Curso: Química Inorgánica Avanzada Capitulo: Elementos representativos Profesor: Carlos Díaz **Gases Nobles** ## Propiedades generales de los elementos #### 14-2 Occurrence, Isolation, and Applications 58 Table 14-1 Some Properties of the Noble Gases | Element | Outer Shell
Configuration | Atomic
Number | First Ionization Enthalpy (kJ mol ⁻¹) | Normal
bp (K) | ΔH_{vap} (kJ mol ⁻¹) | % by
Volume
in the
Atmosphere | Promotion
Energy
(kJ mol ⁻¹)
$ns^2np^6 \rightarrow$
$ns^2np^5(n+1)s$ | |---------|------------------------------|------------------|---|------------------|---|--|--| | Не | 1 <i>s</i> ² | 2 | 2372 | 4.18 | 0.09 | 5.24 × 10 ⁻⁴ | | | Ne | $2s^22p^6$ | 10 | 2080 | 27.13 | 18.0 | 1.8×10^{-3} | 1601 | | Ar | $3s^23p^6$ | 18 | 1520 | 87.29 | 6.3 | 0.934 | 1110 | | Kr | $4s^24p^6$ | 36 | 1351 | 120.26 | 9.7 | 1.14×10^{-3} | 955 | | Xe | $5s^25p^6$ | 54 | 1169 | 166.06 | 13.7 | 8.7×10^{-6} | 801 | | Rn | $6s^{2}6p^{6}$ | 86 | 1037 | 208.16 | 18.0 | | 656 | Inerticidad Química: configuración de capa llena ## Compuestos mas comunes y estructura **Table 14-2** Principal Xenon Compounds Oxidation State Compound Form mp (°C) Remarks Structure II XeF₂ Colorless crystals 129 Linear Hydrolyzed to Xe + O2: very soluble in HF(1) Xe-F XeF4 Colorless crystals 117 Stable, $\Delta H_1^{298K} =$ Square -284 kJ mol-1 VI Stable, $\Delta H_i^{298K} =$ Colorless crystals XeF, 49.6 Complex -402 kJ mol-1 CsXeF₂ Colorless solid dec. > 50°C See text Cs2XeF8 Yellow solid Archimedian Stable to 400°C antiprism^e XeOF4 Colorless liquid -46ψ Octahedral^b Stable XeO₂F₂ Colorless crystals # tbpb Xe-O 31 Metastable XeO₃ Explosive, $\Delta H_i^{298K} =$ Colorless crystals +402 kJ mol-1; hygroscopic; stable in solution $K_n^+[XeO_3F^-]_n$ Colorless crystals sp (F bridges) Very stable VIII XeO₄ -35.9Tetrahedral Colorless gas Highly explosive XeO₃F₂ Colorless gas -54.1XeO4-Colorless salts Octahedral Anions HXeO}-, H2XeO2-, H₃XeO₆, also exist Uno de los aspectos mas interesantes sus múltiples estados de oxidación: (II); (IV); (VI) y (VIII) y diversidad estructural ^a In the salt (NO⁺)₂[XeF₈]²⁻ from XeF₆ and NOF. ^b Lone pair present. ## Tabla de geometrías según el modelo de Gillespie : $\mathrm{EX}_{\mathrm{n}}(\bullet \bullet)_{\mathrm{m}}$ | | | VS | EPR Geometries | 1900 00 | v. 900 | |---------------|--|--|-------------------------------|-------------------------|-------------------------------| | Steric
No. | Basic Geometry
0 Ione pair | 1 lone pair | 2 Ione pairs | 3 Ione pairs | 4 lone pairs | | 2 | X—E—X Linear | | | | | | 3 | X
120°
X
Trigonal Planar | E
X < 120°
Bent or Angular | | | | | 4 | X/mm. E 109° X Tetrahedral | XIIII E
X < 109°
Trigonal Pyramid | X E X << 109° Bent or Angular | | | | 5 | X
120° X
X
X
X
Trigonal Bipyramid | < 90° X
X
X
120° E
X
Sawhorse or Seesaw | X
Y
X
X
T-shape | X 180° X X Linear | | | 6 | X 90° X///// Y 90° X X X X X Octahedral | Square Pyramid | 90° X E E X X Square Planar | X X X X X < 90° T-shape | X
180°
X
X
Linear | # Estereoquímica de compuestos de Gases Nobles :Gillespie 895 Compounds of xenon 1.3.2 Table 18.3 Stereochemistry of xenon Structure Examples CN Stereochemistry Xe Xe(g) Xe-[XeF]⁺, [XeOTeF₅]⁻ -Xe-XeF₂, [FXeFXeF]⁺, FXeOSO₂F 2 Linear XeO₃ Pyramidal 3 [XeF₃]⁺, XeOF₂ T-shaped XeO₄ Tetrahedral XeF₄ Square C_{2v} , "see-saw" XeO_2F_2 XeO₃F₂ Trigonal bipyramidal 5 XeOF₄, [XeF₅]⁺ Square pyramidal $[XeO_6]^{4-}$ Octahedral 6 $XeF_6(g)$, $[XeOF_5]$ Distorted octahedral CsXeF₇ (?) 