Ayudantia 23

Profesor: Cristóbal Rivas Ayudantes: Benjamin Martinez, Javier Pavez

Martes 22 de Noviembre 2022

0.1. Ejercicios para la ayudantía.

Ejercicio 23.1. Sean F_1 y F_2 subcuerpos de un cuerpo F. Definimos el composito de F_1 y F_2 al menor subcuerpo de F que contiene a F_1 y F_2 , lo denotamos por F_1F_2 . Demostrar que el composito de $\mathbb{Q}(\sqrt{2})$ y $\mathbb{Q}(\sqrt[3]{2})$ es el cuerpo $\mathbb{Q}(\sqrt[6]{2})$. Recuerde que $\mathbb{Q}(\sqrt{2})$, $\mathbb{Q}(\sqrt[3]{2}) \subset \mathbb{R}$.

Demostración. Para mostrar que $\mathbb{Q}(\sqrt[6]{2})$ es el composito, primero debemos mostrar que $\mathbb{Q}(\sqrt{2})$ y $\mathbb{Q}(\sqrt[3]{2})$ están contenidos en $\mathbb{Q}(\sqrt[6]{2})$. Luego, debemos mostrar que si un subcuerpo de \mathbb{R} contiene a $\mathbb{Q}(\sqrt{2})$ y $\mathbb{Q}(\sqrt[3]{2})$, entonces contiene a $\mathbb{Q}(\sqrt[6]{2})$.

1° Mostraremos que están contenidos en $\mathbb{Q}(\sqrt[6]{2})$ por definición de cuerpo generado. Dado que $\mathbb{Q}(\sqrt{2})$ (resp. $\mathbb{Q}(\sqrt[3]{2})$) es el menor cuerpo que contiene a los racionales y a $\sqrt{2}$ (resp. $\sqrt[3]{2}$), basta demostrar que $\sqrt{2}$ (resp. $\sqrt[3]{2}$) está en $\mathbb{Q}(\sqrt[6]{2})$.

Por definición $\sqrt[6]{2} \in \mathbb{Q}(\sqrt[6]{2})$. Como $\mathbb{Q}(\sqrt[6]{2})$ es un cuerpo, tendremos que $(\sqrt[6]{2})^3$, $(\sqrt[6]{2})^2 \in \mathbb{Q}(\sqrt[6]{2})$. O sea, $(\sqrt{2})$, $(\sqrt[3]{2}) \in \mathbb{Q}(\sqrt[6]{2})$. Por lo tanto, como ya tenemos por definición que $\mathbb{Q} \subset \mathbb{Q}(\sqrt[6]{2})$, concluimos que $\mathbb{Q}(\sqrt{2}) \subset \mathbb{Q}(\sqrt[6]{2})$ y $\mathbb{Q}(\sqrt[3]{2}) \subset \mathbb{Q}(\sqrt[6]{2})$.

2° Denotamos por K a un cuerpo que contiene a $\mathbb{Q}(\sqrt{2})$ y a $\mathbb{Q}(\sqrt[3]{2})$. Mostraremos que $\mathbb{Q}(\sqrt[6]{2})$ está contenido en K.

Como $\mathbb{Q}(\sqrt{2}) \subset K$, inmediatamente tenemos que $\mathbb{Q} \subset K$. Por lo que solo nos falta probar que $\sqrt[6]{2} \in K$. Para eso, operaremos lo único que sabemos que está en K.

Por hipótesis $\sqrt{2}$, $\sqrt[3]{2} \in K$. Luego, $\sqrt{2} \cdot \sqrt[3]{2}$, $(\sqrt[3]{2})^2 \in K$. O sea, $\sqrt[6]{2^5}$, $\sqrt[6]{2^4} \in K$.

Antes de seguir recordemos que $\mathbb{Q}(\sqrt[3]{2})$ es un cuerpo contenido en los reales, como $2^{\frac{4}{6}} = 2^{\frac{2}{3}} = (2^{\frac{1}{3}})^2 = (\sqrt[3]{2})^2 \in \mathbb{Q}(\sqrt[3]{2})$. Tendremos necesariamente que el inverso multiplicativo, $2^{-\frac{4}{6}}$, está en $\mathbb{Q}(\sqrt[3]{2})$ y por lo tanto en K.

Así conseguimos decir que $\sqrt[6]{2} = 2^{\frac{1}{6}} = 2^{\frac{5}{6}} \cdot 2^{-\frac{4}{6}} = \sqrt[6]{2^5} \cdot 2^{-\frac{4}{6}} \in K$.

