σ) is injective. Factor out the kernel, to get an effective group action

(
G/ ker(θ), θ̂,Σ

)
.

For a ∈ G , A,B ⊂ G , M ⊂ Σ we use the notations

AB :=
{
ab

∣∣ a ∈ A , b ∈ B
}
, (1.2)

a •M :=
{
a • σ

∣∣σ ∈ M
}
,

A •M :=
{
a • σ

∣∣ a ∈ A , σ ∈ M
}
=

⋃
a∈A

a •M.

Remark 1.11. For topological group actions the product AM is open provided that only the subset M
is open. In addition, if A,B are subsets of the group, AB is open whenever at least one of the subsets is
so. If A ⊂ G and M ⊂ Σ are compact, a •M ⊂ Σ is compact.

Definition 1.12. • We are going to use orbits Oσ := G•σ and orbit closures (or quasi-orbits) Oσ .

• The orbit equivalence relation will be denoted by ∼ . So σ ∼ τ means that τ ∈ Oσ .

• A subset M ⊂ Σ is called invariant if a •M ⊂ M , for every a ∈ G .

• If N ⊂ Σ , its saturation
Sat(N) = G •N =

⋂
N⊂M

M invariant

M

is the smallest invariant subset of Σ containing N .

Exercise 1.13. • Show that ∼ is indeed an equivalence relation, so the orbits form a partition.

• The orbit closure do not form a partition. Very easily one may have Oσ ⊊ Oτ .

• The invariant subsets form a family stable under a lot of operations.
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• The isotropy group Gσ := {a ∈ G | a • σ = σ} is indeed a (closed) group. Find the connection
between Gσ and Gτ if σ ∼ τ .

Proposition 1.14. • The saturation of an open set is also open.

• The interior M◦, the closure M and the boundary ∂M of an invariant subset M of Σ are also
invariant.

Proof. If N is an open set, Sat(N) = G •N =
⋃

a∈G a •N is open.

One has (M◦)c = M c and ∂M = M \ M◦. Since the difference of two invariant sets is clearly
invariant, it is enough to show that M◦ is invariant. If σ ∈ M is an interior point, there exists some
open set U ⊂ M containing σ, so we have

a • σ ∈ G • U ⊂ G •M = M,

implying that a • σ is also an interior point of M , since G • U is open.

Definition 1.15. A morphism (or homomorphism, or equivariant map) of the group actions (G, θ,Σ) ,
(G, θ′,Σ′) is a continuous function f : Σ → Σ′ such that for all σ ∈ Σ , a ∈ G one has

f
(
θ(a, σ)

)
= θ′

(
a, f(σ)

)
. (1.3)

An epimorphism is a surjective homomorphism; in such a case we say that (G, θ′,Σ′) is a factor of
(G, θ,Σ) and that (G, θ,Σ) is an extension of (G, θ′,Σ′) .

Writing • instead of θ and •′ instead of θ′, the requirement in (1.3) is

f(a • σ) = a •′f(σ) , ∀ (a, σ) ∈ G×Σ . (1.4)

Exercise 1.16. Draw a commuting diagram to illustrate (1.3).

Exercise 1.17. Check that the composition of two morphisms of actions is a morphism of actions. Is
there a category?

Exercise 1.18. Define morphisms from
(
G1, θ1,Σ1

)
to

(
G2, θ2,Σ2

)
involving a change of the group.

Is there a category?

Exercise 1.19. Define various morphisms (of various types) connected with Examples 1.7 and 1.8.
Remark 1.20. A separately continuous map f : X × Y → Z might not be jointly continuous. If

X ∋ x → f(x, y0) ∈ Z , Y ∋ y → f(x0, y) ∈ Z

are continuous for every x0 ∈ Xand y0 ∈ Y , you are not sure that f is continuous. A counterexample:

R×R ∋ (x, y) → xy

x2 + y2
∈ R .

If f : X×X → Z is separately continuous, you cannot be sure that

F : X → Z , F (x) := f(x, x)

is continuous ! Note that F is the composition X
δ−→ X×X

f−→ Z , where δ(x) := (x, x).

Theorem 1.21. (Robert Ellis, 1957) Let G be a locally compact Hausdorff group and Σ a locally
compact Hausdorff space. Let θ : G× Σ → Σ be a separately continuous function such that

θ(e, σ) = σ , θ
(
a, θ(b, σ)

)
= θ(ab, θ) , ∀ a, b ∈ G , σ ∈ Σ .

Then θ is (jointly) continuous (a topological action).

Can you improve this result?

4



1.2 Recurrence sets

We fix a dynamical system (group action) (G, θ,Σ) . Notation:

θ(a, σ) = θa(σ) = a • σ , ∀ a ∈ G , σ ∈ Σ .

Definition 1.22. Let us introduce the function

G×Σ ∋ (a, σ)
ϑ→ (σ, a • σ) ∈ Σ×Σ

and denote by q the projection on the first variable G×Σ → G . For every M,N ⊂ Σ one defines the
recurrence set

Recθ(M,N) ≡ GN
M := q

[
ϑ−1(M×N)

]
.

A simple inspection of the definitions reveals that

GN
M = {a ∈ G |(a •M) ∩N ̸= ∅}

= {a ∈ G |∃ σ ∈ M , θa(σ) ∈ N} ,

which explains the terminology. One also uses the term ”dwelling set”.

Proof.
a ∈ GN

M ⇔ a = q(b, σ) , for some (b, σ) ∈ ϑ−1(M×N)

⇔ ∃σ ∈ Σ such that ϑ(a, σ) = (σ, a • σ) ∈ M×N

⇔ ∃σ ∈ Σ such that σ ∈ M, a • σ ∈ N

⇔ (a •M) ∩N ̸= ∅ .

Proposition 1.23. If M,Nare open, GN
M is also open.

Proof. Because ϑ is continuous and q is open.

Remark 1.24. One can say a lot about the behavior of a dynamical system studying the recurrence sets.
For given M,N it is important to see if GN

M is small (empty, relatively compact) or large (not relatively
compact, the complement of a relatively compact, syndetic, replete, everything). The sets M,N are
also very relevant (points, open sets, neighborhoods of something, equal, very far apart, ...).

Remark 1.25. The set GN
M is increasing in M and N .

One has G∅
∅ = ∅ and GΣ

Σ = G . Something more?

Remark 1.26. Note that GN
M =

⋃
σ∈M GN

σ , where

GN
σ ≡ GN

{σ}= {a ∈ G |a • σ ∈ N} .

Example 1.27. The stabilizer (isotropy group) Gσ
σ = {a ∈ G |a • σ = σ} is a particular case. What is

the meaning of Gσ
σ = G ? What is the meaning of Gτ

σ ̸= ∅ ? What is the meaning of Gτ
σ = G ?

The next straightforward results will be useful in the next sections.

Lemma 1.28. If M,N ⊂ Σ and b, c ∈ G , then Gc•N
b•M = cGN

Mb−1 and
(
GN
M

)−1
= GM

N .
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Proof. We only show the first equality:

a ∈ Gc•N
b•M ⇔ ∃ σ ∈ M , τ ∈ N with a • (b • σ) = c • τ

⇔ ∃ σ ∈ M , τ ∈ N with
(
c−1a b

)
• σ = τ

⇔ c−1a b ∈ GN
M

⇔ a ∈ cGN
Mb−1.

Lemma 1.29. Let M,N ⊂ Σ . Then

Sat(M) ∩N ̸= ∅ ⇔ Sat(M) ∩ Sat(N) ̸= ∅ ⇔ GN
M ̸= ∅ .

Proof. One has Sat(M) ∩ Sat(N) ̸= ∅ if and only if there exist a1, a2 ∈ G , σ ∈ M and τ ∈ N
such that a1•σ = a2•τ , which is equivalent to

(
a−1
2 a1

)
•σ = τ ∈ N , so we have a−1

2 a1 ∈ GN
M and(

a−1
2 a1

)
•σ ∈ Sat(M).

For the converse: If GN
M ̸= ∅ , there exists a ∈ G such that a • σ = τ , with σ ∈ M and τ ∈ N .

Then Sat(M) ∩N ̸= ∅ , from which Sat(M) ∩ Sat(N) ̸= ∅ follows.

Exercise 1.30. What can you say about GN1∪N2

M1∪M2
or about GN1∩N2

M1∩M2
? Other options?

Example 1.31. Products of dynamical systems. Let
(
G1, θ1,Σ1

)
and

(
G2, θ2,Σ2

)
two group actions.

Then
(
G1 × G2, θ1 × θ2,Σ1 × Σ2

)
is a group action with(

θ1 × θ2
)
(a1,a2)

(σ1, σ2) :=
(
θ1,a1(σ1), θ2,a2(σ2)

)
.

It is easier to write
(a1, a2) • (σ1, σ2) =

(
a1 •1 σ1, a2 •2 σ2

)
.

If M1, N1 ⊂ Σ1 and M2, N2 ⊂ Σ2 , then(
G1 × G2

)N1×N2

M1×M2
= (G1)

N1

M1
× (G2)

N2

M2
.

What about the orbits? Is it true that Oθ1×θ2
(σ1,σ2)

= Oθ1
σ1

×Oθ2
σ2

? What about the invariant sets?

Example 1.32. Diagonal products of dynamical systems. Let
(
G, θ1,Σ1

)
and

(
G, θ2,Σ2

)
two group

actions with the same group. Then
(
G, θ1 × θ2,Σ1 × Σ2

)
is a group action with(

θ1 × θ2
)
a
(σ1, σ2) :=

(
θ1,a(σ1), θ2,a(σ2)

)
or, written differently,

a ∗ (σ1, σ2) =
(
a •1 σ1, a •2 σ2

)
.

What about the orbits? What about the invariant sets?
If M1, N1 ⊂ Σ1 and M2, N2 ⊂ Σ2 , then

GN1×N2

M1×M2
= GN1

M1
∩ GN2

M2
.

Proof.
a ∈ GN1×N2

M1×M2
⇔

[
a ∗ (M1 ×M2)

]
∩
(
N1 ×N2

)
̸= ∅

⇔
[
(a •1 M1)× (a •2 M2)

]
∩
(
N1 ×N2

)
̸= ∅

⇔ (a •1 M1) ∩N1 ̸= ∅ and (a •1 M1) ∩N2 ̸= ∅
⇔ a ∈ GN1

M1
and a ∈ GN2

M2
.
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Definition 1.33. A morphism (or equivariant map) of the group actions (G, θ,Σ) , (G, θ′,Σ′) is a
continuous function f : Σ → Σ′ such that for all σ ∈ Σ , a ∈ G one has

f
(
θ(a, σ)

)
= θ′

(
a, f(σ)

)
. (1.5)

An epimorphism is a surjective homomorphism; in such a case we say that (G, θ′,Σ′) is a factor of
(G, θ,Σ) and that (G, θ,Σ) is an extension of (G, θ′,Σ′) .

Writing • instead of θ and •′ instead of θ′, the requirement in (1.3) is

f(a • σ) = a •′f(σ) , ∀ (a, σ) ∈ G×Σ . (1.6)

Proposition 1.34. Let (G, θ,Σ) and (G, θ′,Σ′) two dynamical systems and f : Σ → Σ′ a morphism. If
M,N ⊂ Σ then

GN
M ⊂ G

′f(N)
f(M) . (1.7)

When f is injective one has equality.

Proof. One verifies easily that the next sequence of equivalences and implications is rigorous:

a ∈ GN
M ⇔ (a •M) ∩N ̸= ∅

⇔ f
[
(a •M) ∩N

]
̸= ∅

⇒ f(a •M) ∩ f(N) ̸= ∅
⇔

(
a •′f(M)

)
∩ f(N) ̸= ∅

⇔ a ∈ G
′f(N)
f(M) .

In general one has f(A∩B) ⊂ f(A)∩ f(B) and the inclusion is always an equality if and only if is f
is injective; this is when ⇒ is an equivalence.

Proposition 1.35. Let (G, θ,Σ) and (G, θ′,Σ′) two dynamical systems and f : Σ → Σ′ a morphism.

(i) The map f sends invariant sets into invariant sets.

(ii) Let σ, τ ∈ Σ . If σ ∼ τ then f(σ) ∼′ f(τ) . When f is injective: σ ∼ τ ⇔ f(σ) ∼′ f(τ)

(iii) Let σ ∈ Σ . One has f
(
Oσ

)
= O′

f(σ) .

Proof. (i) Suppose that B ⊂ Σ is invariant; we show that f(B) ⊂ Σ′ is invariant. Let σ ∈ B, so
f(σ) ∈ f(B) . Then for every a ∈ G we have a •′ f(σ) = f(a • σ) ∈ f(B) .