7 $[XeF_8]^{2-}$ Square antiprismatic 8 ### Modelo de Gillespie X= pares de electrones compartido E= pares de electrones solitarios ## Reseña histórica: descubrimiento $$O_2$$ O_2^+ P_1 = 276 Kcal/mol Xe \longrightarrow Xe⁺ P_1 = 279 Kcal/mol N. Bartlett #### THE CHEMISTRY OF THE NOBLE GASES After his observation that O_2 reacts with PtF_6 to give the compound $[O_2^+][PtF_6^-]$, N. Bartlett in 1962 recognized that since the ionization enthalpy of Xe is almost identical with that of O_2 , an analogous reaction should occur with Xe. By interaction of Xe and PtF_6 he isolated a red solid, said to be $XePtF_6$. Present knowledge indicates the oxidation sequence: $$Xe + 2PtF_6 \xrightarrow{25^{\circ}C} [XeF^+][PtF_6^-] + PtF_5 \xrightarrow{60^{\circ}C} [XeF^+][Pt_2F_{11}^-]$$ as in similar oxidations described below. It is known that although Bartlett published very quickly, others (R. Hoppe and a group at Argonne National Laboratory) had independently made the discovery of either the Bartlett type material or even XeF₂.9 # Química del Xenón ### 14-3 The Chemistry of Xenon Xenon reacts directly only with F_2 , but compounds in oxidation states from II to VIII are known, some of which are exceedingly stable and can be obtained in large quantities. The more important compounds and some of their properties are given in Table 14-2. #### **Fluorides** The equilibrium constants for the reactions $$Xe + F_2 = XeF_2$$ $$XeF_2 + F_2 = XeF_4$$ $$XeF_4 + F_2 = XeF_6$$ for the range 25 to 500°C show unequivocally that only these three binary fluorides exist. The equilibria are established rapidly only above 250°C, which is the lower limit for thermal synthesis. All three fluorides are volatile, readily subliming at room temperature. They can be stored indemnitely in nickel or Monel metal containers, but AEF, and XeF6 are particularly susceptible to hydrolysis and traces of water must be rigorously excluded, since the explosive XeO3 is formed (see below). ### Difluoruoro de Xenon #### Xenon Diffuoride This is made by interaction of F_2 and excess Xe under pressure or by oxidation of Xe by the dark blue solutions of AgF_2 in HF(1) in the presence of BF_3 :¹⁰ $$2AgF_2 + 2BF_3 + Xe = XeF_2 + 2AgBF_4$$ It is soluble in water, giving solutions 0.15 M at 0° C that evidently contain XeF₂ molecules. The hydrolysis is slow in dilute acid but rapid in basic solution: hidrolisis $$XeF_2 + 2OH^ \rightarrow$$ $Xe + \frac{1}{2}O_2 + 2F^- + H_2O$ The solutions, which have a pungent odor due to XeF₂, are powerful oxidizing agents (e.g., HCl gives Cl₂, Ce^{III} gives Ce^{IV}), and the estimated potential is Agente oxidante $$XeF_2(aq) + 2H^+ + 2e = Xe + 2HF(aq)$$ $E^0 = +2.64 \text{ V}$ XeF₂ also acts as a mild fluorinating agent for organic compounds; for example, in solution or in the vapor phase benzene is converted into C₆H₅F. The dissociation energy of XeF₂ to XeF + F is ca. 252 kJ mol⁻¹.¹¹ #### Xenon Tetrafluoride This can also be made by direct interaction like XeF_2 but with heating under pressure, by oxidation of Xe with $O_2F_2^{12}$, or by photolysis of $Xe + F_2$. Hydrolysis of XeF_4 produces the dangerously explosive XeO_3 . The fluoride has been used for specific fluorination of the ring in substituted arenes like toluene. Uso en Química Orgánica ¹⁰N. Bartlett et al., J. Am. Chem. Soc. 1990, 112, 4846. ¹¹G. Bucher and J. C. Scaiano, J. Am. Chem. Soc. 1994, 116, 10076. ¹²S. A. Kinkead et al., Inorg. Chem. 1990, 29, 1779. ### Hexafluoruro de Xenón #### Xenon Hexafluoride This can be made by interaction of XeF_4 with F_2 under pressure but use of a special "hot wire" reactor allows milder conditions to be used. Solid XeF_6 is colorless but it gives a yellow liquid and vapor. In