

Ayudantía 4 - Segunda Ley de la Termodinámica

Profesor: Dr. José Cárcamo Vega Ayudantes: Ana Victoria Suarez Sebastián Zapata E Felipe Malgue.

- **P1.** Calcular la variación de entropía producida al transferir reversible e isotérmicamente 50 kJ de energ´ia en forma de calor a un gran bloque de cobre a:
 - (a) 0°C
 - (b) 70°C
- **P2.** Se comprime reversible y adiabáticamente una muestra de 2,00 moles de un gas ideal diatómico a 250 K hasta que su temperatura alcanza los 300 K. Sabiendo que $C_{V,m} = 27$, $5J K^{-1} mol^{-1}$, calcular q, w, ΔU , ΔH y ΔS
- **P3.** Calcule ΔS (para el sistema) cuando el estado de 2,00 moles de moléculas de un gas diatómico para el cual $C_{p,m} = \frac{7}{2}R$, cambia de 25°C y 1,50 atm a 135°C y 7,00 atm. ¿Cómo fundamenta usted el signo de ΔS ?
- **P4.** Calcule ΔH y ΔS_{tot} cuando dos bloques de hierro, cada uno con una masa de 1 kg, uno a 200°C y el otro a 25°C, son colocados en contacto en un contenedor aislado. La capacidad calor´ıfica del hierro es 0,449 J K^{-1} g^{-1} y puede asumirse como constante en el intervalo de temperatura considerado.
- **P5.** Defina lo que es un ciclo de Carnot.

Solución problemas numéricos

- **P1.** (a) $1,8x10^2 \text{ J } K^{-1}$
 - (b) $1,5x10^2 \text{ J } K^{-1}$
- **P2.** $w = 2,75kJ, q = 0, \Delta U = +2,75, \Delta H = 3,58kJ$
- **P3.** $\Delta S_{tot} = -7, 3J/K$
- **P4.** $\Delta H_{individual} = \pm 39 kJ$, $\Delta H_{total} = 0$, $\Delta S_{total} = 24 J/K$
- P5. -
- **P6.** ε = 0, 2512