(ii) One has

σ ∼ τ ⇔ ∃ a ∈ G , a • σ = τ ⇒ ∃ a ∈ G , f(a • σ) = a •′f(σ) = f(τ) ⇔ f(σ) ∼′ f(τ) .

Suppose that f is injective. Then the middle implication is an equivalence.
Another proof uses (1.7) and the fact that σ ∼ τ if and only if Gτ

σ ̸= ∅ ,.

(iii) If τ ∈ Oσ , then τ ∼ σ , thus f(τ) ∼′ f(σ) , meaning that f(τ) ∈ O′
f(σ) . We showed that

f
(
Oσ

)
⊂ O′

f(σ) . But f
(
Oσ

)
is non-void and •′-invariant, so it coincides with O′

f(σ) .

Example 1.36. Let Σ be composed only of fixed points and Σ′ := {ρ} composed of a single fixed point.
The constant function

f(σ) := ρ , ∀σ ∈ Σ

is a morphism:
f(a • σ) = ρ and a •′ f(σ) = a •′ ρ = ρ.

Then f(σ1) = f(σ2) , but σ1 and σ2 are not •-equivalent if they are different.
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Example 1.37. In general, if g : X → Y is continuous and A ⊂ X , then g
(
A
)
⊂ g(A), maybe strictly.

A strict inclusion may hold even for orbits: one may have f(O) = O′, but f
(
O
)
⊊ O′ .

The group R = G = Σ acts upon itself by translations. There is just one orbit (transitivity). Its
Alexandrov compactification Σ′ = R ∪ {∞} is an R-space with one orbit equal to R and another one
only containing the fixed point ∞ . The canonical injection j : R → R ∪ {∞} is a morphism. But

j
(
R
)
= j(R) = R ⊊ j(R) = R ∪ {∞} .
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2 Topological transitivity
Definition 2.1. We will fix a dynamical system (G, θ,Σ) .

• If there is just one orbit, the action is transitive. This means that σ, τ ∈ Σ ⇒ σ ∼ τ . Equiva-
lently, there is no other invariant subset besides ∅,Σ .

• A point having a dense orbit is called a transitive point.

• If there is a dense orbit, i.e. if a transitive point does exist, the action is pointwise transitive.

• If all the orbits are dense, the action is minimal

(⇔ no no-trivial invariant open sets ⇔ no no-trivial invariant closed sets)

• The action is topologically transitive if for every U, V ⊂ Σ open and non-void, GV
U ̸= ∅ holds.

Proposition 2.2. Transitive ⇒ minimal ⇒ pointwise transitive ⇒ topologically transitive .

Proof. The first two implications are obvious (and obviously they are not equivalence).

We verify the third one. Assume that Oσ is a dense orbit and let ∅ ≠ U, V be open sets. One has

a • σ ∈ Oσ ∩ U ̸= ∅ and b • σ ∈ Oσ ∩ V ̸= ∅

for elements a, b ∈ G . Since
(
b a−1

)
(a • σ) = b • σ we infer that b a−1∈ GV

U ̸= ∅ .

Remark 2.3. The subset A of the topological space X is called nowhere dense if the interior of its

closure is void:
◦
A = ∅ . The set 1/N is nowhere dense in R . Of course, if A is nowhere dense, it has

empty interior. But in X = R , the subset A := Q has void interior, but it is not nowhere dense (it is
dense!). In a topological vector space a subspace is dense or nowhere dense.

Exercise 2.4. • Finite unions of nowhere dense sets is nowhere dense.

• A is nowhere dense in X if and only if A is not dense in any open subset U of X .

• A is nowhere dense if and only if it is contained in the boundary of an open set.

Apply this to 1/N .

Theorem 2.5. The following conditions are equivalent:

(0) The system is topologically transitive.

(i) Each non-empty open invariant subset of Σ is dense.

(ii) Any two open non-void invariant subsets of Σ have non-trivial intersection.

(ii’) Σ is not the union of two proper invariant closed subsets.

(iii) Each invariant subset of Σ is ether dense, or nowhere dense (topological transitivity).
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Proof. (0) ⇒ (i) Let ∅ ̸= U ⊂ Σ open and invariant. By assumption, for every non-void open set
V ⊂ Σ there exists some a ∈ G making (a • U) ∩ V non-void. But a • U ⊂ U , implying U ∩ V ̸= ∅ .
Thus, U meets every other non-void open set and must be dense.

(i) ⇒ (ii) If each non-void open invariant subset is dense, it meets every other (invariant) non-void
open set.

(ii) ⇔ (ii′) If (ii’) fails, i. e. Σ = C ∪ D with C and D proper closed invariant subsets, then
Cc ∩Dc = ∅ . This contradicts (ii), since Cc and Dc are open, non-void and invariant.
On the other hand, if A,B are open non-empty invariant sets such that A ∩B = ∅ , then Ac ∪Bc = Σ
with Ac, Bc proper closed invariant subsets, finishing the proof of the equivalence.

(ii) ⇒ (iii) . So let us assume (ii) , but let A ⊂ Σ be invariant, neither dense, nor nowhere dense.
Then

(
A
)◦

and (Ac)◦ =
(
A
)c

are both non-void open sets, which are invariant by Proposition 1.14.
They should meet, by (ii) , but this is obviously false.

(iii) ⇒ (0) Suppose (iii) holds. Let ∅ ≠ U, V ⊂ Σ open sets. Sat(U) is an invariant set containing
U , so it cannot be nowhere dense, meaning that it is dense. Hence Sat(U) ∩ V ̸= ∅ and we conclude
by Lemma 1.29.

Proposition 2.6. Let f be an epimorphism between the group actions (G, •,Σ) and
(
G, •′,Σ′) . Sup-

pose that the action (G, •,Σ) has one of the properties

P ∈ {transitivity, pointwise transitivity, topological transitivity}

Then the action
(
G, •′,Σ′) also has P .

Proof. P = transitivity. We showed that under a morphism f
(
Oσ

)
= O′

f(σ) . Thus, if Σ is transitive
and f is also surjective:

Σ′ = f(Σ) = f
(
Oσ

)
= O′

f(σ) ,

showing that Σ′ is transitive.
P = pointwise transitivity. Under a morphism f

(
Oσ

)
⊂ O′

f(σ) . If Oσ = Σ , so

O′
f(σ) ⊃ f

(
Oσ

)
= f(Σ) = Σ′.

It follows that f(σ) is a transitive point of Σ′.
P = (ii). Let ∅ ≠ U ′, V ′ ⊂ Σ′ be invariant open sets. Then f−1(U ′) , f−1(V ′) are open, non-void

and invariant. Since (G, •,Σ) satisfies (ii), one has f−1(U ′) ∩ f−1(V ′) ̸= ∅ . Consequently

U ′ ∩ V ′= f
[
f−1(U ′)] ∩ f

[
f−1(V ′)

]
⊃ f

[
f−1(U ′) ∩ f−1(V ′)

]
̸= ∅

and
(
G, •′,Σ′) also satisfies (ii) .

Exercise 2.7. Give 4 (four) other proofs that topological transitivity propagates through epimorphisms.

Definition 2.8. The topological space Σ is called

• second countable if it has a countable base of open sets,

• a Baire space if any countable intersection of dense open sets is dense

(⇔ any countable union of closed sets with empty interior has empty interior)

Remark 2.9. Second countable ⇒ first countable (each point has a countable base of neighborhoods).
A counterexample for the equivalence?
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Example 2.10. Hausdorff locally compact spaces and complete metric spaces are Baire.
Q ⊂ R is not a Baire space.

Proposition 2.11. If Σ is a Baire second-countable space, then topological transitivity and pointwise
transitivity are equivalent.

Proof. Having in view Theorem 2.5, what remains is to show that (i) implies pointwise transitivity.
Since Σ is second-countable, its topology has a countable basis {Vn ̸= ∅}n∈N . By defining

Un = G • Vn ≡ Sat(Vn) ,

we get countably many invariant open (therefore dense, by (i)) subsets of a Baire space, so

U = ∩nUn

is also a dense (invariant) set.
Let W ̸= ∅ be an open subset of Σ . By the definition of a basis, there exists some Vn ⊂ W . Hence

we have
U ⊂ Un = G • Vn ⊂ G •W.

Therefore, if σ ∈ U then a−1• σ ∈ W for some a ∈ G . Hence σ has a dense orbit and the action is
pointwise transitive.

Remark 2.12. What we used in the proof of Proposition 2.11 is the fact that the intersection U is non-
void. One could improve: under the given requirements, the set of points with dense orbit is a dense
Gδ-set.
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3 Recurrence of points

3.1 Limit sets
A continuous action (G, θ,Σ) will be fixed, with G non-compact. Let K(T ) denote the family of compact
subsets of the topological space T .

Definition 3.1. The limit set of the point σ ∈ Σ is the closed subset of Σ

Lθ
σ ≡ Lσ :=

⋂
K∈K(G)

(G\K) • σ .

The limit set would be void if G was allowed to be compact (which is not), but it can also be void
in other situations.

We say that the net (ai)i∈I ⊂ G diverges if for every compact K ⊂ G there exists iK ∈ I such that
ai /∈ K if i ≥ iK . The existence of divergent nets hangs on our non-compact assumption.

Lemma 3.2. The following statements for σ, τ ∈ Σ are equivalent:

(i) τ belongs to the limit set Lσ .

(ii) For every neighborhood V of τ there exists a divergent net (ai)i∈I in G such that ai • σ ∈ V for
any i ∈ I .

(ii’) For every neighborhood V of τ , the recurrence set GV
σ is not relatively compact.

(iii) There is a divergent net (bi)i∈I in G such that bi • σ → τ .

Proof. (i) ⇒ (ii) Let V be a neighborhood of τ . If τ belongs to the limit set Lσ , then τ ∈
(
G\ K

)
• σ

for every K ∈ K(G) . Hence we can choose elements aK ∈ G\ K such that aK • σ ∈ V . The net
(aK)K∈K(G) is obviously divergent.

(iii) ⇒ (i) Let K ∈ K
(
G
)
. Since bi is divergent, there exists iK ∈ I such that bi ∈ G\K , ∀ i ≥ iK .

So we have that
τ = lim

i∈I
bi • σ = lim

i≥iK
bi • σ ∈

(
G\ K

)
• σ .

It follows that τ ∈ Lσ .

(ii) ⇒ (iii) Consider the set Nτ of neighborhoods of τ , and order it by reversing the inclusions.
For each neighborhood V of τ , select some divergent net (ai,V )i∈I such that ai,V • σ ∈ V (it can be
built over the same labels). Observe that, for each K ∈ K(G) , there exists iVK such that ai,V ̸∈ K for
every i ≥ iVK . Define bK,V = aiVK ,V , which form a net when Nτ×K(G) is given the product order. By
construction, we get a divergent net and τ = lim

K,V
bK,V • σ. EXERCISE.

(ii) ⇔ (ii′) follows from the definitions. EXERCISE.

Remark 3.3. Limit sets are mostly studied for actions of one of the groups Z or R on topological
spaces, where one distinguishes between positive and negative limit points. Besides being non-compact
Z and R have an extra feature: they have ’two ends”. This feature leads to various ramifications, as
distinguishing between positive and negative limit sets. One sets for instance, if G = R and σ ∈ Σ :

L+
σ :=

⋂
s∈R

(s,∞) • σ .

It is easily shown that the following are equivalent:

12



• τ belongs to the positive limit set Lσ .

• For every neighborhood V of τ , the recurrence set RV
σ is not contained in a set of the form

(−∞, s0) .

• There exists a sequence tn → +∞ in R such that tn • σ → τ .

The next easy lemma is sometimes useful to compute limit sets.

Lemma 3.4. Suppose that there exists a family of compact sets {Kλ}λ∈Λ that exhausts G . That is, Λ
is a directed set, G =

⋃
λ∈Λ Kλ and Kλ1

⊂ K◦
λ2

whenever λ1 ≤ λ2 . Then the limit set Lσ can be
computed as

Lσ =
⋂
λ∈Λ

(G\ Kλ) • σ .

Proof. Obviously, Lσ ⊂
⋂

λ∈Λ (G\ Kλ) • σ . For the opposite inclusion, it is enough to find for every
compact subset K of G an index µ ∈ Λ such that K ⊂ Kµ . Indeed, K is covered by the family of
interiors of the sets Kλ so, by compactness, it is also covered by a finite subfamily

{
K◦
λ1
, . . .K◦

λm

}
.

Since Λ is directed, that index exists. So we have K ⊂ Kµ implying that

(G \ Kµ) • σ ⊂ (G \ K) • σ.

The conclusion follows.

Example 3.5. If G = R for example, one may use the family
{
[−t, t]

∣∣ t > 0
}

.

Proposition 3.6. All the points in the orbit of σ have the same limit set Lσ .