the melt and in solution it exists as a monomer and tetramer in equilibrium; in solution at low temperature only the tetramer is observed. It is an extremely powerful fluorinating agent. It reacts rapidly with quartz to give $XeOF_4$ and SiF_4 and is extremely readily hydrolyzed to the explosive XeO_3 . The free XeF_6 molecule has a stereoactive lone pair on Xe which leads to a distorted pseudo 7-coordinate structure and highly fluxional behavior. The solid has various crystalline forms, of which three are tetrameric and a fourth has both hexamers and tetramers. These oligomers, see Fig. 14-1, have square pyramidal XeF_5^+ cations and bridging μ -F anions. # Estructura de algunos compuestos Figure 14-1 The tetrameric and hexameric units in one of the crystal forms of XeF_6 . ### Quimica: Fluorocationes #### **Fluorocations** Cationic fluoro species can be made by interaction of the binary xenon fluorides with compounds that are strong F^- ion acceptors such as TaF_5 or PtF_5 . They are known for oxidation states II–VI and are of the stoichiometry $Xe_nF_m^+$. Such compounds may not be fully ionic, however, since the fluoroanions can form F-bridges to the cations. An example of this is shown in Fig. 14-2 for [XeF][RuF₆]. The structure of $Xe_2F_3^+$ is shown in (14-I).¹³ ### **Fluoraniones** The reaction of [XeF][Sb₂F₁₁] in a HF/SbF₅ medium affords (among other products) [Xe₂⁺][Sb₄F₂₁⁻]. $$XeF^+Sb_2F_{11}^- + 3Xe + 2SbF_5 = 2Xe_2^+Sb_4F_{21}^-$$ XeF₂ The Xe₂ radical cation¹⁴ has an Xe-Xe distance of 3.09 Å. For the +4 oxidation state, interaction of XeF₄ and BiF₅ gives [XeF₃]⁺[BiF₆]⁻ while the compound XeF₅⁺AuF₄⁻ is formed in the reaction XeF₄ $$BrF_3 \cdot AuF_3 + XeF_6(excess) \longrightarrow XeF_5 \cdot AuF_4 \cdot + BrF_3$$ Other similar compounds, e.g., $XeF_5^+RuF_6^-$ are known and, as noted above, the crystalline forms of XeF_6 have F-bridged XeF_5^+ units. Such F-bridges are also found in $Xe_2F_{11}^+AuF_6^-$ that is made¹⁰ by oxidation of $XeF_5^+AuF_4^-$ with the powerful oxidant KrF_2 . Although calculations¹⁵ suggest that XeF_7^+ is potentially stable this ion is not yet known; it would be in the isoelectronic series TeF_7^- , IF_7 , XeF_7^+ . XeF₆ #### **Fluorognions** Both XeF_4 and XeF_6 can act as F^- acceptors as well as F^- donors and thus form anionic species in reactions such as $$XeF_4 + NaF \longrightarrow Na^+XeF_5$$ $XeF_6 + CsF \longrightarrow Cs^+XeF_7$ $2XeF_6 + NO_2F \longrightarrow NO_2^+Xe_2F_{13}$ XeF₄ y XeF₆ Sales MF y NO₂F como dadores de F⁻ BiF₅, SbF₅ y AuF₃ como aceptores ¹⁴T. Drews and K. Seppelt, Angew. Chem. Int. Ed. Engl. 1997, 36, 273. ¹⁵K. O. Christe et al., J. Am. Chem. Soc. 1993, 115, 9461. ### Otros aniones The XeF₅⁻ anion has an unusual pentagonal planar structure that is much more rigid than the planar equatorial fluorines in the fluxional IF₇ molecule. The rigidity is attributed to increased repulsions from the Xe electron pairs.¹⁶ CsXeF₇ crystallizes from BrF₅ as yellow crystals at 4°C. The XeF₇ ion has a capped octahedral structure¹⁷ with the cap having a long Xe—F bond of 2.1 Å due to interaction with 3 Cs⁺ ions. Octafluoroxenates are formed on heating Rb or Cs salts of XeF₇: Aceptor de dos F- The Rb and Cs octafluoroxenates are thermally stable, decomposing only above 400°C; the NaF adduct of XeF₆, however, decomposes below 100°C and can be used to purify XeF₆. The XeF₈²⁻ ions are square antiprismatic similar to WF₈²⁻ and ReF₈²⁻. The salt NO₂⁺Xe₂F₁₃ has XeF₇ and XeF₆ units where 2 F atoms of the former interact with the Xe atom of the latter. The salt NO₂⁺Xe₂F₁₃ has XeF₇ and XeF₆ units where 2 F atoms of the # Química en agua: potenciales redox principales ### Potenciales de reducción The aqueous chemistry of xenon is briefly summarized by the potentials $$H_4XeO_6 \xrightarrow{2.36 \text{ V}} XeO_3 \xrightarrow{2.12 \text{ V}} Xe$$ $$XeF_2 \xrightarrow{2.64 \text{ V}} Xe$$ $$Alkaline solution \qquad HXeO_6^3 \xrightarrow{0.94 \text{ V}} HXeO_4^3 \xrightarrow{1.26 \text{ V}} Xe$$ La tendencia de compuestos de Xe es como oxidante : altos potenciales de reducción # Compuestos con enlaces Xe-O #### Compounds with Xe-O Bonds Both XeF_4 and XeF_6 are violently hydrolyzed by water to give stable aqueous solutions up to 11 M of xenon trioxide (XeO_3). The oxide is also obtained by interaction of XeF_6 with HOPOF₂. Xenon trioxide is a white deliquescent solid and is dangerously explosive; its formation is why great care must be taken to avoid water in studies of XeF_4 and XeF_6 . The molecule is pyramidal ($C_{3\nu}$). It can be quantitatively reduced by iodide: $$XeO_3 + 6H^+ + 9I^- \longrightarrow Xe + 3H_2O + 3I_3^-$$ Xenate esters may be formed in violent reactions with alcohols. In water XeO₃ appears to be present as XeO₃ molecules, but in basic solutions we have the main equilibrium $$XeO_3 + OH^- \longrightarrow HXeO_4$$ $K = 1.5 \times 10^{-3}$ where HXeO₄ slowly disproportionates to produce XeVIII and Xe: $$2 \text{ HXeO}_4^- + 20\text{H}^- \longrightarrow \text{XeO}_6^{4-} + \text{Xe} + \text{O}_2 + 2\text{H}_2\text{O}$$ Aqueous Xe^{VIII} arises also when O₃ is passed through a dilute solution of Xe^{VI} in base. These yellow *perxenate* solutions are powerful and rapid oxidizing agents. The stable salts Na₄XeO₆·8H₂O and Na₄XeO₆·6H₂O contain XeO₆⁴⁻ octahedra. The solutions of sodium perxenate are alkaline owing to hydrolysis, and the following **Perxenatos** ¹⁶K. O. Christe et al., J. Am. Chem. Soc. 1991, 113, 3351. ¹⁷K. Seppelt et al., Angew. Chem. Int. Ed. Engl. 1996, 35, 1123. ¹⁸K. Seppelt et al., Chem. Eur. J. 1996, 2, 371. # Dentro de los compuestos Xe-O estan tambien los oxofluoruros #### **Oxofluorides** Several of these are known. Representative syntheses are XeOF₄ Xenon oxotetrafluoride has a square pyramidal structure, whereas XeO_2F_2 is like SF_4 with F atoms in axial positions $(C_{2\nu})$. Xenon oxodifluoride $(XeOF_2)$ and XeO_3F_2 are unstable. There are also some derivatives of the oxofluorides with the ligand OTeF₅; these are XeO(OTeF₅)₄ and XeO₂(OTeF₅)₂. The only compound of Xe^{IV} bound XeOF₂ # Oxofluoruros, continuacion exclusively to oxygen is Xe(OTeF₅)₄ made by the reaction $$3XeF_4 + 4B(OTeF_5)_3 \xrightarrow{0^{\circ}C} 3Xe(OTeF_5)_4 + 4BF_3$$ Just as the xenon fluorides react with F^- acceptors to give cations, so do oxofluorides. The structure of the cation in $XeOF_3^+SbF_6^-$ is similar to that of $ClOF_3$. There are several cations of Xe^{II} such as $Xe(OTeF_5)^+$, $Xe(OSO_2F)^+$, as well as two other examples of cations in higher oxidation states, XeO_2F^+ and $O_2Xe(OTeF_5)^+$. The [XeOF₅] ion can be obtained by the following general reaction, where $M^+ = Cs^+$, Me_4N^+ , NO^+ : $$XeOF_4 + MF \longrightarrow M[(XeOF_4)_3F] \xrightarrow{pump} M[XeOF_5]$$ Vibrational spectra for the explosive $[Me_4N][XeOF_5]^{21}$ and X-ray crystallography for $[NO][XeOF_5]^{22}$ show that the anion has a ψ -pentagonal bipyramid structure with O at one apex and a lone pair at the other. Xenon trifluoroacetates and trifluoromethane sulfonates can be made via the sequence:²³ $$XeF_2 + 2CF_3CO_2H \xrightarrow{CCl_3F} Xe(OCOCF_3)_2 + 2HF$$ $$CF_3SO_3H$$ $$[XeAr]^+OSO_2CF_3$$ $$ArH Xe(OCOCF_3)(OSO_2CF_3)$$ Anión pentafluorooxitelurato: OTeF₅- Aniones de XeOF₄- ### Otras especies Xe-O: fluorsulfonatos (a) The molecular structure of FXeOSO.F. Precision of bond lengths is *ca.