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Non-linear instability analysis of the two-dimensional Navier-Stokes
equation: The Taylor-Green vortex problem
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An enstrophy-based non-linear instability analysis of the Navier-Stokes equation for two-dimensional
(2D) flows is presented here, using the Taylor-Green vortex (TGV) problem as an example. This
problem admits a time-dependent analytical solution as the base flow, whose instability is traced
here. The numerical study of the evolution of the Taylor-Green vortices shows that the flow becomes
turbulent, but an explanation for this transition has not been advanced so far. The deviation of the
numerical solution from the analytical solution is studied here using a high accuracy compact scheme
on a non-uniform grid (NUC6), with the fourth-order Runge-Kutta method. The stream function-
vorticity (ψ, ω) formulation of the governing equations is solved here in a periodic square domain
with four vortices at t = 0. Simulations performed at different Reynolds numbers reveal that numer-
ical errors in computations induce a breakdown of symmetry and simultaneous fragmentation of
vortices. It is shown that the actual physical instability is triggered by the growth of disturbances and is
explained by the evolution of disturbance mechanical energy and enstrophy. The disturbance evolu-
tion equations have been traced by looking at (a) disturbance mechanical energy of the Navier-Stokes
equation, as described in the work of Sengupta et al., “Vortex-induced instability of an incompressible
wall-bounded shear layer,” J. Fluid Mech. 493, 277–286 (2003), and (b) the creation of rotationality
via the enstrophy transport equation in the work of Sengupta et al., “Diffusion in inhomogeneous
flows: Unique equilibrium state in an internal flow,” Comput. Fluids 88, 440–451 (2013). Published
by AIP Publishing. https://doi.org/10.1063/1.5024765

I. INTRODUCTION

Evolution of the Taylor-Green vortices is a benchmark
problem of fluid dynamics, originally solved by Taylor and
Green1 by a perturbation series in time, to explain the creation
of small scales by vortex stretching, apart from convection and
diffusion in a three-dimensional (3D) flow field. The analysis
was extended by Goldstein2 by a perturbation method, wherein
the series was formed as a function of Reynolds number (Re).
However, both these finite term linear perturbation methods
develop singularities in time and Re, respectively. This break-
down of series solution1,2 has been stated to cause instability
for the creation of turbulence.

Here we note that there is an analytical solution which is
periodic in all spatial dimensions and time-dependent. Thus,
the analytical solution can be identified as a time-dependent
base flow state, whose instability has not been reported so
far by linear or non-linear mechanisms. Gau and Hattori3

have tried to study the modal and non-modal stability of 2D
Taylor-Green vortices. However, in the study, the base flow is
assumed to be steady as their calculated solution is limited only
up to tmax = 15. It is essential to note that in their notations, the
Reynolds number is defined in terms of the time-dependent
amplitude of the analytic solution for the stream function and
hence a longer time solution would make the Reynolds number
also time varying. In the present research, no such restrictive

a)Electronic mail: tksen@iitk.ac.in

assumption is made. Also the nonlinear study employed does
not require finite amplitude excitation. The main aim is to show
that the ensuing instability is triggered by background numer-
ical error. For this reason, simulations have been performed
using multiple grids to minimize the possibility of trunca-
tion errors playing any major role, although these results are
not shown here. The use of a compact scheme with its near-
spectral accuracy4 brings down the truncation error signifi-
cantly, and the round off error is enough to trigger the nonlinear
instability.

There are other differences between the present nonlin-
ear approach and the linear approach,3 one of the primary
ones being that the vortices considered are elliptic in shape,
while the present study considers circular vortices and the
boundary conditions are strictly periodic. In the work of
Gau and Hatorri,3 there are two types of boundary condi-
tions considered: the penetrating and non-penetrating types
to introduce zero normal velocity components on the divid-
ing surface between neighbouring cells for the latter. This
non-penetrating type boundary condition isolates each cell,
while for the penetrating case the neighbouring cells inter-
act. While this approach may divide the disturbances by their
symmetries, the basic periodicity of the Taylor-Green vortices
is not strictly enforced. The present approach of consider-
ing multiple cells with periodic boundary conditions allows
one to study the natural dynamics of the system by includ-
ing the saddle point (hyperbolic stagnation point3) in the
interior of the domain, and its dynamics is governed by
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the Navier-Stokes equation and not restricted by imposed
boundary conditions.