Proof. For K ⊂ G , with computations based on the definitions(
G\ K

)
• (a • σ) =

[(
G\ K

)
a
]
• σ =

(
Ga \ Ka

)
• σ = (G\ Ka) • σ ,

implying that L a•σ ⊂ Lσ (because Ka is compact), from which the statement follows.

Proposition 3.7. One has
Oσ = Oσ ∪ Lσ . (3.1)

Proof. The ⊃ inclusion in (3.1) is obvious. For each K ∈ K(G) one can write

Oσ = G • σ =
(
K ∪ Kc

)
• σ = (K • σ) ∪ Kc • σ ⊂ Oσ ∪ Kc • σ ,

from which ⊂ follows.

Proposition 3.8. The closed set Lσ is invariant.

Proof. Let (a, τ) ∈ G×Σ with τ ∈ Lσ . Using the convergence criterion (iii) of Lemma 3.2, there
exists some divergent net (bi)i∈I in G such that bi • σ → τ . One may write

a • τ = a • lim
i
(bi • σ) = lim

i
a • (bi • σ) = lim

i
(abi) • σ .

But (abi)i∈I is also divergent, so a • τ ∈ Lσ .
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Proposition 3.9. If the orbit of σ is relatively compact, Lσ is non-empty and it attracts the points of
the orbit Oσ : for every neighborhood W of Lσ , there is a compact subset K of G such that(

G\K
)
• σ ⊂ W. (3.2)

Proof. It is enough to show that, for a fixed open neighborhood W of Lσ , there is a compact subset K
of G such that (3.2) holds: if Lσ were void, the empty set would be a neighborhood, which contradicts
the inclusion (G is non-compact).

For any K ∈ K(G) , we set Σσ(K) :=
(
G\ K

)
• σ ; complements will refer to Oσ . Since Lσ ⊂

W ∩ Oσ , the family
{
Σσ(K)

c
∣∣K ∈ K(G)

}
is an open cover of the complement of W ∩ Oσ in the

compact space Oσ . We extract a finite subcover
{
Σσ(Ki)

c
∣∣ i = 1, . . . , n

}
. Then

(
G\

n⋃
i=1

Ki

)
• σ ⊂

n⋂
i=1

(
G\ Ki

)
• σ ⊂ W ∩ Oσ ⊂ W

and the proof is finished, since a finite union of compact sets is compact.

Proposition 3.10. For every epimorphism f between actions (G, •,Σ) ,
(
G, •′,Σ′) and every point

σ ∈ Σ , we have f
(
Lθ
σ

)
= Lθ′

f(σ) .

Proof. By Proposition 3.2 : τ ′ = f(τ) ∈ f
(
Lθ
σ

)
, with τ ∈ Lθ

σ , if and only if exists a divergent net
(ai)i∈I in G such that

τ ′ = f
(
lim
i

ai • σ
)
= lim

i
f(ai • σ) = lim

i
ai •′ f(σ) ,

which is equivalent with τ ′ ∈ Lθ′

f(σ) .

3.2 Recurrent points and wandering

A continuous action (G, θ,Σ) is fixed, with G locally compact but non-compact.

Definition 3.11. A point is called recurrent if it is a limit point of itself.
When σ ∈ Lσ holds, we say that σ is a recurrent point.
We denote by Σθ

rec ≡ Σrec the family of all the recurrent points of the group action.

In the relation Oσ = Oσ ∪ Lσ the union could be disjoint or not.

Proposition 3.12. For a point σ ∈ Σ , the following five conditions are equivalent:

(a) Oσ ∩ Lσ ̸= ∅ ,

(b) Lσ = Oσ ,

(c) σ ∈ Lσ (σ is a recurrent point) ,

(d) there is a divergent net (ai)i∈I ⊂ G such that ai • σ → σ ,

(e) GU
σ is not relatively compact for any open neighborhood U of σ .
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Proof. The equivalence (c) ⇔ (d) ⇔ (e) is the content of Lemma 3.2 for τ = σ.

(b) ⇒ (c) is obvious: σ ∈ Oσ ⊂ Oσ = Lσ .

(c) ⇒ (a) is obvious: σ ∈ Oσ ∩ Lσ .

(a) ⇒ (b) We know from Proposition 3.8 that Lσ is closed and invariant. If (a) holds, it contains
the closure of the orbit Oσ . But it cannot be strictly bigger, by (3.1).

Corollary 3.13. Σrec is invariant.

Proof. We can describe the condition σ ∈ Σrec by (b) . For a recurrent point σ and for a ∈ G we can
write

La•σ = Lσ = Oσ = Oa•σ ,

so a • σ is also recurrent.

Exercise 3.14. If f : Σ → Σ′ is an epimorphisms between dynamical systems (G, θ,Σ) and
(
G, θ′,Σ′) ,

one has f
(
Σθ

rec

)
⊂ Σθ′

rec (the image by an epimorphism of a θ-recurrent point is a θ′-recurrent point).

Definition 3.15. (a) The point σ ∈ Σ is wandering with respect to the action (G, θ,Σ) with non-
compact group if σ has a neighborhood W such that GW

W is relatively compact.

(b) In the opposite case, we say that σ is non-wandering. This means that for every neighborhood
W of σ the set GW

W is not relatively compact.

(c) We denote by Σθ
nw ≡ Σnw the family of all the non-wandering points. If Σθ

nw = Σ one says that
the action is non-wandering.

Proposition 3.16. The set Σnw is closed.

Proof. Let τ ∈ Σnw. By definition of closure, every open neighborhood U of τ intersects Σnw .
So let σ ∈ Σnw ∩ U . As U is a neighborhood of σ ∈ Σnw , the set GU

U is not relatively compact.
Thus τ ∈ Σnw .

Proposition 3.17. The set Σnw is invariant.

Proof. Suppose that σ /∈ Σnw ; we are going to show that b • σ /∈ Σnw , for all b ∈ G .
Let W be an open neighborhood of σ such that GW

W is relatively compact. Then b •W is an open
neighborhood of b • σ. We showed in Lemma 1.28 that

Gb•W
b•W = bGW

W b−1,

which is relatively compact.

Proposition 3.18. One has
Σrec ⊂

⋃
σ∈Σ

Lσ ⊂ Σnw . (3.3)
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Proof. The first inclusion follows from the definition of recurrent points:

τ ∈ Σrec ⇔ τ ∈ Lτ ⊂
⋃
σ∈Σ

Lσ ⊂ Σnw .

So we only need to prove that Lσ ⊂ Σnw . Pick τ ∈ Lσ and let U be a neighborhood of τ . By
Lemma 3.2, we already know that GU

σ is not relatively compact. If a ∈ GU
σ , then a • σ ∈ U ; using

Lemma 1.28 we get
GU
σ a

−1= GU
a•σ ⊂ GU

U ,

showing that the later set is not relatively compact.

Corollary 3.19. If at least one of the orbits is relatively compact (in particular if Σ is compact), Σnw

is non-void.

Proof. This follows from (3.3) and Proposition 3.9.

Proposition 3.20. If Σ is compact, Σnw attracts the points of Σ : for every σ ∈ Σ and for every
neighborhood V of Σnw , one has a • σ ∈ V for every a ∈ G outside some compact set.

Proof. One has to show that for every neighborhood V of Σnw , the set G\GV
σ is relatively compact.

If V is a neighborhood of Σnw , by (3.3), it is also a neighborhood of the limit set Lσ . One applies
Proposition 3.9 to infer that there exists a compact subset K of G such that

(
G\K

)
• σ ⊂ V , i. e.

G\K ⊂ GV
σ . Then the complement of GV

σ in G is contained in K and the proof is finished.

Exercise 3.21. If f : Σ → Σ′ is an epimorphisms between dynamical systems (G, θ,Σ) and
(
G, θ′,Σ′) ,

one has f
(
Σθ

nw

)
⊂ Σθ′

nw (the image by an epimorphism of a θ-non-wandering point is a θ′-non-
wandering point).
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4 Minimality and almost periodicity

4.1 Fixed points

Let (G, θ,Σ) be a continuous group action.

Definition 4.1. A fixed point is a point σ ∈ Σ such that a • σ = σ for every a ∈ G . This is equivalent
with Gσ

σ = G . We write σ ∈ Σθ
fix ≡ Σfix .

Proposition 4.2. The set Σfix is closed and invariant.

Proof. If σ ∈ Σfix, then Oσ = {σ}, which makes Σfix trivially invariant.

If σ ∈ Σfix, then exists a net (σi)i∈I of fixed points converging to σ. Let a ∈ G ; by continuity

a • σ = a • (lim
j

σi) = lim
i
(a • σi) = lim

i
σi = σ.

So σ is a fixed point for the action.

4.2 Minimal systems
Minimality is a very important property in classical topological dynamics. During this subsection, both
G and Σ are assumed to be locally compact.

Definition 4.3. A closed invariant subset M ⊂ Σ is called minimal if it does not contain proper non-
void closed (open) invariant subsets.

Equivalently, M is minimal if all the orbits contained in M are dense in M .
The action is minimal if Σ itself is minimal.

Remark 4.4. The minimal sets are the closed invariant non-empty subsets of Σ which are minimal
under such requirements.

Theorem 4.5. If Σ is compact, there exists a minimal subset of Σ .

Proof. Let
C (Σ) := {S ⊂ Σ |∅ ≠ S closed and invariant} ≠ ∅ .

With the order relation
S ≤ T ⇔ S ⊃ T

(C (Σ),≤) is inductively ordered (each totally ordered subset has an upper bound). WHY ???
Then, by Zorn’s Lemma, (C (Σ),≤) has a maximal element (which is a minimal subset).

Example 4.6. Fixed points are minimal.
More generally, closed orbits are minimal.

Remark 4.7. Two minimal sets either coincide or are disjoint.

Proposition 4.8. Transitivity ⇒ minimality ⇒ pointwise transitivity ⇒ topological transitivity.

Proof. The first two implications are obvious. The last one has been obtained above.

Exercise 4.9. A closed set S is nowhere dense if and only if it coincides with its boundary.
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Proposition 4.10. Minimal sets are either clopen (closed and open) or nowhere dense ( (M)◦ = ∅).

Proof. The boundary of an invariant set is invariant (Proposition 1.14).
So, if M is minimal, the boundary ∂M ⊂ M is closed and invariant, therefore it should be void

(i.e.M is open) or coincide with M (meaning that M is nowhere dense).

Corollary 4.11. Suppose that Σ is connected and not minimal. Any minimal subsystem is nowhere
dense.

Exercise 4.12. A function φ : Σ → R is called invariant with respect to the group action if φ(σ) =

φ(τ) whenever σ θ∼ τ . If the action is minimal and φ is continuous at least at one point, it has to be
constant.

We proceed now to characterize minimality.

Proposition 4.13. Let ∅ ≠ M ⊂ Σ be closed and invariant. Then M is minimal if and only if for every
U ⊂ Σ open, with U ∩M ̸= ∅ , one has M = Sat(U ∩M) .

Proof. if: Assume that ∅ ≠ N ⊂ M is closed and invariant; then U = N c = Σ \ N is open. If we
show that N c ∩M = ∅ one gets M = N , i.e. the minimality of M . But N c ∩M = ∅ follows if we
check that M ̸⊂ Sat(N c ∩ M) , by assumption. This would follow from N ∩ Sat(N c ∩ M) = ∅ .
But σ ∈ N ∩ Sat(N c ∩ M) means that σ ∈ N and it is in the orbit of some element of N c. This is
impossible since N is invariant and N c is its complement.

only if: Assuming now that M is minimal, for every σ ∈ M one has M = Qσ = Oσ . If
U ∩M ̸= ∅ , U being open, we have U ∩Oσ ̸= ∅ . But this means that σ is in the orbit of some point
that belongs to U ∩Oσ ⊂ U ∩M , so x ∈ Sat(U ∩M) .

Proposition 4.14. If Σ is compact and minimal and G is not compact, the action is non-wandering.

Proof. We know from Propositions 3.16 and 3.17 and Corollary 3.19 that Σnw is a non-void closed
invariant set. By minimality, it coincides with Σ .

We finish with results on the behavior of minimality under epimorphisms, in both directions.

Proposition 4.15. Let f : Σ → Σ′ be an epimorphism between the actions (G, θ,Σ) and
(
G, θ′,Σ′) .

If M ⊂ Σ is minimal and f(M) is closed in Σ′, then f(M) is minimal.

Proof. This is dealt with easily by Proposition 1.35: if σ ∈ M then

f(M) = f
(
Oσ

)
⊂ O

′
f(σ) ⊂ f(M) = f(M) ,

so the orbit of f(σ) is dense in the closed set f(M) .

Proposition 4.16. Let f : Σ → Σ′ be an epimorphism between the actions (G, θ,Σ) and
(
G, θ′,Σ′) .