* 1 pm (uncorrected for thermal motion). The angle F(1)-Xe-O(1) is $177.5 \pm 0.4^{\circ}$ and angle Xe-O(1)-S is $123.4 \pm 0.6^{\circ}$ (b) The molecular structure of Xe(OTeF₅)₄ (see text) These products are unstable at about room temperature and several are highly explosive. Xenon tetrafluoride and XeF₆ react with HSO₃F as follows: $$XeF_4 + HSO_3F \longrightarrow FXe(OSO_2F)$$ $Xe(OSO_2F)_2 + S_2O_6F_2$ $XeF_6 + HSO_3F \longrightarrow F_5Xe(OSO_2F) + HF$ F₅Xe(OSO₂F) is a white solid, stable at 22°C but decomposing above 73°C. ¹⁹G. J. Schrobilgen et al., Inorg. Chem. 1993, 32, 386. ²⁰G. J. Schrobilgen et al., Inorg. Chem. 1992, 31, 3381. ²¹K. O. Christe et al., Inorg. Chem. 1995, 34, 1868. ²²A. Ellern and K. Seppelt, Angew. Chem. Int. Engl. 1995, 34, 1586. ²³D. Naumann et al., J. Chem. Soc., Chem. Commun. 1994, 2651. # Compuestos de Xe con enlaces Xe-C #### Xenon Compounds with Bonds to Other Elements Carbon. The earliest compound, Xe(CF₃)₂ was made by action of CF₃* radicals on XeF₂ but it was stable for only ca. 30 minutes at room temperature. Stable species mostly cationic in nature, can be made. Thus the reaction of fluorinated aryls, e.g., B(C₆F₅)₃, with XeF₂ in the presence of BF₃(OMe₂), gives [ArXe]⁺[BF₄]⁻. The stability of such compounds depends on the nature of the aryl group and decomposition temperatures range from about -14°C for 4-FC₆H₄ to 130°C for 2,6-F₂C₆H₃.²⁴ The AsF₆ salts of alkynyls, [XeC≡CR]⁺, and alkenyls²⁵ have been made, an example of the latter *via* the reaction Xe-CF₃ Xe-C₆F₅ Fluorización sucesiva del anillo $$[C_6F_5Xe][AsF_6] \xrightarrow{XeF_2/HF(1)} [XeC_6F_9][AsF_6] \xrightarrow{} [XeC_6F_{11}][AsF_6]$$ where the XeF₂ in HF has transformed C₆F₅ into the radicals 14-II and 14-III. #### Grupos "alquenilo" (radicales o sustituyentes) (algunos tienen nombres especiales aceptados por la IUPAC) -CH=CH₂ etenilo (vinilo) -CH=CH-CH₃ 1-propenilo -CH₂-CH=CH₂ 2-propenilo (alilo) -CH=CH-CH=CH₂ 1,3 butadienilo Nomenclatura: Raiz+sufijo "enilo", # Caracterización espectroscópica #### NMR multinuclear The reaction of $[C_6F_5Xe][AsF_6]$ with $CsO_2CC_6F_5$ affords $C_6F_5XeOCOC_6F_5$, which is thermally stable, ²⁶ whereas FXeOCOCF₃ is prone to detonate. | Ar in | | 50.000 | 1001 | | | | * | | $^{3}J(^{129}Xe^{-19}F),$ | |--|--|----------|--------|--------|---------------|---------------|--------|----------------------|---------------------------| | ArXe][BF ₄] | solvent | temp, °C | δ(2-F) | δ(3-F) | $\delta(4-F)$ | $\delta(5-F)$ | δ(6-F) | δ(BF ₄ -) | Hz | | GF5b | CH ₃ CN/CH ₂ Cl ₂ | r.t. | -125.2 | -154.8 | -142.0 | -154.8 | -125.2 | -149.5 | 68 | | 4,6-F ₃ C ₆ H ₂ c | CD ₃ CN | r.t. | -96.3 | | -96.0 | | -96.3 | -149.8 | 54 | | 6-F ₂ C ₆ H ₃ | CD ₃ CN | -30 | -99.6 | | | | -99.6 | -149.7 | 52 | | FC ₆ H ₄ | CD ₃ CN/CH ₂ Cl ₂ | -60 | | | -104.6 | | | -149.2 | | | FC ₆ H ₄ | CD ₃ CN | -30 | -100.6 | | | | | -149.5 | 48 | *8 in ppm. b From ref 5. From ref 8. | L., | TTT | BOILD NMP | Data fo | r (Fluoroaryl)xenon | Tetra fluoroborates | [ArXel[BF4]a | |------|------|-----------|---------|---------------------------|----------------------|--------------| | 2000 | 111. | CUMINME | Data to | r i ridordai vi i kelidii | I CH alluoi ooolates | [AtAc][Dt 4] | | Ar in
[ArXe][BF4] | solvent | temp, °C | δ(1-C) | δ(2-C) | δ(3-C) | δ(4-C) | δ(5-C) | δ(6-C) | ¹ J(¹²⁹ Xe- ¹³ C)