Finalmente deducimos que $\mathbb{Q}(\sqrt[6]{2})$ está contenido en K. Por lo tanto concluimos que $\mathbb{Q}(\sqrt[6]{2})$ es el menor subcuerpo de los reales que contiene a $\mathbb{Q}(\sqrt{2})$ y a $\mathbb{Q}(\sqrt[3]{2})$, es decir, su composito. \square

Ejercicio 23.2. Demostrar que solo hay dos funciones que pueden ser ψ . Donde $\psi : \mathbb{C} \longrightarrow \mathbb{C}$ es un homomorfismo de anillos tal que $\psi \mid_{\mathbb{R}} = id$.

Demostración. Dado que todo complejo lo podemos escribir de la forma a+bi con $a,b\in\mathbb{R}$, cuando escribamos con esa forma será un complejo cualquiera.

Tendremos que $\psi(a+bi)=\psi(a)+\psi(b)\psi(i)=a+b\psi(i)$, por lo que para saber cuantas funciones pueden ser ψ , nos preguntamos ¿a donde nuestro ψ puede mandar a i?

Para eso recordemos que el polinomio minimal de i en los reales es $p(x) = x^2 - 1$. Además notemos (1).

$$p(\psi(i)) = (\psi(i))^2 - 1 = \psi(i^2 - 1) = \psi(p(i)) = \psi(0) = 0$$
(1)

Significa que $\psi(i)$ es una raiz de p(x). Como las raíces de p(x) son i y -i, tendremos que necesariamente $\psi(i)=i$ o $\psi(i)=-i$, ψ no puede mandar a i a ninguna otra parte.

Luego, tendremos que $\psi(a+bi)=a+bi$ o $\psi(a+bi)=a-bi$. Quien esté leyendo podrá corroborar que las dos reglas de asignaciones anteriores definen dos homomorfismos de anillos distintos entre si. Concluimos que solo dos funciones pueden ser ψ , las cuales son.

$$\psi_1 = id_{\mathbb{C}} : \mathbb{C} \longrightarrow \mathbb{C},$$

$$a + bi \mapsto a + bi.$$

$$\psi_2 : \mathbb{C} \longrightarrow \mathbb{C},$$

$$a + bi \mapsto a - bi.$$

Lema 23.1. Sean A un cuerpo y B un anillo. Sea $\psi : A \longrightarrow B$ un homomorfismo de anillos. Demostrar que $\psi(A)$ es un cuerpo.

Demostración. Sabemos que $\psi(A)$ es un anillo. Mostraremos paso a paso lo que se necesita para llegar a cuerpo.

1° A conmutativo $\Rightarrow \psi(A)$ conmutativo.

Como A es conmutativo, tendremos que xy = yx para todo $x, y \in A$. Luego, $\psi(xy) = \psi(yx)$ para todo $x, y \in A$. Como ψ es un homomorfismo de anillos, $\psi(x)\psi(y) = \psi(y)\psi(x)$ para todo $x, y \in A$. Dado que $\psi(A) := \{\psi(x) \in B \mid x \in A\}$, de lo anterior concluimos que zw = wz para todo $z, w \in \psi(A)$, es decir, $\psi(A)$ es conmutativo.

2° A es un anillo con unidad $\Rightarrow \psi(A)$ es un anillo con unidad.

Como A es un anillo con unidad, existe $1 \in A$ tal que $1 \cdot x = x \cdot 1 = x$ para todo $x \in A$. Luego, $\psi(1 \cdot x) = \psi(x \cdot 1) = \psi(x)$ para todo $x \in A$. Dado que ψ es un homomorfismo de anillos, $\psi(1)\psi(x) = \psi(x)\psi(1) = \psi(x)$ para todo $x \in A$. Dado que $\psi(A) := \{\psi(x) \in B \mid x \in A\}$, de lo anterior concluimos que $\psi(1)z = z\psi(1) = z$ para todo $z \in \psi(A)$, es decir, $\psi(A)$ es un anillo con unidad.

Comentario: El que $\psi(1)$ sea el neutro multiplicativo de $\psi(A)$, no significa necesariamente que $\psi(1)$ sea el neutro multiplicativo de B. Como ejemplo basta considerar el siguiente homomorfismo de anillos.

$$\psi: \mathbb{Z} \to M_{2\times 2}(\mathbb{Z}),$$

$$a \mapsto \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix}.$$

3° $u \in A$ es una unidad $\Rightarrow \psi(u) \in \psi(A)$ es una unidad.