Suppose that Σ is compact (hence Σ′ is also compact). If M ′ ⊂ Σ′ is minimal, there exists M ⊂ Σ
minimal such that f(M) = M ′.

Proof. The inverse image f−1(M ′) is non-void closed and •-invariant. By Zorn’s Lemma, it contains
a minimal (and compact) subsystem M . The direct image f(M) ⊂ M ′ is non-void closed and •′-
invariant, so it must coincide with M ′.

Question: Is f−1(M ′) minimal ?
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4.3 Periodic and almost periodic points
Although it is not always necessary, in this subsection we prefer to assume that in the continuous action
(G, θ,Σ) the group G is locally compact but non-compact.

Definition 4.17. The subset A of G is called syndetic if KA = G for a compact subset K of G .

Remark 4.18. (a) Besides this left syndeticity, there is also an obvious notion of right syndeticity.
They coincide (at least if) G is Abelian. A is left (right) syndetic if and only if A−1 is right (left)
syndetic. A subgroup is left syndetic if and only if it is right syndetic.

(b) If the group is compact (but it is not!) everybody is syndetic.

Exercise 4.19. (a) If A ⊂ B and A is syndetic then B is syndetic.

(b) A relatively compact set is not syndetic.

(c) The complement of a relatively compact set is syndetic.

(d) A closed subgroup H is syndetic iff the quotient space G/H is compact. But one is not only
interested in subgroups.

(e) The set A is syndetic if and only if there exists a compact set L ⊂ G such that (La) ∩ A ̸= ∅ for
every a ∈ G .

Is Z+ 0, 13 syndetic in R ?

Is {±n2 |n ∈ N} syndetic in R ? Is {±n2 |n ∈ N}+ [−1/9, 1/8] syndetic in R ?

Is {±n2 + [−n, n] |n ∈ N} syndetic in R ?

(f) If G = Z or G = R , a subset of G is syndetic if and only if it is relatively dense, that is, it does
not have arbitrarily large gaps (intervals not intersecting the set).

Definition 4.20. (a) We say that σ ∈ Σ is periodic, and we write σ ∈ Σper , if Gσ
σ is syndetic .

(b) The point σ is called weakly periodic (we write σ ∈ Σwper) if the subgroup Gσ
σ is not compact.

(c) The point σ ∈ Σ is said to be almost periodic if GU
σ is syndetic for every neighborhood U of σ

in Σ . We denote by Σalper the set of all the almost periodic points. If Σalper = Σ , the action is
pointwise almost periodic.

Proposition 4.21. One has

Σfix

(1)
⊂ Σper

(2)
⊂ Σwper ∩ Σalper

(3)
⊂ Σwper ∪ Σalper

(4)
⊂ Σrec

(5)
⊂

⋃
σ∈Σ

Lσ

(6)
⊂ Σnw . (4.1)

Proof. The inclusions (1) and (3) are obvious. We proved (5) and (6) previously, in Proposition 3.18.

To deduce (2) from the definitions, note that Gσ
σ ⊂ GU

σ if σ ⊂ U and that a syndetic set is not
compact (since G not compact).

The inclusion (4) also follows easily from the definitions, by the same type of arguments: use
Proposition 8.37 (e) to describe recurrent points.
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Example 4.22. Let G = R2 act (transitively) on Σ = R by (a, b) • x := x+ a . Then (R2)00 = {0}×R
is not compact, so 0 (and not only!) is weakly periodic. It is not periodic. It is not almost periodic,
since (R2)

(−1,1)
0 = (−1, 1)×R is not syndetic in R2 .

Proposition 4.23. The sets Σper,Σwper are invariant.

Proof. By Lemma 1.28, one has Ga•σ
a•σ = aGσ

σ a
−1, so Σwper is invariant.

We focus now on Σper ; let σ ∈ Σper and a ∈ G . For some compact set K , we have

K a−1Ga•σ
a•σ a = KGσ

σ = G = G a .

Hence
(Ka−1)Ga•σ

a•σ = G ,

meaning that Ga•σ
a•σ is syndetic in G , and thus a • σ ∈ Σper holds.

Exercise 4.24. Is Σaper invariant?

Remark 4.25. The sets of periodic, weakly periodic or almost periodic points might fail to be closed.

4.4 Compact orbits
We connect now periodicity with the type of the orbit.

Theorem 4.26. The periodic points are precisely those having a compact orbit.

Exercise 4.27. What happens to periodic points under an epimorphism? Two solutions, please!

Proposition 4.28. Every periodic point σ has a compact orbit.

Proof. If σ ∈ Σper , then KGσ
σ = G for some compact set K ⊂ G .

Any net (σi) ⊂ Oσ can be written as σi = (biai) • σ for some nets (bi) ⊂ K , (ai) ⊂ Gσ
σ . By

compacity, extract a subnet (bj) ⊂ (bi) such that bj → b∈ K and get

σj := (bjaj) • σ = bj • (aj • σ) = bj • σ → a • σ ∈ Oσ .

We conclude that Oσ is compact.

Proof. Let us indicate a second proof.
For σ ∈ Σ , let us define the continuous surjective function

ασ : G→ Oσ ⊂ Σ , ασ(a) := θa(σ) ≡ a • σ .

If σ ∈ Σper , then KGσ
σ = G for some compact set K ⊂ G . By using the definition of Gσ

σ , one gets (?)

Oσ = ασ(G) = ασ(K) ,

which is compact, as a direct continuous image of a compact set.
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Proposition 4.29. If the point σ ∈ Σ has a compact orbit and the conditions of Corollary 4.39 hold,
then Gσ

σ is syndetic in G , so σ is periodic.

Proof. Let Na ⊂ G be a relatively compact, open neighborhood of a , for every a ∈ G . Observe that

G = GGσ
σ =

( ⋃
a∈G

Na

)
Gσ
σ .

So
Oσ = G • σ =

( ⋃
a∈G

Na

)
Gσ
σ • σ =

⋃
a∈G

Na • σ .

As we have a group action, The set Na • σ = ασ
(
Na

)
is open and by compactness, there exists a finite

index set F = {a1, . . . , an} such that

Oσ =

n⋃
i=1

Nai
• σ ⊂

( n⋃
i=1

Nai

)
• σ .

Define K =
⋃n

i=1 Nai
and notice that for every a • σ ∈ Oσ , there exists b ∈ K such that

a • σ = b • σ ⇒ (b−1a) • σ = σ ,

meaning that b−1a ∈ Gσ
σ and a = b

(
b−1a

)
∈ KGσ

σ . As K is compact, we conclude.

Definition 4.30. Let (G, θ ≡ •,Σ) be a dynamical system. To any σ ∈ Σ one associates its orbit

Oσ := G • σ ,

its isotropy group
Gσ
σ :=

{
a ∈ G

∣∣ a • σ = σ
}

its quotient map
qσ : G → G/Gσ

σ

and its orbit map
ασ : G→ Oσ ⊂ Σ , ασ(a) := θa(σ) ≡ a • σ .

Remark 4.31. Since

ασ(a) = ασ(b) ⇔ a • σ = b • σ ⇔
(
b−1a

)
• σ = σ ⇔ b−1a ∈ Gσ

σ ,

one has the commutative diagram

G Oσ

G/Gσ
σ

?

qσ

-ασ

�
�
��
βσ

where βσ is a continuous bijection.

Definition 4.32. The function f : X → Y between two topological spaces is

• open if f(A) ⊂ Y is open as soon as A ⊂ X is open.
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• open at x0 ∈ X if for every neighborhood N of x0 , the image f(N) is open in f(X) ⊂ Y in
the relative topology.

Proposition 4.33. The following are equivalent:

(i) The map βσ : G/Gσ
σ → Oσ is a homeomorphism.

(ii) The map ασ : G → Oσ is open.

(iii) The map ασ : G → Oσ is open at e .

Proof. Exercise in topology. Use the fact that qσ is open.

Definition 4.34. The topological space X is called

• σ-compact if it is the countable union of compact subsets.

• a Baire space if any countable intersection of dense open sets is dense

(⇔ any countable union of closed sets with empty interior has empty interior).

Example 4.35. If X is discrete, σ-compact ⇔ countable.

Example 4.36. Hausdorff locally compact spaces and complete metric spaces are Baire.
Q ⊂ R is not a Baire space.

Theorem 4.37. If G is a locally compact σ-compact topological group and Oσ is a Baire space in the
relative topology, then βσ is a homeomorphism.

Proof. We are going to prove (iii) in Proposition 4.33, which is equivalent with (i).

Claim: Let U be a neighborhood of e and let V another neighborhood of e such that V −1V ⊂ U .
Then V • σ has non-empty interior in Oσ .

We first show that the Claim finishes the proof :
Let b ∈ V such that

b • σ ∈ (V • σ)◦ ⊂ V • σ .

Then b−1• (V • σ) =
(
b−1V

)
• σ is a neighborhood of σ = b−1• (b • σ) in Oσ . Since(
b−1V

)
• σ ⊂

(
V −1V

)
• σ ⊂ U • σ ,

then U • σ = ασ(U) is also a neighborhood of σ in Oσ .

We now prove the Claim. Let W be a symmetric neighborhood of e with compact W ⊂ V .
Exercise There exists a countable subset A ⊂ G such that

G = AW = AW =
⋃
a∈A

aW .

(By σ-compactness, write G =
⋃

n∈N Kn ; then cover each Kn by a finite number of translates of W .)

The set
(
AW

)
• σ is compact, thus closed in Oσ . By the Baire property, there is c ∈ A such that(

cW
)
•σ has non-empty interior in Oσ . Since θc is a homeomorphism of the orbit Oσ , then W •σ has

non-empty interior in Oσ . But W • σ ⊂ V • σ , hence V • σ also has non-empty interior in Oσ .
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Example 4.38. A subset O in a (Hausdorff) locally compact space Σ is locally compact in the relative
topology if and only if it is locally closed, i.e. it satisfies one of the next equivalent properties:

• It is the intersection between an open and a closed set.

• It is open in its closure.

Corollary 4.39. Let (G, θ,Σ) be a dynamical system, where G is a Hausdorff, locally compact σ-
compact group. Let σ ∈ Σ and assume one of the following conditions:

• Σ is a complete metric space and the orbit Oσ is closed,

• Σ is locally compact and the orbit Oσ is locally closed.

Then βσ : G/Gσ
σ → Oσ is a homeomorphism.

4.5 Connection between almost periodicity and minimality
(G, θ,Σ) is still a dynamical system, with G ,Σ (Hausdorff and) locally compact.

Theorem 4.40. The point σ is almost periodic if and only if Oσ is minimal and compact.

Proof. Suppose that σ is almost periodic; we show first that its orbit closure Oσ is compact.
Let U0 be a compact neighborhood of σ. Using the assumptions, for some compact set K one has

Oσ = G • σ =
(
KGU0

σ

)
• σ = K •

(
GU0
σ • σ

)
⊂ K • U0 = compact ,

so Oσ is compact.
If Oσ is not minimal, it strictly contains a minimal (and compact) set M . The point σ does not

belong to M , so there are disjoint open sets U, V ⊂ Σ such that σ ∈ U and M ⊂ V . For an arbitrary
compact set K ⊂ G we will now show that KGU

σ ̸= G , implying that in fact σ is not almost periodic.

The set M being invariant, K−1 • M ⊂ M holds. Let then W be a neighborhood of M with
K−1 •W ⊂ V . Since M ⊂ Oσ = G• σ , there exists b ∈ G such that b • σ ∈ W . Then(

K−1b
)
• σ = K−1 • (b • σ) ⊂ K−1•W ⊂ V,

and thus
(
K−1b

)
• σ is disjoint from U , meaning that K−1b is disjoint from GU

σ . This shows that

G ∋ b /∈ KGU
σ ̸= G ,

finishing the proof.

For the converse, suppose now that Oσ = G • σ is minimal and compact. Let U be an open
neighborhood of σ. We prove that GU

σ is syndetic.
For each a ∈ G , choose an open neighborhood Na of a with compact closure. The sets G • U and

Na • U are open in Σ . By minimality one has

Oσ⊂ G • U =
⋃
a∈G

a • U ⊂
⋃
a∈G

Na • U.

By compactness of Oσ applied to the open cover above, for a finite set F = {a1, . . . , ak} ⊂ G we get

Oσ ⊂
k⋃

i=1

Nai
• U ⊂

k⋃
i=1

Nai
• U =

( k⋃
i=1

Nai

)
• U =: K • U .
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If b ∈ G then b • σ ∈ K • U and then one has b • σ ∈ c • U for some c ∈ K . Then

c−1• (b • σ) =
(
c−1b

)
• σ ∈ U.