A 3D analytical solution at t = 0 has been used by Orszag,5

to demonstrate numerically how 3D flow develops. The numer-
ical solution computed by the pseudo-spectral direct numeri-
cal simulation (DNS), and the Adams-Bashforth scheme for
time integration, has been reported.5 However, the critique
of this method4,6,7 is important due to the role of the spu-
rious mode in three-time level methods. It has been shown
recently that pseudo-spectral methods, with Adams-Bashforth
time discretization, display the focusing phenomenon when
computations are continued for a long time.7

Results by Orszag5 display the instability numerically,
which leads to the typical energy spectrum and dissipation of
3D turbulent flows. This has also been reported in the studies
of Brachet8 and Brachet et al.,9,10 considering both inviscid
and viscous dynamics of TGV.

Since the appearance of the work by Orszag,5 the TGV
problem has been used to validate and compare performances
of numerical schemes, while developing methods for DNS and
large eddy simulation (LES). However, the numerical solution
of the TGV flow is not stable with respect to omnipresent back-
ground disturbances. A finite difference wave resolving LES
code, using the explicit spatial discretization and Runge-Kutta
time integration method, has been used to test a compress-
ible code for simulating the TGV problem.11 The conventional
LES and monotone integrated LES (MILES) were assessed12

in simulating the dynamics of transition to turbulence in the
TGV flow. Various subgrid scale (SGS) model results were
compared with the MILES solution, where the latter provided
accurate estimates of kinetic energy dissipation, energy spec-
tra, enstrophy, and kinetic energy decay.12 The consequences
of filtering 3D numerical results of nearly incompressible,
inviscid TGV flow, using a spectral method and another fifth-
order weighted essentially non-oscillatory method, were inves-
tigated in the wok of Shu et al.13 A comparison of a hybrid
particle-mesh vortex method with a pseudo-spectral method
has been presented by van Rees et al.14 for the TGV flow
at Re = 1600. Gassner and Beck15 compared a very high
order discontinuous Galerkin (DG) approximation and a low-
order discretization for solving the TGV problem to prove the
superiority of higher order methods. The analytical solution
of the TGV flow offers an advantage of accurate represen-
tation in DG approximation, and Chapelier et al.16 used the
modal DG method in predicting the TGV flow features by DNS
and LES.

A 2D study has been reported in Brachet et al.17 for the
dynamics of freely decaying turbulence using the TGV flow
as a spatially periodic model problem. However, turbulence
was initiated by using initial conditions given by Gaussian-
random data, i.e., not using the initial condition used by Taylor
and Green.1 It was found that the inertial energy-spectrum
exponent changes from �4(k�4) to �3(k�3) with evolution of
time. The first regime was associated with isolated vorticity-
gradient sheets (as predicted by Ref. 18), whereas the second
regime (a statistical state) relates to an enstrophy cascade pro-
posed by Kraichnan19 and Batchelor.20 The small-scales of
2D turbulence are explained as due to stretching of vorticity
gradients.

2D DNS of the Navier-Stokes equation for flow over a flat
plate caused by wall and free-stream excitations has shown the
presence of k�3 energy spectrum in the inertial subrange.21 It is
interesting to note that Nastrom et al.22 compiled atmospheric
data to show the simultaneous presence of the k�3 and k�5/3

spectrum for velocity components and potential temperature.
However, it is noted21 that the k�3 part of the spectrum domi-
nate with 98.3% of the area under the curve plotted for spectral
density versus k, for the components of velocity and potential
temperature.22 The 2D TGV problem allows one to study the
evolution of the disturbance field, viewed as a departure of the
computed solutions from the analytical laminar solution.