Hz | |---------------------------------|--|----------|--------|--------|--------|--------|--------|--------|---| | C ₄ F ₅ b | CH3QN/CH2Cl2 | -12 | 83.5 | 144.2 | 138.3 | 142.5 | 138.3 | 144.2 | 119 | | 24,6-F3C6H2° | CD ₃ CN | -30 | 83.8 | 158.4 | 105.0 | 167.8 | 105.0 | 158.4 | 104 | | 16-F2C6H3 | CD ₃ CN | -30 | 88.8 | 156.8 | 115.2 | 137.8 | 115.2 | 156.8 | 99 | | 4FC ₆ H ₄ | CD ₃ CN/CH ₂ Cl ₂ | -30 | 115.6 | 133.3 | 122.7 | 165.1 | 122.7 | 133.3 | 104 | | FC ₆ H ₄ | CD ₃ CN | -30 | 105.5 | 155.3 | 120.6 | 136.9 | 130.7 | 133.2 | 78 | to in ppm. b From ref 5. From ref 8. $$\bigvee_{F}^{F} \overline{\underline{x}} e^{i \oplus} \leftrightarrow \bigvee_{\Phi}^{F} \overline{\underline{x}} e^{i} \leftrightarrow \bigoplus_{F}^{F} \overline{\underline{x}} e^{i} \leftrightarrow \cdots$$ gure 1. # El primer compuesto Xe-C(alquenilo) J. CHEM. SOC., CHEM. COMMUN., 1993 (Heptafluoro-1,4-cyclohexadien-1-yl)xenon(II) and (Nonafluorocyclohexen-1-yl)xenon(II) Hexafluoroarsenates: Synthesis, Spectroscopic Characterization and Reactivity of the First Alkenylxenon(II) Compounds Hermann J. Frohn* and Vadim V. Bardin b ^a Fachgebiet Anorganische Chemie, Universität Duisburg, Lotharstr. 1, D-47048 Duisburg, Germany b Institute of Organic Chemistry, 630090 Novosibirsk, Russia The first alkenylxenon($_{\parallel}$) compounds: (heptafluoro-1,4-cyclohexadien-1-yl)xenon($_{\parallel}$) hexafluoroarsenate [1-Xe+-1,4-C₆F₇][AsF₆] and (nonafluorocyclohexen-1-yl)xenon($_{\parallel}$) hexafluoroarsenate [1-Xe+-C₆F₉][AsF₆] were obtained by fluorination of [C₆F₅Xe]+[AsF₆] with XeF₂ in HF. 129Xe espín nuclear: 1/2 # Compuestos con enlaces Xe-C(aciloxi) Pentafluorophenylxenon(II) Pentafluorobenzoate: the First Preparative Synthesis and Structural Characterization of an Acyloxy Compound of Xenon(II)** By Hermann Josef Frohn,* Angela Klose, and Gerald Henkel #### Síntesis $$[C_6F_5Xe][AsF_6] + Cs[O_2CC_6F_5] \longrightarrow C_6F_5XeO_2CC_6F_5$$ #### Caracterización Table 1. 129Xe, 19F, and 13C NMR data for 3 in CD₂Cl₂ at ~10 °C [a]. C_6F_5Xe molety 12 Xe -2029.7 (t, 84 ± 6 Hz, $v_{1/2} = 49$ Hz) [b] -128.26 (dm, $^{3}J(F, Xe) = 86.3 \pm 0.5$ Hz, 2; o-F), -144.71 (tt, ${}^{3}J(F,F) = 20.5$, ${}^{4}J(F,F) = 3.7$ Hz, 1; p-F), -154.81 (m, 2; m-F) ${}^{13}C\{{}^{19}F\}144.32$ (C4), 143.99 (C2,6), 138.14 (C3,5), 91.25 (C1) C₆F₅CO₂ moiety 141.59 (m, 2; o-F), -154.39 (t, ${}^{3}J(F, F) = 21.0 \text{ Hz}$, 1; p-F), -162.43 (m, 2; m-F) ${}^{13}C\{{}^{19}F\}163.08$ (-CO₂-), 144.32 (C2,6), 141.62 (C4), 137.57 (C3,5), 111.63 (C1). [a] Measured with a Bruker WP 80 SY (13 C, Bruker WM 300), δ (Xe) relative to δ (XeF₂) in CD₂Cl₂, δ (F) relative to δ (CCl₃F). Values in parentheses after the δ values refer to the signal multiplicity, the magnitude of the coupling constant J, the signal intensity, and the signal assignment. [b] $\delta = 1327.8$ relative to δ (Xe(0)) in McCN at -30 °C. RC(O)O-M # Compuestos con enlaces Xe-N $2XeF_2 + 2HN(SO_2F)_2 = \frac{in CF_2Cl_2}{0^{\circ}C, 4 days}$ Amina acidica: sustitución 2[FXe(NSO₂F)₂·AsF₅] unstable, bright yellow solid -AsF₅ 22°C, vacuum [F{Xe-N(SO₂F)₂}₂][†]AsF₆ pale yellow solid Figure 18.4 The structure of FXeN(SO₂F)₂ (C₂ symmetry) showing essentially linear Xe and planar N. Other bond angles are OSO 122.6°, OSF 106.3°, NSO 107.2° and 111.2°, NSF 101.2°. # La química del Kriptón y Radón #### 14-4 The Chemistry of Krypton and Radon The chemistry of these elements as far as it is known is similar to that of Xe. Krypton difluoride³⁴ is obtained on photolysis of Kr-F₂ mixtures at -196°C when it forms a white solid only slightly soluble in liquid fluorine. It slowly decom- poses at room temperature. It is a powerful fluorinating and oxidizing agent; one example is the conversion of RuO₄ to RuOF₄ in liquid HF.