This means that c−1b ∈ GU
σ or, equivalently, that

b ∈ cGU
σ ⊂ KGU

σ .

Since b is arbitrary one gets G = KGU
σ , where K :=

⋃k
i=1Nai

is compact. We checked that GU
σ is

syndetic in G , so σ is almost periodic.

Remark 4.41. If Σ is a compact space, Zorn’s Lemma implies that it has a minimal subset M ⊂ Σ .
Since every x ∈ M is almost periodic, by Theorem 7.8, almost periodic points always exist.

Corollary 4.42. The set Σalper is invariant.

Proof. The second part of Theorem 7.8 guarantees that, if σ ∈ Σalper , then Oσ ⊂ Σalper .

Corollary 4.43. Suppose that Σ is compact and the action is minimal. Then GV
σ is syndetic for every

σ ∈ Σ and every open non-void subset V of Σ (and not just for neighborhoods of σ) .

Proof. By minimality, there exists z ∈ G such that V is an open neighborhood of z • σ. Hence GV
z•σ

is syndetic by Theorem 7.8; it can be written as KGV
z•σ = G for some compact subset K of G . Then,

using Lemma 1.28
G = G z = KGV

z•σ z = KGV
σ ,

meaning that GV
σ is also syndetic.

We now lift almost periodic points through epimorphisms.

Proposition 4.44. Let f : Σ → Σ′ be an epimorphism between the actions (G, θ,Σ) and
(
G, θ′,Σ′) .

Suppose that Σ is compact (hence Σ′ is also compact). If σ′ ∈ Σ′ is almost periodic, then σ′ = f(σ)
for some almost periodic point σ of Σ .

You can write: σ′ ∈ Σ′
alper ⇒ f−1(σ) ∩ Σalper ̸= ∅ .

Proof. As σ′ is almost periodic, M ′ := O
′
σ′ is minimal, so we can find some (compact) minimal subset

M ⊂ Σ , such that f(M) = M ′ and σ′ = f(σ) for some σ ∈ M . By Theorem 7.8, any σ ∈ M is
almost periodic.

Definition 4.45. (a) If Σalper = Σ (all the points are almost periodic), we say that the action is
pointwise almost periodic.

(b) We say that the action is semisimple if all the orbit closures are minimal (equivalently: the orbit
closures form a partition of Σ) .

Corollary 4.46. (a) If all the orbits are closed, the action is semisimple.

(b) A pointwise almost periodic action is semisimple.

(c) If all the orbits are compact, the action is pointwise almost periodic.

Proof. The statements are obvious or they follow easily from Theorem 7.8.
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5 Mixing

Once again (G, θ,Σ) is a topological dynamical system with non-compact group G .

Definition 5.1. • The recurrence set corresponding to U, V ⊂ Σ

GV
U = {a ∈ G |(a • U) ∩ V ̸= ∅} = {a ∈ G | ∃ σ ∈ U, θa(σ) ∈ V } ⊂ G .

• The action is topologically transitive if for every U, V ⊂ Σ open and non-void, GV
U ̸= ∅ holds.

• We say that the action is non-wandering if for every open non-void W ⊂ Σ the set GW
W is not

relatively compact.

Let us set Top(X) for the topology (all the open sets) of a topological space X as well as

Top∗(X) := Top(X)\{∅} .

Definition 5.2. • The action (G, θ,Σ) is weakly mixing whenever for every U,U ′, V, V ′∈ Top∗(Σ)
non-empty open sets, one has GV

U ∩ GV ′

U ′ ̸= ∅ .

• It is strongly mixing if the complement of GV
U is relatively compact for every U, V ∈ Top∗(Σ) .

Proposition 5.3. Strongly mixing implies weakly mixing, which implies topological transitivity.

Proof. The first assertion follows from the equality(
GV
U ∩ GV ′

U ′

)c
=

(
GV
U

)c ∪ (
GV ′

U ′

)c
and the fact that the union of two relatively compact sets is relatively compact, so

(
GV
U ∩ GV ′

U ′

)c ̸= G .

For the second one just take U = U ′ and V = V ′.

Exercise 5.4. Strongly mixing implies non-wandering.

Example 5.5. The Bernoulli shift is strongly mixing.

Proposition 5.6. The action (G, θ,Σ) is weakly mixing if and only if the (diagonal) product system
(G,Θ ≡ ⋄,Σ×Σ) given by

Θg

(
σ1, σ2

)
:=

(
θg(σ1), θg(σ2)

)
is topologically transitive.

Proof. With respect with the product action one has

g ∈ GV×V ′

U×U ′ ⇔ g ⋄
(
U×U ′) = (g • U)×(g • U ′) ⊂ V ×V ′

⇔ g • U ⊂ V and g • U ′ ⊂ V ′

⇔ g ∈ GV
U ∩ GV ′

U ′

We have shown that GV×V ′

U×U ′ = GV
U ∩ GV ′

U ′ , so they are simultaneously non-void.
Then recall the topology of Σ×Σ .
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Proposition 5.7. Let (G, θ,Σ)
f→

(
G, θ′,Σ′) be an epimorphism

• If (G, θ,Σ) is weakly mixing,
(
G, θ′,Σ′) is weakly mixing.

• If (G, θ,Σ) is strongly mixing,
(
G, θ′,Σ′) is strongly mixing.

Proof. For U, V ⊂ Σ we showed that GV
U ⊂ G

f(V )
f(U) .

I will do ”strongly mixing”. ”Weakly mixing” is an EXERCISE.

Let U ′, V ′ ∈ Top∗(Σ′) and set U := f−1(U ′) , V := f−1(V ′) ∈ Top∗(Σ) . One has

U ′ ⊃ f
[
f−1(U ′)

]
= f(U) , V ′ ⊃ f

[
f−1(V ′)

]
= f(V ) ,

so we can write
G
f−1(V ′)
f−1(U ′) ⊂ G

f [f−1(V ′)]
f [f−1(U ′)] ⊂ GV ′

U ′ .

If Gf−1(V ′)
f−1(U ′) is the complement of a relatively compact set, then GV ′

U ′ is also the complement of a rela-
tively compact set.

WHERE DID I USE SURJECTIVITY ? IS IT POSSIBLE TO WEAKEN IT ?

Definition 5.8. Let Y be a set and B,F ⊂ 2Y two non-void families of subsets of Y .

• We say that F is a filter if ∅ /∈ F ,

A,B ∈ B ⇒ A ∩B ∈ F ,

F ∋ C ⊂ D ⇒ D ∈ F .

• We say that B is a filter base if ∅ /∈ B and

A,B ∈ B ⇒ ∃C ∈ B , C ⊂ A ∩B .

Exercise 5.9. The filter F (B) generated by the filter base B :

F (B) :=
{
F ∈ 2Y

∣∣ ∃ B ∈ B , B ⊂ F
}

is a filter.

Proposition 5.10. Suppose that G is Abelian.

Then (G, θ,Σ) is weakly mixing if and only if

B :=
{
GV
U

∣∣U, V ∈ Top′(Σ)
}

is a filter base in G .

We showed in Proposition 1.23 that each GV
U is an open subset of G .
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Proof. ⇐ is obvious from
∅ ≠ GV

U ⊂ GU2

U1
∪ GV2

V1
,

where you start with U1, V1, U2, V2 ∈ Top′(Σ) .

⇒ Let U1, V1, U2, V2 ∈ Top′(Σ) . There exists g ∈ GU2

U1
∪ GV2

V1
. We are going to prove that

G
V1∩(g−1•V2)
U1∩(g−1•U2)

⊂ GV1

U1
∩ GV2

U2
.

If h ∈ G
V1∩(g−1•V2)
U1∩(g−1•U2)

, then

∅ ≠ h •
[
U1 ∩ (g−1 • U2)

]
∩

[
V1 ∩ (g−1• V2)

]
⊂

[
(h • U1) ∩ V1

]
∩

[
(hg−1) • U2 ∩ g−1• V2

]
=

[
(h • U1) ∩ V1

]
∩ g−1•

[
(h • U2) ∩ V2

]
,

which implies that
(h • U1) ∩ V1 ̸= ∅ ≠ (h • U2) ∩ V2 ,

i.e. h ∈ GV1

U1
∩ GV2

U2
.

Of course, for any n ∈ N

θng
(
σ1, . . . , σn

)
:=

(
θg(σ1), . . . , θg(σn)

)
defines a continuous action of G on Σn := Σ× · · · ×Σ .

Corollary 5.11. If (G, θ,Σ) is weakly mixing and G is Abelian,
(
G, θn,Σn

)
is also weakly mixing, for

every positive integer n .

Proof. One first shows that θk is topologically transitive, for every k ∈ N . EXERCICE.

One has θn×θn ∼= θ2n (canonical isomorphism of dynamical systems). Setting k := 2n :

θ2n topologically transitive ⇔ θn weakly mixing.

Proposition 5.12. Suppose that G is Abelian.

Then (G, θ,Σ) is weakly mixing if and only if GV
U is thick for every U, V ∈ Top′(Σ) .

Proof.
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6 Generalized morphisms of groupoid actions
Definition 6.1. Let (G, θ,Σ) , (G′, θ′,Σ′) be two dynamical systems.

• A generalized morphism of actions is a pair (Ψ, f) , where Ψ : G → G′ a continuous group
morphism and f : Σ → Σ′ is a continuous function, such that

f
[
θa(σ)

]
= θ′Ψ(a)

[
f(σ)

]
, ∀ a ∈ G , σ ∈ Σ . (6.1)

• If both Ψ and f are surjective, we say that (Ψ, f) is an epimorphism, (G′, θ′,Σ′) is a factor of
(G, θ,Σ) and (G, θ,Σ) is an extension of (G′, θ′,Σ′) .

• If G = G′ and Ψ = idG , we recover an old friend.

Remark 6.2. The relation (6.1) may be written as

f ◦ θa = θ′Ψ(a)◦ f ,

(so it is easy to illustrate it by a commuting diagram) or even as

f(a • σ) = Ψ(a) •′f(σ) . (6.2)

Remark 6.3. Let (G′, θ′,Σ′) be an action. Suppose that G is a topological group and Ψ : G → G′ is a
continuous group morphism. Then we can make G act on Σ′ by defining

θa(σ
′) := θ′Ψ(a)(σ

′) .

In this case, Ψ gives birth to a morphism (Ψ, idΣ′) between the actions (G, θ,Σ) and (G′, θ′,Σ′) .

Exercise 6.4. If (Ψ1, f1) is a morphism from (G, θ,Σ) to (G′, θ′,Σ′) and (Ψ2, f2) is a morphism from
(G′, θ′,Σ′) to (G′′, θ′′,Σ′′) , then (Ψ2, f2) ◦ (Ψ1, f1) := (Ψ2 ◦Ψ1, f2 ◦ f1) is a morphism from (G, θ,Σ)
to (G′′, θ′′,Σ′′).

Actually, with this morphisms, the group actions form a category.

Proposition 6.5. Let (Ψ, f) be a morphism between the actions (G, θ,Σ) and (G′, θ′,Σ′) . If M,N ⊂ Σ
then

Ψ
(
GN
M

)
⊂

(
G′)f(N)

f(M)
. (6.3)

If Ψ is surjective and f is injective, in (6.3) one obtains the equality. Compare with Proposition 1.35.

Proof. Let g ∈ GN
M and σ ∈ M such that g • σ ∈ N . Then

Ψ(a) •′ f(σ) = f(a • σ) ∈ f(N) ,

which shows (6.3).
On the other hand, pick a′ ∈ G′ and σ ∈ M such that a′•′f(σ) ∈ f(N) . If Ψ is surjective, this

a′ ∈
(
G′)f(N)

f(M)
can be written as a′= Ψ(a) . Then

a′ •′ f(σ) = Ψ(a) •′ f(σ) = f(a • σ) ∈ f(N) .

By injectivity of f this implies that a • σ ∈ N , implying in its turn that a ∈ GN
M , so the equality in

(6.3) follows.

Exercise 6.6. Examine the effect of a generalized morphism (maybe of a certain type) on orbits, invari-
ant sets, dynamical properties .....
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7 Actions on circles and tori

7.1 Actions of R on circles (continuous rotations)

First we take G := R ∋ s, t and Σ := T := R/Z ∋ [x], [y] or equivalently Σ := S ∋ z, z′, ζ, e2πis .

Definition 7.1. Let ϑ ∈ R ; we define the continuous action (CHECK!)

θ : R → Homeo(T) , θt([x]) ≡ t • [x] := [x+ ϑt] .

Equivalently:
θ : R → Homeo(S) , θt(z) := ze2πiϑt .

Example 7.2. If ϑ = 0 , one has the trivial action (only fixed points)

θt([x]) = [x] , ∀ t ∈ R , [x] ∈ T .

