Estructuras Algebraicas Ayudantia 19

Profesor: Cristóbal Rivas Ayudantes: Benajamin Martinez, Javier Pavez

Lunes 7 de Noviembre 2022

- 1. Demuestre que en un tablero de ajedrez infinito el caballo puede llegar a cualquier casilla.
- 2. Demuestre que si $I \subset A$ un ideal, entonces I[x] es ideal en A[x] y $A[x]/I[x] \cong (A/I)[x]$.
- 3. Demuestre que $\mathbb{Z}[x]/(x^2+1)\cong \mathbb{Z}[i]$ y $\mathbb{Z}[x]/(x^2+x-1)\cong \mathbb{Z}[\omega]$
- 4. Sea $I \subset A$ ideal. Demuestre que I primo si y solo si A/I es dominio.
- 5. Demuestre que si k es un cuerpo, entonces (k[x], deg) es un DE.
- 6. Sea D un DIP y $\mathfrak{p} \subset D$ primo. Demuestre que los generadores de \mathfrak{p} son primos.
- 7. Sea D un dominio y $a \in D$ irreducible. Demostrar que (a) es maximal entre los ideales principales. Concluir que en un DIP todo ideal primo es maximal.
- 8. Determine si 2 es primo en $\mathbb{Z}[i]$ y $\mathbb{Z}[\omega]$.
- 9. Sea d un entero positivo libre de cuadrados.
 - a) Demuestre que $\mathbb{Z}[\sqrt{d}]$ es isomorfo al subanillo D de \mathbb{R}^2 generado por $1_D=(1,1)$ y $\delta=(\sqrt{d},-\sqrt{d})$.
 - b) Asumiendo que $\{z+U\}_{z\in D}$ cubre a \mathbb{R}^2 , donde $U=\{(x,y)\in\mathbb{R}^2:|xy|<1\}$, demuestre que $\mathbb{Z}[\sqrt{d}]$ es un dominio euclideano con $\nu(x+y\sqrt{d})=|x^2-dy^2|$.