Fabián Sepúlveda Soto

Pauta Ayudantía 7: Topologías débil-*

04 de Noviembre de 2022

[Teorema de Goldstein:] Sea E espacio de Banach. $J(B_E)$ es $\sigma(E^{\star\star}, E^{\star})$ -densa en $B_{E^{\star\star}}$.

- **P1.-** Sea X espacio de banach y sea $Y \subseteq X^*$ subespacio vectorial cerrado tal que se cumple que
 - i) Y separa puntos en X ii) $B_X = B_X(0,1)$ es compacta con la topología inducida por Y
 - a) Definamos $\pi: X^{\star\star} \longrightarrow Y^{\star}$ tal que $\pi(x^{\star\star}) = x^{\star\star}|_{Y}$ Muestre que π está bien definida y que $\pi(B_{X^{\star\star}}) = B_{Y\star}$

Demostración:

Sea $x^{\star\star} \in X^{\star\star}$. Como $\pi(x^{\star\star})$ es sólo la restricción de un funcional lineal continuo, es claro que $\pi(x^{\star\star}): Y \longrightarrow \mathbb{R}$ es lineal. Además, sea $y \in Y$

$$|(\pi(x^{\star\star}), y)| = |(x^{\star\star}|_Y, y)| = |(x^{\star\star}, y)| \le ||x^{\star\star}||_{X^{\star\star}}||y||_Y$$

por lo que $x^{\star\star}|_Y$ es continuo, luego la aplicación π está bien definida.

Ahora, como $\pi(\cdot)$ es una restricción a un subespacio lineal cerrado, se tiene que

$$||\pi(x^*)||_{Y^*} \le ||x^{**}||_{X^{**}}$$

se tiene que si $x^{\star\star} \in B_{X^{\star\star}}$, entonces $\pi(x^{\star\star}) \in \pi(B_{Y^{\star}})$, teniéndose que $\pi(B_{X^{\star\star}}) \subseteq B_{Y^{\star}}$.

Por otro lado, sea $y^* \in B_{Y^*}$, por teorema de prolongación de Hanh-Banach podemos extender y^* a $x^{**} \in X^{**}$ tal que $x^{**}|_Y = y^*$ y que $||x^{**}||_{X^{**}} = ||y^*||_{Y^*}$. Luego, si $y^* \in B_{Y^*}$, entonces por la preservación de la norma de Hanh-Banach $\pi(x^{**}) = y^* \in \pi(B_X^{**})$, teniéndose la otra inclusión.

b) Sea $y^{\star\star} \in Y^{\star}$. Pruebe que existe $x \in X$ tal que $\pi(J(x)) = y^{\star\star}$

Demostración:

Como J es isometría, se tiene que $J(B_X) \subseteq B_{X^{**}}$, luego por la parte a), se tiene que $\pi(J(B_X)) \subseteq \pi(B_{X^{**}}) = B_{Y^*}$. Ahora, por el Teorema de Goldstein, $J(B_X)$ es $\sigma(E^{**}, E^{*})$ -denso en $B_{X^{**}}$ (la toplogía inducida por los funcionales de evaluación).

Ahora, sea $x^{\star\star} \in B_{X^{\star\star}}$ tal que $\pi(x^{\star\star}) = y^{\star}$. Luego por el teorema de Goldststein $\exists \{x_{\alpha}\}_{{\alpha} \in A} \subseteq B_X$ red, tal que $\forall f \in X^{\star}, (f, x_{\alpha}) \longrightarrow (x^{\star\star}, f)$ ya que es la topología de los funcionales de evaluación.

Ahora por la propiedad ii), se tiene que $\forall y \in Y, (x_{\alpha_{\beta}}, y) \longrightarrow (x, y)$ ya que B_X es compacta para la topología inducida por Y para alguna subred $\{x_{\alpha_{\beta}}\}_{\alpha \in B}$ y $x \in B_X$.

Por unicidad del límite, se tiene que $\forall y \in Y, (\pi(Jx), y) = (Jx, y) = (y, x) = (x^{\star\star}, y) = (\pi(x^{\star}), y) = (y^{\star}, y)$, por lo tanto, por la propiedad i), se tiene que $\pi(Jx) = y^{\star}$

c) Demuestre que Y^* es isomorfo e isométrico a X.

Demostración:

Definamos la siguiente función $\phi: X \longrightarrow Y^*$, tal que $\phi(x) = \pi(Jx)$. De la parte b), como $\forall y^* \in B_{Y^*}, \exists x \in B_X$ tal que $\pi(Jx) = y^*$, se tiene que ϕ es sobreyectiva.

Veamos que es inyectiva, sean $x, z \in X$ tal que $\phi(x) = \phi(z)$. Luego se tiene que $\forall yinY, (y, x) = (Jx, y) = (Jz, y) = (y, z)$, pero por la propiedad i), la topología inducida por Y separa puntos, por lo cual x = z, siendo esta inyectiva, por tanto ϕ es isomorfismo

Al ser J y π funciones lineales, se tiene que ϕ es también lineal. Veamos que es isometría

$$||\phi||_{\mathcal{L}(X,Y^{\star})} = ||\pi(J)||_{\mathcal{L}(X,Y^{\star})} = \sup_{x \in X, ||x||_X = 1} \sup_{y \in Y, ||y||_Y = 1} \{(Jx,y)\} \le 1$$

luego $||\phi||_{\mathcal{L}(X,Y^*)} \leq 1$. Supongamos que $\forall x \in B_X$, con $||x||_X = 1$, se tiene que $|\phi(x)| < 1$. Por ser ϕ isomorfismo, se tiene que $\phi(B_X) = B_{Y^*}$, podemos construir $z \in B_X$ tal que $\phi(z) = \frac{\phi(x)}{||\phi(x)||_{Y^*}}$. Luego por inyectividad y linealidad de ϕ , se tiene $x = z||\phi(x)||_{Y^*}$, pero $||\phi(z)||_{Y^*} = 1$ y $z \in B_X$

d) Diremos que un espacio de Banach X posee predual, si existe Y tal que $Y^* = X$. Demuestre que X admite un predual ssi se cumplen las condiciones i) y ii).