Example 7.3. If ϑ ̸= 0 , one has one orbit (transitive system) with isotropy group

R0
0 = ϑ−1Z = R[x]

[x] for any[x] ∈ T .

This corresponds to our definition of periodicity (the isotropy group is syndetic: ϑ−1Z+
[
0, ϑ−1

]
= R).

The orbit is compact and homeomorphic to R/Z .

Exercise 7.4. The actions θ1 and θ2 are isomorphic if and only if the real numbers ϑ1 and ϑ2 are equal.
What is the most general form of a closed subgroup of R ? Define the period of a periodic R-orbit.

What are the periods in our case? What should happen with the periods of two isomorphis actions?
The rotation speed is important here! You can also use the isotropy subgroup!

For translations of R upon itself, the velocity is NOT important. For 0 ̸= β ̸= 0 find an isomorphism
between

t •β x := t+ βx and t •γ x := t+ γx

7.2 Actions of Z on circles (discrete rotations)
For ϑ ∈ R , the map θ1;T → T is an automorphism. By iteration

θ±m :=
(
θ−1
1 )m ∀m ∈ N

one gets an action of Z on T . Anyhow, it is a restriction of the previous θ from R to Z and

θn([x]) := [x+ nϑ] , ∀n ∈ Z , [x] ∈ T .

Proposition 7.5. Let [a] ∈ T the function

f[a] : T → T , f[a]([x]) := [a] + [x] ≡ [a+ x]

is an automorphism of the dynamical system (Z, θ,T) .

Proof. Obviously, f[a] is a homeomorphisms.
I will do the following computation for n ∈ Z , but it would be enough to do it for n = 1 :

f[a]
(
θn([x])

)
= f[a]

(
[x+ nϑ]

)
= [a+ x+ nϑ] = θn

(
[a+ x]

)
= θn

[
f[a]([x])

]
,

so f[a] ◦ θn = θn ◦ f[a] for every n ∈ Z .
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Remark 7.6. Consequently, the orbit of [0] is mapped over the orbit of [a] for every [a] ∈ T . All the
points of T have similar properties under the action θ .

Definition 7.7. (a) We say that σ ∈ Σ is periodic, and we write σ ∈ Σper , if Gσ
σ is syndetic .

(b) The point σ ∈ Σ is said to be almost periodic if GU
σ is syndetic for every neighborhood U of σ

in Σ . We denote by Σalper the set of all the almost periodic points.

(c) If Σalper = Σ , the action is pointwise almost periodic.

Theorem 7.8. The point σ is almost periodic if and only if Oσ is minimal and compact.

Proposition 7.9. In (Z, θ,T) all the points are almost periodic.

Proof. Since T is compact, it has a minimal subsystem. So there is a point with (compact) minimal
orbit closure; it will be almost periodic. Then the other points will also have minimal orbit closures,
and will be almost periodic.

Exercise 7.10. Make a direct proof, please !

Remark 7.11. We showed before that

Σfix ⊂ Σper ⊂ Σalper ⊂ Σrec ⊂
⋃
σ∈Σ

Lσ ⊂ Σnw . (7.1)

In our case, the chain starts with Σalper .
If (and only if) ϑ ∈ Q\{0} , it starts with Σper .
If ϑ ∈ R , it is full.

Exercise 7.12. The point σ is called weakly periodic (we write σ ∈ Σwper) if the subgroup Gσ
σ is not

compact. What happens in our case ?

Exercise 7.13. If ϑ = p/q ∈ Q (irreducible fraction, with p ∈ Z and q ∈ N) , all the points of T are
periodic with period q .

Theorem 7.14. The discrete dynamical system (Z, θ,T) is minimal if and only if ϑ is irrational.

So for ϑ /∈ Q , all the points are almost periodic without being periodic.

Proof. ”Only if” is clear. In the setting of Exercise 7.13 the orbit will be finite, composed of q points.

”If”. It is known that there are four types of subgroups of R:
(i) {0} , (ii) R , (iii) aZ for some a > 0 and (iv) dense subgroups.
Let us denote by p : R → T = R/Z the quotient map and O[0] ⊂ T the orbit of the point [0] . Then

H : = p−1
(
O[0]

)
= {x ∈ R | p(x) = [x] = x+ Z ∈ O[0]}
= {x ∈ R | x+ Z = nϑ+ Z for some n ∈ Z}
= {m+ nϑ | m,n ∈ Z}

is a subgroup of R . This is a mixture of rational and irrational numbers, so one cannot have H ⊂ aZ
for some positive real number a .
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Exercise 7.15. ”If” would deserve a different proof:
Let k ∈ N ; then T can be covered by k closed intervals of length 1/k . Show that each of this

interval contains two of the points of the (countable) positive orbit

O+
[0] = {[nϑ] | n ∈ N}

(these points are different).
Show that the orbit O[0] is 1/k-dense in T . Note that k is arbitrary.

Exercise 7.16. Recall that
Strongly mixing ⇒ weaklyly mixing ⇒ topologically transitive ⇐ minimal.
For ϑ /∈ Q our system is minimal. Show that it is not weakly mixing.

Definition 7.17. A dynamical system (G, θ,Z) is called coalescent if each of its endomorphisms is an
automorphism.

Proposition 7.18. If ϑ /∈ Q , then (Z, θ,T) is coalescent.

Proof. Let f : T → T be a homeomorphism. One has by equivariance

f
(
[nϑ]

)
= f

(
[0] + [nϑ]

)
= f

(
[0]

)
+ [nϑ] , ∀n ∈ N .

It follows that on the orbit of [0] the endomorphism is just rotation by f
(
[0]

)
.

If ϑ /∈ Q , this orbit is dense, so f is just rotation by f
(
[0]

)
.

This guy is an automorphism.

7.3 Isomorphisms between actions on circles

In this subsection ϑ, ϑ1, ϑ2 are real numbers.

Proposition 7.19. First we consider the (transitive) dynamical systems (R, θ,R) , where

θt(x) := x+ ϑt , ∀t, x ∈ R .

If ϑ1 ̸= 0 ̸= ϑ2 , the actions
(
R, θ1,R

)
and (R, θ2,R) are isomorphic through

f : R → R , f(x) :=
ϑ2

ϑ1
x .

Proof.

θ2t [f(x)] = f(x) + ϑ2t =
ϑ2

ϑ1
x+ ϑ2t =

ϑ2

ϑ1

(
x+ ϑ1t

)
= f

[
θ1t (x)

]
.

Proposition 7.20. We now consider the continuous actions on the torus (circle) (R, θ,T) given by

θt([x]) := [x+ ϑt] , ∀ t ∈ R , [x] ∈ T := R/Z .

The actions
(
R, θ1,T

)
and

(
R, θ2,T

)
are isomorphic if and only if the real numbers ϑ1 and ϑ2 are

equal.
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Proof. What is the most general form of a closed subgroup of R ? Define the period of a periodic
R-orbit. What are the periods in our case? What should happen with the periods of two isomorphis
actions? The rotation speed is important here! You can also use the isotropy subgroup!

Definition 7.21. The discrete actions on the torus (Z, θ,T) :

θt([x]) := [x+ ϑn] , ∀n ∈ Z , [x] ∈ T := R/Z .

Remark 7.22. We know that θ is minimal if and only if ϑ /∈ Q . So if the two parameters ϑ1, ϑ2 are one
rational and the other one irrational, the actions cannot be isomorphic.

Remark 7.23. We know that if ϑ ∈ Q with ϑ = p/q (irreducible) , then all the orbits are periodic,
with period q. So if two rational parameters ϑ1, ϑ2 have different denominators, the actions cannot be
isomorphic.

There are still many undetermined cases.

Theorem 7.24. Let ϑ1, ϑ2 ∈ R . Then
(
Z, θ1,T

)
and

(
Z, θ2,T

)
are isomorphic if and only if[

ϑ1
]
=

[
± ϑ2

]
.

Proof. If.
Use idT : T → T is the sign is + and [x] → [−x] if the sign is − .
Actually, if

[
ϑ1

]
=

[
ϑ2

]
(i. e. ϑ2 = ϑ1 + k for some integer k) the two actions are identical:

θ2n
(
[x]

)
=

[
x+ nϑ2

]
=

[
x+ nϑ1 + nk

]
=

[
x+ nϑ1

]
= θ1n

(
[x]

)
.

Lemma 7.25. Any continuous function f : T → T has a lifting to a continuous function F : R → R .

R R

T T
?

p

-F

?

p

-f

f ◦ p = p ◦ F .

The two functions are simultaneously homeomorphisms.

Proof. Because p is a universal covering map.

Lemma 7.26. Two liftings F,G : R → R of the same continuous map f : T → T differ only by a
constant m ∈ Z .

Proof. Since p ◦ F = f ◦ p = p ◦G , one has

p
(
F (x)

)
= [F (x)] = [G(x)] = p

(
G(x)

)
, ∀x ∈ R ,

which means that
F (x)−G(x) ∈ Z , ∀x ∈ R .

But F −G is continuous, so it has no other choice than being constant.
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Lemma 7.27. Let F : R → R be a lifting of the continuous map f : T → T .

(a) Then there exists some M ∈ Z such that F −M idR is periodic with period 1 . This means that

F (x) = Mx+ P (x) , with P (x+ 1) = P (x) , ∀x ∈ R .

(b) If f is a homeomorphism, one has M = ±1 , i. e.

F = ±idR + periodic function.

Proof. (a) For every x ∈ R one has

[F (x+ 1)] = f
(
[x+ 1]

)
= f

(
[x]

)
= [F (x)] .

This and the continuity of F imply that for some integer constant M one has

F (x+ 1) = M + F (x) , ∀x ∈ R .

Then you get the desired periodicity:(
F −M idR

)
(x+ 1) = F (x+ 1)−Mx−M = F (x)−Mx =

(
F −M idR

)
(x) .

(b) The situation M = 0 is impossible; a periodic function is not a homeomorphism. We are going
to show that M ≥ 2 is impossible. The case M ≤ −2 is treated similarly, and this is enough.

If M > 1 , then
F (1) = F (0) +M > F (0) + 1 > F (0) .

So there exists y ∈ (0, 1) such that F (y) = F (0) + 1 . It follows that

f
(
[y]

)
= [F (y)] = [F (0)] = f

(
[0]

)
,

contradicting the injectivity of f .

Remark 7.28. • If F − idR is periodic, then

F (x+ 1) = x+ 1 + P (x+ 1) = x+ 1 + P (x) = F (x) + 1

for every x ∈ R . Then F is increasing and we say that f is orientation preserving.

• If F − idR is periodic, then F (x + 1) = F (x) − 1 for every x ∈ R . Then F is decreasing and
we say that f is orientation reversing.

Proof. Only if.

Let
(
Z, θ1,T

) f−→
(
Z, θ1,T

)
be an isomorphism. It is enough to take ϑ1, ϑ2 ∈ [0, 1) (why?) . We

must show that ϑ1 = ϑ2 or that ϑ1 = 1− ϑ2 . I cite from [3]:
If both flows rotate in the same direction and ϑ1 ̸= ϑ2, then points of one flow, going faster, would

overtake points in the other flow, and repeatedly so, which should be impossible for isomorphic flows.

By Lemmas 7.25 and 7.26, the homeomorphism f : T → T has a lifting to a homeomorphism
F : R → R , unique up to an additive constant belonging to Z .

Since
Θi

1 : R → R , Θi
1(x) := x+ ϑi
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is a lifting of θi1 , for i = 1, 2 , then

F ◦Θ1
1◦ F−1 : R → R ,

(
F ◦Θ1

1 ◦ F−1
)
(x) = F

[
F−1(x) + ϑ1

]
is a lifting of θ21 :

p ◦
(
F ◦Θ1

1◦ F−1
)
= f ◦ p ◦Θ1

1◦ F−1

= f ◦ θ11◦ p ◦ F−1

??
= f ◦ θ11◦ f−1◦ p
??
= θ21 ◦ p

But Θ2
1 is also a lifting of θ21 , so there exists k ∈ Z such that

F ◦Θ1
1◦ F−1 = Θ2

1 + k idR .

By iterating n times and setting Θi
n :=

(
Θi

)n
, one gets

F ◦Θ1
n◦ F−1 = Θ2

n + nk idR ,

which reads explicitly

F
[
F−1(x) + nϑ1

]
= x+ nϑ2 + nk , ∀x ∈ R , n ∈ Z . (7.2)

A. Suppose that f is orientation-preserving, i.e. that F is increasing. By Lemma 7.27 , F − idR is
periodic with period 1 , and also continuous when restricted to [0, 1] , so it is bounded:

|F (y)− y| ≤ C < ∞ , ∀ y ∈ R .