Here, the 2D TGV problem is desirable from physical and
numerical point of views for the following reasons: (i) one can
take a larger number of grid points compared to a 3D prob-
lem, due to which truncation error and other sources of errors
like additional aliasing error from vortex stretching term are
reduced, and (ii) one can use the analytical solution of the TGV
problem from the Navier-Stokes equation as the equilibrium
solution. This also forms a basis to judge the quality of numer-
ical methods by comparing solutions at early times, before
the onset of physical instability. We use a sixth order compact
scheme23,24 developed for non-uniform grids in the physical
plane to achieve higher resolution, which is not possible with
Fourier spectral methods requiring a uniform grid.5,8,9

For any high accuracy computing, uncertainty quantifi-
cation connotes characterization of error and its propagation.
The ubiquitous error in any numerical simulation has to be
minimized. Many efforts in analyzing error dynamics have
used various methods attributed to von Neumann analysis,25,26

which uses an intuitive observation that for a linear system, the
error and the signal follow the same dynamics. This has been in
use for linear equations and quasi-linearized form of non-linear
equations. The error analysis performed with Fourier series
cannot explain many situations, which prompted Zingg27 to
note that through Fourier analysis, one can evaluate the phase
and amplitude error of a given method as a function of the
wavenumber. However, this information can be difficult to
interpret. This epistemic aberration was rectified by develop-
ing global spectral analysis (GSA) with the help of the model
1D convection equation.28 One of the striking features of GSA
is that the constant phase speed of the convection equation
becomes dependent on the wavenumber in numerical simula-
tions. The same feature of the constant coefficient of diffusion
changing with wavenumber numerically has been established
for the 1D diffusion equation.29 Two other striking successes
of GSA are in explaining the spurious upstream propagating
q-waves and the phenomenon of focusing of error.7 These
are with respect to the linear 1D wave equation. The non-
linear error dynamics of the KdV equation have also been
reported.30 The error dynamics from the numerical solution of
the Navier-Stokes equation have yet to be attempted. Thus, the
present research utilizes the time-dependent base flow of the
Navier-Stokes equation to study its error dynamics and how
it triggers the physical instability. This enables us to study
the error dynamics of the full Navier-Stokes equation for a
time-dependent dynamical system, demonstrated as the epis-
temic error dynamics. While we do not explicitly discuss the
aleatoric uncertainty due to the stochastic variation related to
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intrinsic dynamics, it is implicitly associated with the physical
instability of the TGV problem.

The non-linear physical instability can be studied using
the developed tools of the disturbance mechanical energy
(DME) equation, enstrophy transport equation (ETE), and
proper orthogonal decomposition (POD).31–33 Here, the DME
equation and the disturbance ETE are adopted to numerically
study the physical instability of the 2D TGV. Landahl and
Mollo-Christensen34 stated that it is possible to study the phys-
ical instability from the redistribution of the total mechanical
energy. This idea was used to develop a new theory on the
growth of DME from the Navier-Stokes equation, without
any assumptions, to explain vortex-induced instability.31 This
DME equation is used here to explain its role for the physical
instability in the TGV flow. Doering and Gibbon35 showed
that, for 2D periodic flows, the effect of diffusion is strictly
dissipative, when viewed globally. However, Sengupta et al.32

explained that if diffusion is viewed locally at any instant of
time, then it is not strictly dissipative. The authors derived
the ETE from the Navier-Stokes equation for inhomogeneous
flows and explained the role of diffusion in creating rotational-
ity. The same concept of growth and decay of the disturbance
enstrophy has been used in the present study.

This paper is formatted as follows. In the next section,
the equilibrium 2D TGV flow is discussed along with the ini-
tial condition and the analytical time-dependent solution. The
numerical methods used in the present investigation are also
defined in this section. In Sec. III, the method of computing the
TGV problem is discussed. In Sec. IV, results and discussions
are presented, which is followed by Sec. V on the evolution of
DME, to follow the deviation of the computed solution from
the analytical one. In Sec. VI, the role of the ETE on the evo-
lution of the TGV is discussed. In Sec. VII, the instability
via the disturbance ETE is explained for the TGV problem.
The paper closes in Sec. VIII, providing the summary and
conclusions.

