Ayudantia 23

Profesor: Cristóbal Rivas Ayudantes: Benjamin Martinez, Javier Pavez

Martes 22 de Noviembre 2022

0.1. Ejercicios para la ayudantía.

Ejercicio 23.1. Sean F_1 y F_2 subcuerpos de un cuerpo F. Definimos el composito de F_1 y F_2 al menor subcuerpo de F que contiene a F_1 y F_2 , lo denotamos por F_1F_2 . Demostrar que el composito de $\mathbb{Q}(\sqrt{2})$ y $\mathbb{Q}(\sqrt[3]{2})$ es el cuerpo $\mathbb{Q}(\sqrt[6]{2})$. Recuerde que $\mathbb{Q}(\sqrt{2})$, $\mathbb{Q}(\sqrt[3]{2}) \subset \mathbb{R}$.

Ejercicio 23.2. Demostrar que solo hay dos funciones que pueden ser ψ . Donde $\psi : \mathbb{C} \longrightarrow \mathbb{C}$ es un homomorfismo de anillos tal que $\psi \mid_{\mathbb{R}} = id$.

Lema 23.1. Sean A un cuerpo y B un anillo. Sea $\psi:A\longrightarrow B$ un homomorfismo de anillos. Demostrar que $\psi(A)$ es un cuerpo.

Ejercicio 23.3. Sea A un subanillo con unidad de un cuerpo k. Muestre que A(S) es isomorfo a Frac(A[S]).

0.2. Ejercicios para la casita.

Ejercicio 23.4. Sea K una extensión de un cuerpo F, $\alpha \in K$ y $b \in F$.

- a) Demostrar que $F(b+\alpha) = F(\alpha)$
- b) Si b es no nulo, entonces F(ba) = F(a).

Ejercicio 23.5. Suponga que R y S son anillos isomorfos. Demuestre que $R[x] \cong S[x]$.

Ejercicio 23.6. Demuestre o refute: $x^p + a$ es irreducible para cualquier $a \in \mathbb{Z}/p\mathbb{Z}$, donde p es primo.

1

Ejercicio 23.6. ¿Cual de los siguientes polinomios son irreducibles sobre $\mathbb{Q}[x]$?

- a) $x^4 2x^3 + 2x^2 + x + 4$.
- b) $x^4 5x^3 + 3x 2$.
- c) $3x^5 4x^3 6x^2 + 6$.
- d) $5x^5 6x^4 3x^2 + 9x 15$.
- e) $x^n p$, con $n, p \in \mathbb{Z}$ y p número primo.