By (7.2) with y := F−1(x) + nϑ1 , we get∣∣x+ nϑ2 + nk − F−1(x)− nϑ1
∣∣ ≤ C , ∀x ∈ R , n ∈ Z .

For fixed x the l. h. s. can remain bounded only when ϑ2 + k − ϑ1 = 0 , meaning here that ϑ1 = ϑ2 .

B. Suppose that f is orientation-reversing, i.e. that F is decreasing. Then one gets an orientation
preserving isomorphism −f , having −F as a lifting. It will follow similarly that y → |F (y) + y| is
bounded, hence ϑ2 + k + ϑ1 = 0 , meaning here that ϑ1 + ϑ2 = 0 .

Remark 7.29. Let us set
Aϑ := C(T)⋊θ Z

for the crossed product C∗-algebras associated to the C∗-dynamical system
(
Z, θ, C(T)

)
obtained from

the topological dynamical system (Z, θ,T) :

θn(φ) := φ ◦ θ−n , ∀n ∈ Z , φ ∈ C(T) .

It is called the rotation algebra with parameter ϑ ∈ R . It admits many other equivalent descriptions
and it plays a very important role.

If ϑ ∈ Q , there are closed invariant subsets in T , to which we associate proper θ-invariant ideals
J in C(T ) and then proper invariant ideals C(T)⋊θ Z in Aϑ . If ϑ /∈ Q , then Aϑ is simple!

There is an isomorphism Aϑ1 ∼= Aϑ2 if and only if
[
ϑ1

]
=

[
± ϑ2

]
.
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8 Shift systems

Let S := {0, 1, . . . , s − 1} a finite set (seen as a topological space with the discrete topology). We
could call it an alphabet and its elements are letters.

The group will be Z . We work with the Hausdorff compact space

Σ ≡ ΣS := SZ =
∏
i∈Z

S = C(Z, S) =
{
x := (xi)i∈Z

∣∣xi ∈ S
}

with the product topology.
The action will be obtained iterating the homeomorphism (the shift)

θ1 ≡ τ : Σ → Σ , τ(x)i := xi+1 ∀ i ∈ Z .

So we get
θ : Z → Homeo(Σ) , θn(x)i := τn(x)i = xi+n = (n • x)i .

Exercise 8.1. Show that
(
Z, θ,ΣS

)
is indeed a topological dynamical system. It is called the symbolic

dynamical system (flow) on s symbols (letters). Maybe use the canonical projections

πi : S
Z → S , πi(x) := xi .

Compute πi ◦ τ .

Notation, terminology, remarks

• The homeomorphism τ pushes the bi-sided infinite sequence x one place to the left.

• Word of length k = element of Sk := S×. . .×S (k times). Word = block.

• Finite word = word of any length = element of S⋆ := ⊔k∈NS
k , where S0 := {∅} . In writing

finite and infinite words (sequences), we usually skip commas and brackets:

(y1, y2, . . . , yk) ≡ y1y2 . . . yk , (xi)i∈N ≡ . . . x−2x−1x0x1x2 . . .

when you see something as . . . abċde . . . , this means that c is the zero component. Note that
τ(. . . abċde . . . ) = . . . abcḋe . . .

• Actually S⋆ ≡ F+(S) is the free monoid on s elements, with the multiplication (concatenation)

x0x1 . . . xk−1 · y0y1 . . . yl−1 := x0x1 . . . xk−1y0y1 . . . yl−1

• The non-empty finite word b is contained (appears, occurs) in the finite word c if c = abd for
some other finite words a, d (which are allowed to be void). If a = ∅ , we say that c begins with
b . If d = ∅ , we say that c ends with b .

• How many times does 01 occur in 0113010013 ?

• If x ∈ Σ = SZ , k ∈ Z and n ∈ N one sets x[k,k+n] := xk . . . xk+n ∈ Sn. Using this, you can
say where a certain finite word appears in an infinite word.

• A word of odd length 2p + 1 occurs as a central block in x if it occurs at position −p (i. e.
bp+1 = x0).

• To simplify (to a certain extent), we use sometimes ambiguous or incomplete notations or termi-
nology.
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Theorem 8.2. Let x ∈ Σ .

(i) y ∈ Ox if and only if any word occuring in y also occurs in x (an infinity of times!!)

(ii) x has a dense orbit in Σ if and only if every finite word occurs in x .

(iii) x is recurrent if and only if every word which occurs in x does so at places j with arbitrarily
large j .

(iv) x is almost periodic if and only if every finite word u that appears in x appears with bounded
gaps, i. e. {

j ∈ Z
∣∣u appears in x at place j

}
is syndetic in Z).

(v) x is periodic if and only if there exists p ∈ N such that xi+p = xi for evert i ∈ Z (i. e. the
function x : Z → S is periodic).

Definition 8.3. The Hausdorff topological space X is called 0-dimensional if it has a topological base
formed of clopen sets (open and closed).

This is equivalent to every point x ∈ X having a neighborhood base formed of clopen sets.

Remark 8.4. It can be shown (Brower’s Theorem) that any second countable, 0-dimensional compact
Hausdorff space without isolated points is homeomorphic to {0, 1}N and (equivalently) to the middle-
third Cantor space. Such a space will be called a Cantor set. In particular, every countable product∏∞

n=1 Xn with 2 ≤ #Xn < ∞ is a Cantor set.

Definition 8.5. • In the Hausdorff topological space X , the connected component of a point x is
the largest connected subset con(x) containing x .

• The space X is called totally disconnected if con(x) = {x} for every x ∈ X .

Proposition 8.6. (a) If X is 0-dimensional, it is totally disconnected.

(b) For locally compact Hausdorff spaces, the two properties are equivalent.

Proof. (a) One must show that all the connected subsets A are singletons. Let x, y ∈ A , with disjoint
clopen neighborhoods U and V contained in A . Then A is the union of three disjoint clopen subsets.

(b) Difficult.
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Recall that S := {1, . . . , s} , the space is Σ := SZ with the (correct) product topology and F+(S) ≡
S⋆ :=

⊔
n∈N Sn is the family (a free monoid) of finite words with letters from S .

Lemma 8.7. Let Λ be a directed set, x(λ), x ∈ SZ for every λ ∈ Λ . One has x(λ) → x if and only if

∀ j ∈ Z , ∃λ(j) ∈ Λ such that xλ
j = xj , ∀λ ≥ λ(j) .

Proof. Convergence in a product space is equivalent with convergence of all the j-components in S
(maybe not uniformly in j) . But S is a discrete space; take ϵ < 1 .

Example 8.8. Suppose that Λ = N and

x = . . . 1111111111111 · · · ∈ {0, 1}Z.

The sequence
(
x(m)

)
m∈N with

x
(m)
j = 1 if |j| ≤ m2, x

(m)
j = 0 if |j| > m2

converges to x . Otros tipos?

Exercise 8.9. If T ⊂ S , then TZ is an subset of SZ (select only the words with letters in the sub-
alphabet T ). Show that it is closed and invariant.

Definition 8.10. Let ∅ ≠ u ∈ S⋆ and j ∈ Z , the cylinder based on u at place j is

Cj [u] :=
{
x ∈ Σ

∣∣x[j,j+|u|−1] = u
}
.

If u = u1 . . . ul if x wants to belong to Cj [u] , then

xj = u1 , . . . , xj+l−1 = ul ,

while xk ∈ S is arbitrary for other values of k .

Remark 8.11. You can speak of centered cylinders and use the notation Cc[u] . You can use θ to place
cylinders whenever you want: Cj [u] = θ−j

(
C0[u]

)
.

More generally, shifts send cylinders into cylinders: θk
(
Cl[u]

)
= Cl−k[u] . (This will show again

that τ is continuous.)

Remark 8.12. If u is contained in v , then Cj [u] ⊃ Cj [v] .
Are there other possibilities?

Lemma 8.13. Any cylinder is a basic open set in Σ = SZ =
∏

i∈Z S .

Proof. One may write Cj [u] =
∏

i∈Z Ui ,
where Ui = {ui−j} if i ∈ {j, j + |u| − 1} and Ui = S otherwise.

Lemma 8.14. A neighborhood base of x ∈ Σ is formed by all the centered cylinders{
Cc[x−j . . . xj ]

∣∣ j ∈ N
}
.
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Proof. If x ∈ U = open, then
x ∈ V =

∏
i Vi ⊂ U with Vi = {xi} for i ∈ {j, . . . , j + n} and Vi = S otherwise.

This means that V = Cj [xj , . . . xj + n] .
This cylinder containes a centered cylinder containing x (increasing the restriction).

Exercise 8.15. Show that convergence in SZ can be understood via Lemma 8.14.

Proposition 8.16. Every cylinder is a clopen set.

Thus Σ is zero-dimensional and totally disconnected. It has no isolated points.

Proof. Because each subset of S is clopen.

Corollary 8.17. Σ = SZ is homeomorphic to the Cantor set.

Remark 8.18. Each countable product of metric spaces is metrizable. If
(
Xn, dn)n∈Z are metric spaces,

δ :
∏
n

Xn ×
∏
n

Xn → R+ , δ(x, y) :=
∑
n∈Z

2−n dn(xn, yn)

1 + dn(xn, yn)

is a metric compatible with the product topology. It is not at all canonical (coefficients 2−n to insure
convergence, function t → t

1+t to make certain factors bounded, others).
On S one can consider the discrete metric. Being a countable product of metric spaces, Σ is metriz-

able.

Example 8.19. Show that ∆ : SZ × SZ → R+ given for x ̸= y bu

∆(x, y) :=
1

1 + min{|j| | xj ̸= yj}

is a compatible metric, with respect to which cylinders became balls:

Cc
[
x−j . . . xj

]
=

{
y ∈ SZ ∣∣∆(x, y) ≤

[
1 + (j + 1)

]−1}
.

Example 8.20. Show that for every two different points x, y there is k ∈ Z such that

∆
(
θk(x), θk(y)

)
= 1 .

One says that the metric dynamical system (Z, θ,Σ,∆) is expansive.

Remark 8.21. One can show that there is no metric which respect to which τ is an isometry.
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Theorem 8.22. There are exactly s fixed points.

Proof. Obviously, a fixed point is a constant sequence, defined by one of the letters.

Corollary 8.23. (Z, θ,Σ) is not minimal .

Definition 8.24. The point x ∈ Σ is periodic if Zx
x is a syndetic subgroup of Z , i. e. Z/Zx

x is compact
(finite). Actually the syndetic subgroups of Z have the form qZ for some q ∈ N∗.

Theorem 8.25. The point x ∈ Σ is periodic if and only if there exists p ∈ N∗ such that xi+p = xi for
every i ∈ Z (i. e. the function x : Z → S is periodic).

Proof. The condition xi+p = xi for every i ∈ Z means that θp(x) = x , i.e. that p ∈ Zx
x .

Corollary 8.26. The set Σper of all periodic points is (i) countable and (ii) dense.

Proof. (i) The point x is periodic if and only if

x = . . . uu̇u . . . for some u ∈ S⋆ .

But S⋆ is countable.
(ii) It is enough to show that in every (small) cylinder there is a periodic point. Let Cj(v) such a

cylinder, with j ∈ Z and v ∈ S⋆. The sequence

y := . . . vv̇v . . .

is periodic, and θ−j(y) ∈ Cj [v] .

Theorem 8.27. Let x ∈ Σ . Then y ∈ Ox if and only if any word occuring in y also occurs in x (an
infinity of times!!).

We say that the dictionary Dy of the infinite word y is contained in the dictionary Dx of x .

Proof. One has y ∈ Ox if and only if every neighborhood of y intersects Ox ,
equivalent to the fact that for every subword yj . . . yj+k of y one has Cj

[
yj . . . yj+k

]
∩Ox ̸= ∅ ,

meaning that for every subword yj . . . yj+k of y there exists n ∈ Z with θn(x) ∈ Cj

[
yj . . . yj+k

]
,

meaning that every subword yj . . . yj+k of y appears at the position n+ j in x , for some n .

Exercise 8.28. Why ”an infinity of times”?

Exercise 8.29. Let S = {0, 1} and z ∈ {0, 1}Z such that zn = 1 if and only if n = 0 . Then

Oz = Oz ⊔Ox = Oz ⊔ {x} ,

where x := . . . 00000 . . . .

Exercise 8.30. Let S = {0, 1} and z ∈ {0, 1}Z such that zn = 1 if and only if |n| = 2m for some
m ∈ N . Then

Oz = Oz ⊔Ox ⊔Oy = Oz ⊔ {x} ⊔Oy ,

where x := . . . 00000 . . . and y := . . . 001̇00 . . . .

39



Exercise 8.31. Let S = {0, 1, 2} and z ∈ {0, 1, 2}Z containing 1 and 2 just once.
Compute the closure of the orbit of z .

