Estructuras Algebraicas Ayudantia 25

Profesor: Cristóbal Rivas Ayudantes: Benjamín Martinez, Javier Pavez

Lunes 28 de Noviembre 2022

- 1. Sea $K \subset L$ una extensión de cuerpos. Sean $\alpha \in L$ y $\{a_i\}_{i=0}^n$ tales que $\sum_{i=0}^n a_i \alpha^i = 0$. Demuestre que α es algebraico.
- 2. Demuestre o refute:
 - a) (α transcendental sobre F) \Rightarrow (α^n transcendental sobre F, $\forall n \in \mathbb{N}$).
 - b) (α^n transcendental sobre F para algún $n \in \mathbb{N}$) \Rightarrow (α transcendental sobre F).
- 3. Demuestre que $\mathbb{Q}(\sqrt{n}, \sqrt{m}) = \mathbb{Q}(\sqrt{n} + \sqrt{m})$.
- 4. Determine si los siguientes cuerpos tienen alguna inclusión entre ellos. Calcular el grado de extensión cada vez que tenga sentido.
 - a) $\mathbb{Q}(\sqrt[1001]{2})$ y $\mathbb{Q}(\sqrt[30]{2})$.
 - b) $\mathbb{Q}(\sqrt{\sqrt{2}+\sqrt{3}})$ y $\mathbb{Q}(\sqrt{2},\sqrt{3})$.
 - c) $\mathbb{Q}(\sqrt{2})$ y $\mathbb{Q}(\sqrt{2}i)$
 - $d) \ \mathbb{Q}(i)$ y $\mathbb{Q}(\omega),$ donde ω es raiz de $x^2+x-1.$
 - $e) \mathbb{Q}(\pi) y \mathbb{Q}.$
 - $f) \mathbb{Q}(\pi^3) y \mathbb{Q}(\pi)$
 - $g) \mathbb{F}_3 y \mathbb{Q}(\alpha), \text{ con } \alpha \in \mathbb{C}.$
- 5. Encontrar el polinomio minimal de $\sqrt{2} + \sqrt{3}$ sobre \mathbb{Q} .
- $6.\ \,$ Determine si un 19-agono regular es constructible.