³⁵ The instability of KrF₂ compared to XeF₂ can be seen from the enthalpies: $$KrF_2(g) = Kr(g) + F_2(g)$$ $\Delta H^0 = -63 \text{ kJ mol}^{-1}$ $$XeF_2(g) = Xe(g) + F_2(g)$$ $\Delta H^0 = 105 \text{ kJ mol}^{-1}$ These energetic relationships are understandable on the basis of rigorous quantum mechanical calculations, which justify the view that in both difluorides there is considerable ionic character. The bonding can be more simply represented by the resonance picture: Since the ionization enthalpies (Table 14-1) of Kr and Xe differ by $\sim 182 \text{ kJ mol}^{-1}$, the experimental difference in ΔH_f^0 values, namely, $105 - (-63) = 168 \text{ kJ mol}^{-1}$ is well explained by this picture. There are cationic species similar to those of Xe but less stable; they include KrF⁺, Kr₂F₃⁺, and [CF₃CNKrF]⁺. # El primer ejemplo de compuestos Kr-O # Una gran Contribución la Química de gases nobles :Gary Schrobilgen Mc Master University, Canadá # El primer compuesto Kr-N CHEM. SOC., CHEM. COMMUN., 1988 ## The Fluoro(hydrocyano)krypton(ıı) Cation [HC≡N–Kr–F]+; the First Example of a Krypton–Nitrogen Bond Gary J. Schrobilgen Department of Chemistry, McMaster University, Hamilton, Ontario L8S 4M1, Canada The first example of krypton bonded to an element other than fluorine has been provided by the synthesis of the novel [HC=N-Kr-F]+ cation, prepared as its AsF₆⁻ salt by low-temperature reaction of HC=NH+AsF₆⁻ with KrF₂ in HF or BrF₅ as solvent, and characterized by low-temperature Raman spectroscopy and ¹H, ¹³C, ¹⁵N, and ¹⁹F n.m.r. spectroscopy. Figure 1. N.m.r. spectra of the [HC≡N-Kr-F]+ cation enriched to 99.5% with ¹5N, in BrF₅ as solvent at −57°C. (a) ¹9F Spectrum (235.36 MHz) depicting ²J(¹9F-¹5N) and ⁴J(¹9F-¹H) and krypton isotope shifts. Lines assigned to fluorine bonded to ³2Kr (11.56%), δ4Kr (56.90%), and δ6Kr (17.37%) are denoted by the krypton mass number. The innermost lines of the δ2Kr and δ6Kr doublets overlap their corresponding δ4Kr doublets. The isotopic shift arising from δ3Kr (11.53%) is not resolved; those of ₹8Kr (0.35%) and δ6Kr (2.27%) are too weak to be observed. (b) ¹H Spectrum (80.02 MHz) depicting ²J(¹9F-¹H) and ⁴J(¹9F-¹H). (c) ¹5N Spectrum (50.70 MHz) depicting ²J(¹9F-¹HN) and ²J(¹5N-¹H). ### Caracterización espectroscópica Table 1. N.m.r. (19F, 13C, 15N, and 1H) parameters for the [HC=N-Kr-F]+ cation and related species.a | Species | $\delta(^{19}F)/p.p.m.^{6}$ | $\delta(^{13}\text{C})^{\text{b}}$ | $\delta(^{15}N)/p.p.m.^{b}$ | $\delta(^{1}H)/p.p.m.^{6}$ | J/Hze | |--|---|------------------------------------|-----------------------------|----------------------------|---| | [HC=N-Kr-F]+ | 99.4° (81.0) | 98.5 | -200.8 | | ¹ J(¹³ C- ¹ N) 312
² J(¹⁵ N- ¹⁹ F) 26
² J(¹⁵ N- ¹ H) 12.2 | | | | | | | ³ J(¹⁹ F- ¹³ C) 25.0
⁴ J(¹⁹ F- ¹ H) 4.2 | | KrF ₂
AsF ₆ - | 63.9 (48.1)
-62.6 (-69.1) ^r | | | | | | HF | -192.9(-194.4) | | | 6.71 | ¹ J(¹ H- ¹⁹ F) 520(519) | | BrF ₅ | 134.7g