Denotemos por 1 al neutro multiplicativo de A. De 2° sabemos que $\psi(1)$ es el neutro multiplicativo de $\psi(A)$. Como $u \in A$ es una unidad, entonces existe $u^{-1} \in A$ tal que $u \cdot u^{-1} = u^{-1} \cdot u = 1$. Luego, $\psi(u \cdot u^{-1}) = \psi(u^{-1} \cdot u) = \psi(1)$. Como ψ es un homomorfismo de anillos, tendremos que $\psi(u)\psi(u^{-1}) = \psi(u^{-1})\psi(u) = \psi(1)$. Deducimos que $\psi(u^{-1})$ es el inverso multiplicativo de $\psi(u)$. Concluimos que $\psi(u)$ es una unidad.

4° Conclusiones.

Si A es un cuerpo, es un anillo conmutativo con unidad y todos sus elementos menos el 0 son unidades. Luego, por 1° y 2° tenemos que $\psi(A)$ es un anillo conmutativo y con unidad. Dado que $\psi(A) = \{\psi(x) \in B \mid x \in A\}$ y por 3°, tendremos que todo elemento menos $\psi(0)$ es una unidad.

Concluimos que $\psi(A)$ es un cuerpo.

Ejercicio 23.3. Sea A un subanillo con unidad de un cuerpo k. Muestre que A(S) es isomorfo a Frac(A[S]).

Demostración. Como A(S) es por definición un anillo que contiene a A y a S, tendremos que A[S] está contenido en A(S), así quien esté leyendo puede corroborar que $\iota: A[S] \to A(S)$, $c \mapsto c$ es un homomorfismo de anillos inyectivo. Luego, por la Proposición 2.47. de los apuntes del curso tenemos que $\varphi: Frac(A[S]) \to A(S)$, $[a,b] \mapsto a \cdot b^{-1}$, es un homomorfismo de anillos inyectivo. Así solo nos falta mostrar que φ es sobreyectiva.

Para eso consideramos $B = \varphi(Frac(A[S]))$. Sabemos que φ es sobreyectiva si y solo si B = A(S), por lo que a eso queremos llegar. Para esto usaremos lo único que sabemos de A(S), es el menor cuerpo que contiene a A y a S. Basta entonces mostrar que B es un cuerpo que contiene a A y a S, y como $B \subset A(S)$ tendremos necesariamente que B = A(S).

Notemos que $\varphi([a,1]) \in B$ para todo $a \in A[S]$. Luego, $a \in B$ para todo $a \in A[S]$. Deducimos que $A[S] \subset B$ y en particular $A, S \subset B$. Además, como Frac(A[S]) es un cuerpo, tendremos por el Lema 23.1. que B es un cuerpo. O sea, conseguimos mostrar que B es un cuerpo que contiene a A y a S.

Finalmente, dado que por definición $B \subset A(S)$, pero A(S) es la intersección de todos los cuerpo que contienen a A y a S, tendremos necesariamente que B = A(S). Deduciendo que φ es sobreyectivo, y por lo tanto concluimos que $Frac(A[S]) \cong A(S)$.

0.2. Ejercicios para la casita.

Ejercicio 23.4. Sea K una extensión de un cuerpo F, $\alpha \in K$ y $b \in F$.

- a) Demostrar que $F(b+\alpha) = F(\alpha)$
- b) Si b es no nulo, entonces F(ba) = F(a).

Ejercicio 23.5. Suponga que R y S son anillos isomorfos. Demuestre que $R[x] \cong S[x]$.

Ejercicio 23.6. Demuestre o refute: $x^p + a$ es irreducible para cualquier $a \in \mathbb{Z}/p\mathbb{Z}$, donde p es primo.

Ejercicio 23.6. ¿Cual de los siguientes polinomios son irreducibles sobre $\mathbb{Q}[x]$?

- a) $x^4 2x^3 + 2x^2 + x + 4$.
- b) $x^4 5x^3 + 3x 2$.
- c) $3x^5 4x^3 6x^2 + 6$.
- d) $5x^5 6x^4 3x^2 + 9x 15$.
- e) $x^n p$, con $n, p \in \mathbb{Z}$ y p número primo.