Demostración:

← De las partes a), b) y c) se tiene esta implicancia.

 \Longrightarrow

Si $Y^* = X$, sabemos por Banach-Alaoglu que B_{Y^*} es $\sigma(Y^*, Y)$ -compacta. Como $B_X = B_{Y^*}$, luego se cumple de manera imnediata ii). Para ver que separa puntos, basta ver que la topología inducida por $J(Y) \subseteq X^{**}$ es separada.

P2.- Suponga que E es un espacio de Banach separable. Demuestre que $(B_{E^*}, \sigma(E^*, E))$ es metrizable.

Demostración:

Consideremos $\{x_n\}_{n\in\mathbb{N}}$ denso numerable en E. Cosideremos la siguiente distancia

$$d(f,g) = \sum_{n=1}^{\infty} \frac{|(f-g,x_n)|}{2^n}$$

Sea $f_0 \in B_{E^*}$ y V una vecindad $\sigma(E^*, E)$ -abierta. Debemos encontrar r > 0 tal que $B(f_0, r) \subseteq V$.

Consideremos sin pérdida de generalidad que V es una vecindad de la base, por tanto $\exists \{y_n\}_{n=1}^K$ en B_E conjunto finito tal que

$$V = \{ f \in E^* : |(f - f_0, y_i)| < \epsilon, i \in [K] \}$$

como $\{x_n\}_{n\in\mathbb{N}}$ es denso, en particular es denso en B_E , luego existirán $\{x_{n_i}\}_{i=1}^K$ tales que

$$||x_{n_i} - y_i||_E < \frac{\epsilon}{4}$$

Ahora, tomemos

$$r < Min_{i \in [K]} \{ \frac{\epsilon}{2^{n_i + 1}} \}$$

Por lo tanto, sea ahora $g \in B_{E^*}(f_0, r)$, esto implica que

$$d(f_0, g) = \sum_{n=1}^{\infty} \frac{|(f_0 - g, x_n)|}{2^n} < r$$

Ahora veamos que $g \in V$

$$|(f_0 - g, y_i)| \le |(f_0 - g, y_i - x_{n_i})| + |(f_0 - g, x_{n_i})| \le \frac{\epsilon}{2} + \frac{\epsilon}{2}$$

donde la primera desigualdad se tiene por continuidad y la segunda por el r escogido, esto $\forall i \in [K]$.

Ahora veamos que podemos encontrar una vecindad U dentro de una bola de radio r>0 arbitrario.

Consideremos los primeros K términos de la sumatoria que componen la distancia propuesta

$$d(f_0, g) = \sum_{n=1}^{K} \frac{|(f - g, x_n)|}{2^n} + \sum_{n=K+1}^{\infty} \frac{|(f - g, x_n)|}{2^n} \le \epsilon + \frac{r}{2^{K-1}}$$

tomando $\epsilon = \frac{r}{2}$ podemos construir

$$U = \{ f \in E^* : |(f - f_0, x_i)| < \epsilon, i \in [K] \}$$

que es una vecindad $\sigma(E^*, E)$ -abierta y se tiene que $U \subseteq B_{E^*}(f_0, r)$.

P3.- Consideremos el siguiente funcional

$$J(u) = \frac{1}{2} \int_{\Omega} |\nabla u|^2 + \frac{1}{2} \int_{\Omega} \alpha u^2 - \int_{\Omega} fu$$

con α una función continua, positiva y uniformemente acotada, y $f \in L^2(\Omega)$. Estudie la existencia de soluciones a este problema y si se alcanza el mínimo en $H^1(\Omega)$.

Demsotración:

Por la forma que tiene esta función, dado que α es una función continua, positiva y uniformemente acotada, J(u) es un funcional convexo. Separemos $\bar{J}(u)=\frac{1}{2}\int_{\Omega}|\nabla u|^2+\frac{1}{2}\int_{\Omega}\alpha u^2$

Vemos que además $\bar{J}(u) \in C^{0,2}(\Omega)$ ya que

$$|\bar{J}(u)| = \frac{1}{2} \int_{\Omega} |\nabla u|^2 + \frac{1}{2} \int_{\Omega} \alpha u^2 \le ||\nabla u||_{L^2(\Omega)}^2 + Sup_{x \in \Omega} \{\alpha(x)\}||u||_{L^2(\Omega)}^2$$

$$\leq Min\{1, Sup_{x\in\Omega}\{\alpha(x)\}\}||u||_{H^1(\Omega)}^2$$

Lo que la hace semicontinua inferior en particular. Luego, como $\bar{J}(u)$ es débil semicontinua inferior, y al ser $f \in L^2(\Omega)$, entonces J(u) es semicontinua inferior.

Ahora como $J(u) \geq 0$, el ínfimo existe y es finito, luego consideremos $\{u_n\}_{n\in\mathbb{N}}$ suceción infimizante. Al ser convergente, esta es acotada, luego por teorema de Kakutani, esta posee una suceción débil convergente $\{u_{n_j}\}_{j\in\mathbb{N}}$. Como J(u) es semicontinua inferior, se tiene que

$$J(\bar{u}) \leq \lim Inf_{j \longrightarrow \infty} J(u_{n_j})$$

Ahora, por convergencia débil $\bar{u} \in H^1(\Omega)$ y el mínimo se alcanza, por tanto el problema posee una solución en $H^1(\Omega)$