271.9h | | | | ² J(19F–19F) 73 | ^a Spectra were recorded in 4 mm (ext. diam.) FEP sample tubes at spectrometer frequencies (MHz): 235.36 (¹⁹F), 50.70 (¹⁵N), and 80.02 (¹H) BrF₅ solvent at −57 °C; values in parentheses are for spectra recorded with HF as solvent at −60 °C. ^b Samples were referenced externally at 24 °C with respect to the neat liquid references: CFCl₃ (¹⁹F), MeNO₂ (¹⁵N), and SiMe₄ (¹³C, ¹H). A positive chemical shift denotes a resonance to high frequency of the reference. ^c Krypton isotopic shifts of 0.0138 p.p.m. per a.m.u. were observed for this resonance corresponding to fluorine directly bonded to ⁸²Kr, ⁸⁴Kr, and ⁸⁶Kr. ^d The corresponding resonance in HC≡NH⁺ occurs at 5.20 p.p.m in BrF₅ as solvent at −57 °C. ^c Measured for samples containing 99.5% ¹⁵N or 99.2% ¹³C. ^f Linewidths at half-height were 1840 (HF) an 2190 Hz (BrF₅); the AsF₆⁻ resonance in BrF₅ exhibited the saddle-shaped structure of a partially quadrupole-collapsed 1:1:1: quartet arising from ¹J(⁷⁵As-¹⁹F). ^g Doublet. ^h Quintet. ## Compuestos Xe(Kr)-N J. CHEM. SOC., CHEM. COMMUN., 10 The Fluoro(perfluoroalkylnitrile)noble-gas(\mathfrak{n}) Cations, $R_FC\equiv N-NgF+$ (Ng=Kr or Xe; $R_F=CF_3$, C_2F_5 , $n-C_3F_7$), and the Fluoro(trifluoro-s-triazine)xenon(\mathfrak{n}) Cation, s- $C_3F_3N_2N-XeF+$; Novel Noble Gas-Nitrogen Bonds Gary J. Schrobilgen Department of Chemistry, McMaster University, Hamilton, Ontario L8S 4M1, Canada Three novel examples of Kr–N bonds derived from perfluoroalkylnitriles, the $R_FC\equiv N-KrF^+$ cations, and their xenon analogues $R_FC\equiv N-KeF^+$ ($R_F=CF_3$, C_2F_6 , $n-C_3F_7$), have been prepared and characterized in BrF_6 solvent by ¹⁹F and ¹²⁹Xe n.m.r. spectroscopy; the Xe–N bonded cation s- $C_3F_3N_2N-KeF^+$, synthesized as the AsF_6^- salt, is stable at respective and has been fully characterized by ¹²⁹Xe and ¹⁹F n.m.r. and Raman spectroscopy. ### Sintesis $$R_FC=N + XeF + AsF_6^-(Xe_2F_3 + AsF_6^-) \rightarrow R_FC=N - XeF + AsF_6^- (+ XeF_2)$$ (1) Síntesis a dos pasos $$R_FC=N-AsF_5 + KrF_2 \rightarrow R_FC=N-KrF+AsF_6$$ (2) ### Caracterización Table 1. N.m.r. parameters for the $R_FC=N-NgF+(R_F=CF_3, C_2F_5, n-C_3F_7)$ cations^a | | Chei | | | |---|----------|--|--| | Cation
CF ₃ C≡N-KrF+ | δ(129Xe) | δ(19F) | ¹ J(¹²⁹ Xe- ¹⁹ F)/Hz | | | | 93.1 F-Kr-
-53.9 F ₃ C- | | | CF ₃ CF ₂ C≣N−K ₁ F+ | | 91.1 F-K _r 83.8 F ₃ C- d > -108.6-CF ₂ - d | | | CF ₃ CF ₂ CF ₂ C≡N-K _f F+ | | 91.9 F-K _r -
-81.1 F ₃ C-
-105.7 F ₃ C-CF ₂ -CF ₂ -
-125.2 F ₃ C-CF ₂ -CF ₂ - | | | CF₃C≡N-XeF+ | -1337.1 | -210.4 F-Xe-
-54.8 F ₃ C- | 6397 | | CF ₃ CF ₂ C <u>=</u> N-XeF+ | -1293.7 | -212.9 F-Xe-
-83.9 F ₃ C-
-109.3 -CF ₂ - | 6437 | | CF ₃ CF ₂ CF ₂ C <u>=</u> N-XeF+ | -1294.2 | -213.2 F-Xe-
-81.9 F ₃ C-
-106.6 F ₃ C-CF ₂ -CF ₂ -
-125.7 F ₃ C-CF ₂ -CF ₂ - | 6430 | Spectra were recorded at 69.563 MHz (129 Xe) and 235.361 MHz (19 F) in BrF₅ solvent at -57 to -61 °C for R_FC=N-KrF+ samples, and at -58 to -68 °C (19 F) and -64 °C (129 Xe) for R_FC=N-XeF+ samples. Beforenced externally at 24 °C with respect to the neat exception of C₂F₅C=N-XeF+, no other 3 J(F-F) couplings could be observed owing to line broadening arising from slow chemical exchange and/or residual scalar coupling of the fluorine environments to 14 N. 43 J(F-F) = 4.3 Hz. # XeF₂ como ligante Nuevas tendencias: el XeF2 como ligando #### Ejemplos: $$[Ag(XeF_2)_2] AsF_6$$ (J. Solid State Science 4 (2002) 1465) $[Ba(XeF_2)_5] [SbF_6]_2$ (Inor. Chem. 41 (2002) 5521) $Ba-F$ #### [Ag(XeF₂)₂] PF₆ #### Síntesis $$XeF_2 + AgPF_6 \xrightarrow{HF} [Ag (XeF_2)_2]PF_6$$ #### Estructura Feq. Xe Fin Xe Fin Xe Feq. Xe Fin Xe Feq. Xe Fin Xe Feq. Xe Fin Xe Fin Xe Feq. Xe Fin Xe Feq. Xe Fin Ag⁺ coordinación 8 # Otro ejemplo $[Ba(XeF_2)_5]$ $[SbF_6]_2$ Síntesis: $$Ba(SbF_6)_2 + XeF_2 \longrightarrow [Ba(XeF_2)_5][(SbF_6)_2$$ #### Estructura: ### Síntesis y Caracterización de [Hg(KrF₂)₈][AsF₆]2·2HF El primer compuesto de coordinación homoléptico : solo KrF₂ como ligante Hg coordinación 8 # Referencia base **Chemistry of the Elements** (Second Edition) Author(s): A. Earnshaw and Norman Greenwood