Remark 8.32. The dictionary of a subset A ⊂ SZ is D(A) :=
⋃

x∈A Dx (all the finite words contained
in some infinite word belonging to A) .

Properties of such dictionarie?
Connectios between dictionaries and closed invariant sets?

Corollary 8.33. (Z, θ,Σ) is pointwise transitive .

Proof. We must construct a point x with dense orbit. Since S⋆ is countable, let u(1), u(2), . . . an
enumeration of the elements of S⋆. The sequence

x := . . . u(3)u(2)u̇(1)u(2)u(3) . . .

has a dense orbit, by Theorem 8.27. Todas las palabras finitas aparecen en x ; el dicctionario de x
coincide con SZ. So any element y ∈ Σ belongs to Ox = Σ .

Exercise 8.34. Show that there is an infinity of dense orbits.

Lemma 8.35. Let x, y ∈ SZ, j, k ∈ Z and u = {u0, . . . , up}, v = {v0, . . . , vq} ∈ S⋆. We have

Zy
x =

{
n ∈ Z

∣∣xi+n = yi , ∀i
}
, (8.1)

ZCk[v]
x =

{
n ∈ Z

∣∣xk+n+i = vi , ∀ i = 0, . . . , q − 1
}

=
{
n ∈ Z

∣∣x[k+n,k+n+q−1] = v
} (8.2)

ZCk[v]
Cj [u]

=
{
n ∈ Z

∣∣∃x ∈ SZ, x[j;j+p−1] = u , x[k+n,k+n+q−1] = v
}
. (8.3)

Proof. The first identity follows from the transcription of the condition θn(x) = y .
For the second identity we write

n ∈ ZCk[v]
x ⇔ θn(x) ∈ Ck[v]

⇔ x ∈ θ−n

(
Ck[v]

)
= Ck+n[v]

⇔ xk+n+i = vi , ∀ i = 0, . . . , q − 1

⇔ x[k+n;k+n+q−1] = v .

And for the last one:

n ∈ ZCk[v]
Cj [u]

⇔ ∃x ∈ Cj [u] , n ∈ ZCk[v]
x

⇔ ∃x ∈ SZ, xj+i = ui , ∀ i = 0, . . . , p− 1 , xk+n+i = vi , ∀ i = 0, . . . , q − 1

⇔ ∃x ∈ SZ, x[j;j+p−1] = u , x[k+n,k+n+q−1] = v .

Example 8.36. In particular, if a, b are letters, we have

ZCk[b]
Cj [a]

=
{
n ∈ Z

∣∣ ∃x ∈ SZ, xj = a , xk+n = b
}
. (8.4)

But don’t forget that Cj [a], Cb[b] are ”large” cylinders. We are mainly interested in small cylinders
(neighborhoods), coming from large words u, v .
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Definition 8.37. A point σ ∈ Σ is called recurrent if it satisfies one of the following three equivalent
conditions:

(c) σ ∈ Lσ ,

(c) there is a divergent net (ai)i∈I ⊂ G such that ai • σ → σ ,

(d) GU
σ is not relatively compact for any open neighborhood U of σ .

Theorem 8.38. The point x ∈ SZ is recurrent if and only if every word which occurs in x does so at
places j with arbitrarily large j .

Proof. The point x is recurrent

if and only if ZCk[v]
x is not finite as soon as the cylinder Ck[v] is a neighborhood of x ,

meaning that if v appears in x at some position k then
{
n ∈ Z

∣∣x[k+n,k+n+q−1] = v
}

is infinite
meaning that if v appears in x at some position k then it appears in x at an infinity of positions.

Exercise 8.39. The point z ∈ {0, 1}Z from Exercise 8.30 is not recurrent. It is not enough to check
letters (one-letter words); have a look at (moderately) larger centered subwords!

Exercise 8.40. Formulate definitions and statements for ”positive recurrence” and ”negative recur-
rence”.

Theorem 8.41. The point x ∈ Σ is almost periodic if and only if
(Cond.A) every finite word v = v0 . . . vq−1 that appears in x appears with bounded gaps, i. e.{

n ∈ Z
∣∣ v appears in x at place n

}
is syndetic in Z .

Remark first that (Cond. A) is equivalent to
(Cond.A0) every finite word v that appears in x at position 0 appears with bounded gaps, i. e.{

n ∈ Z
∣∣ v appears in x at place n

}
is syndetic in Z .

The equivalence between (Cond.A) and (Cond.A0) follows from the fact that almost periodicity of
points is invariant under the action.

Proof. The point x is almost periodic if and only if

ZCk[v]
x = Zθ−k(C0[v])

x = −k + ZC0[v]
x = −k +

{
n ∈ Z

∣∣x[n,n+q−1] = v
}

is syndetic as soon as the cylinder Ck[v] is a neighborhood of x , i. e. as soon as x[k,k+q−1] = v .
But this is precisely (Cond A).

Exercise 8.42. Show using the two characterizations Theorem 8.25 and Theorem 8.45 that periodicity
implies almost periodicity.

Corollary 8.43. There exist points in Σ which are almost periodic but not periodic.

Proof. Both the Fibonacci and the Morse sequences are such examples.
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Definition 8.44. The action (G, θ,Σ) is strongly mixing if the complement of GV
U is relatively compact

for every U, V ∈ Top∗(Σ) .

Theorem 8.45. The dynamical system (Z, θ,Σ) is strongly mixing, so it is also weakly mixing and
non-wandering.

Proof. We already know that strongly mixing implies both weakly mixing and non-wandering.

One only needs to show that the complement of ZCk[v]
Cj [u]

is finite for any j, k, u, v . Note that

ZCk[v]
Cj [u]

= Zθ−k(C0[v])
θ−j(C0[u])

= j − k + ZC0[v]
C0[u]

,

so it is enough to take j = 0 = k . Replacing u and v by another finite word w containing both of them,
it is enough to show that

the complement of ZC0[w]
C0[w] is finite for any w = w1 . . . wp−1 ∈ S⋆,

or, equivalently, that
there exists N ∈ N such that

{n ∈ Z | |n| ≥ N} ⊂ ZC0[w]
C0[w] =

{
n ∈ Z

∣∣∃ y ∈ SZ, y[0;p−1] = w , y[n,n+p−1] = w
}
,

This can be rephrased as the existence of some N ∈ N such that

|n| ≥ N ⇒ ∃ y ∈ SZ, y[0;p−1] = w , y[n,n+p−1] = w .

GUESS WHYYYYYYYY !
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9 Subhifts

Definition 9.1. A subshift is a closed invariant subset Λ of
(
Z, θ,Σ = SZ) , seen as a sub-dynamical

system.

Example 9.2. Orbit closures (but not orbits, in general) are subshifts.

Example 9.3. If ∅ ≠ T ⊂ S , then

{x ∈ Σ |xj ∈ T , ∀ j ∈ Z}

is a subshift that can be identified to TZ .

Definition 9.4. • The dictionary Di(x) of the sequence x ∈ SZ is the family of all the finite words
appearing in x .

• The dictionary Di(B) of the subset B ⊂ SZ is the family of all the finite words appearing in
some sequence x ∈ B :

Di(B) =
⋃
x∈B

Di(x) ⊂ S⋆ :=
⊔
m∈N

Sm.

• The elements of Di(B) are called B-admissible words.

Remark 9.5. The dictionary is very far from determining the family.
It is not at all amazing to have A ̸= B but Di(A) = Di(B) .

Exercise 9.6. Let Λ ⊂ Σ be a subshift.

• x ∈ Λ has a dense orbit in Λ if and only if each Λ-admissible word appears in x .

• Λ is minimal if and only if every Λ-admissible word appears in all the sequences of Λ .

• Λ is pointwise transitive (equivalent to topologically transitive) if and only if there is a sequence
x ∈ Λ containing all the dictionary of Λ .

• Λ is non-wandering if for every w ∈ Di(Λ) and for every n ∈ N there exists y ∈ Λ in which w
appears at two different places j and j + k , with k ≥ n . What happens for Λ = Σ ?
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Definition 9.7. • The dictionary Di(x) of the sequence x ∈ SZ is the family of all the finite words
appearing in x .

• The dictionary Di(B) of the subset B ⊂ SZ is the family of all the finite words appearing in
some sequence x ∈ B :

Di(B) =
⋃
x∈B

Di(x) ⊂ S⋆ :=
⊔
m∈N

Sm.

• The elements of Di(B) are called B-admissible words.

Lemma 9.8. If B ⊂ Σ , then Di(B) = Di(B) .

Proof. Since B ⊂ B , one surely has Di(B) ⊂ Di(B) .
Let now B ∋ x = limm xm, with xm ∈ B , for every m ∈ N .
Let w ∈ Di(x) , meaning that x[k,k+|w|] = w for some k ∈ Z .
There exists M ∈ N such that for every m > M one has

xm
[k,k+|w|] = x[k,k+|w|] = w ,

so that for such a m we get w ∈ Di(xm) ⊂ Di(B) . Therefore

Di(B) =
⋃
x∈A

Di(x) ⊂ Di(B) .

Exercise 9.9. Another proof, using cylinders.

Corollary 9.10. If A ⊂ Σ , then Di(A) = Di
[
Sat(A)

]
= Di

[
Sat(A)

]
.

Remark 9.11. We have defined a map

2Σ ∋ A → Di(A) ∈ 2S
⋆

.

We have seen that it is not at all injective.
Is it surjective? Given P ⊂ S∗, is there some A ⊂ Σ such that Di(A) = P ?
Note that for every subword u of v ∈ Di(A) one has u ∈ Di(A) . This does not happen for all the
subsets P of S⋆.

Definition 9.12. If P ⊂ S∗, we set

Λ̂(P ) :=
{
y ∈ Σ

∣∣ y[k,k+n] ∈ P , ∀ k ∈ Z , n ∈ N
}

and (if it is non-void) we call it the subshift defined by P .

Proposition 9.13. If non-void, Λ̂(P ) is a subshift and Di
[
Λ̂(P )

]
⊂ P . The inclusion may be strict.

Proof. By its very definition, Λ̂(P ) is invariant.
All the conditions for y ∈ Λ̂(P ) are ”finite type”. From this you infer that Λ̂(P ) is closed.
The inclusion Di

[
Λ̂(P )

]
⊂ P follows from the definition.

While P is arbitrary, Λ̂(P ) is restricted.
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Exercise 9.14. Let R ⊂ S∗. Then Λ̂(R) ̸= ∅ if and only if the next two conditions hold:

(i) For every subword u of v ∈ R one has u ∈ R ,

(ii) If w ∈ R , there exist u1, u2 ∈ R non-void such that u1wu2 ∈ R .

Proposition 9.15. Every subshift can be obtained by Definition 9.12:
If Λ ⊂ Σ is a subshift (closed and invariant), setting

Di(Λ) :=
{
u ∈ S∗ ∣∣u appears in some y ∈ Λ

}
we will have Λ̂

[
Di(Λ)

]
= Λ .

Proof. The inclusion Λ̂
[
Di(Λ)

]
⊃ Λ follows from the definition.

For the opposite inclusion, we pick y ∈ Λ̂
[
Di(Λ)

]
and show that it belongs to Λ = Λ .

Let Cj [u] be a cylindrical neighborhood of y . Then u ∈ Di(Λ) , thus it appears in some sequence
x ∈ Λ . By invariance, we may assume that it occurs at place j , which means that x ∈ Cj [u] ∩Λ ̸= ∅ .

Game over !

Corollary 9.16. This is the way you get orbit closures:

Ox = Λ̂[Di(x)] ,

where
Di(x) :=

{
u ∈ S∗ ∣∣u appears in x

}
.

Proof. By Corollary 9.10 and Propositions 9.15 one has

Ox = Λ̂
[
Di(Ox)

]
= Λ̂

[
Di(Sat(x)

]
= Λ̂[Di(x)] .

Remark 9.17. Let us set

Subshift(Σ) ≡ Clinv(Σ) :=
{
Λ ⊂

∣∣Λ closed and invariant
}

for the family of all the subshifts of (Z, θ,Σ) . Then Di : Subshift(Σ) → 2S
⋆

is an injective map and
Λ̂ is a left inverse.

Definition 9.18. For every P ⊂ S⋆ we set

Λ̃(P ) :=
{
x ∈ Σ

∣∣no u ∈ P occurs in x
}

Example 9.19. P is formed of all the words containing a or o . Por exemplo ”chiques” y ”chiquxs” are
allowed to appear in elements of Λ̃(P ) , but .....

Example 9.20. P is formed of all the Dirty Words. Give some examples !

Proposition 9.21. If non-void, Λ̃(P ) is a subshift.

Exercise 9.22. One has Λ̃(P ) = Λ̂
(
S⋆\P

)
. So the two approaches are equivalent.
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