II. THE EQUILIBRIUM 2D TAYLOR-GREEN
VORTEX FLOW

The time-dependent 2D incompressible Navier-Stokes
equations are solved in the physical-plane using the stream
function (ψ) and vorticity (ω) formulation, as given by the
stream function equation (SFE) and the vorticity transport
equation (VTE),

∂2ψ

∂x2
+
∂2ψ

∂y2
= −ω, (1)

∂ω

∂t
+ u

∂ω

∂x
+ v

∂ω

∂y
=

1
Re

(
∂2ω

∂x2
+
∂2ω

∂y2

)
. (2)

The stream function and the velocity are related by
~V = ∇ × ~ψ, with ~ψ = [0 0 ψ]T , while the vorticity (ω) is
related to the velocity by ~ω = ∇ × ~V . In the above equations,
the components of velocity vector are defined as

u =
∂ψ

∂y
, v = −

∂ψ

∂x
. (3)

The 2D TGV problem is solved in a periodic domain
0 ≤ (x, y) ≤ 2π with the following initial conditions:

ψ(x, y, 0) = sin x sin y, ω(x, y, 0) = 2 sin x sin y. (4)

The computed results are compared with the analytical
solution given in terms of the time-dependent ψ and ω, as
derived next for the 2D TGV problem. This problem has a solu-
tion for ψ and ω given in terms of a time-dependent function,
F(t) as

ψ(x, y, t) = sin x sin y F(t),

ω(x, y, t) = 2 sin x sin y F(t).
(5)

Here, F(t) is found out by substituting Eq. (5) in Eq. (2), and
upon simplification one gets

F(t) = e−
2t
Re . (6)

This is the analytical time-dependent base flow solution
for the 2D TGV problem. It is well known that this equilibrium
solution is not stable with respect to omnipresent numerical
disturbances, if the Navier-Stokes equation is solved numeri-
cally.5 The aim of the present study is to see how the numerical
solution behaves with respect to the analytical solution and
explain such deviations.

The first order spatial derivatives in Eq. (2) (VTE) are
discretized using a sixth order, non-uniform compact NUC6-
scheme.24 In computing the spatial derivatives by using the
compact scheme, periodic boundary conditions have been used
in the domain, over the range of 2π in the x- and y-directions of
the grid shown in Fig. 1. The second order spatial derivatives in
SFE and VTE are obtained by the second order central differ-
ence scheme (CD2) for a non-uniform grid.4 Additionally, we
also report cases, where the second derivatives appearing in
the diffusion term of VTE are discretized using the NUC6-
scheme applied twice. The four-stage, fourth-order Runge-
Kutta method (RK4) is used for the time-integration of VTE.
The SFE given by Eq. (1) is solved by the unpreconditioned
Bi-CGSTAB36 iterative method, with a tolerance limit of 10�7

for convergence.

FIG. 1. A sample grid-topology used in the simulations, shown here with
201 × 201 points and stretching parameter βh = 1.5.
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III. COMPUTATION OF THE 2D
TAYLOR-GREEN VORTEX

The simulations presented here are as listed in Table I. A
square domain of length 2π has been chosen, constituting a
basic unit of four TGV cells, with a full-saddle point37 at the
center of the domain. This arrangement shows a breakdown
of symmetry due to the growth of disturbances. Due to the
combined actions of vorticity gradient terms and the growth
of disturbance quantities, the disturbance vorticity grows with
time. The grid is defined with a tangent-hyperbolic double-
sided distribution4 in the x- and the y-directions. Given a
uniform distribution of points between 0 and l = π/2 by ηi

in the transformed plane, with i = 1 to i = N /4, and βh as the
stretching parameter, the nodes xi in the physical plane are
given by

xi =
l
2

[
1 −

tanh βh(1 − 2ηi)
tanh βh

]
. (7)

This same grid spacing is used as a mirror image in the adjacent
segment, i.e., from i = N /4 + 1 to i = N /2, and so on, up to
i = N, so that the grid has finer spacing, where the solution
gradients involved in Eqs. (1) and (2) are high, namely, near
the boundary of the domain, at the core of the vortices and at
the saddle point. An identical grid distribution is used in the
y-direction. A typical topology of the grid with (201 × 201)
points, and βh = 1.5 is shown in Fig. 1.

A time step (∆t) of 10�4 is chosen such that, for
all the cases in Table I, the maximum and minimum

TABLE I. Numerical parameters of the test cases reported are shown here.

Case Grid hmax hmin Ncmin Ncmax Pemin Pemax Re

1 401× 401 0.026 0.0048 0.0038 0.0206 0.000 29 0.008 68 500
2 401× 401 0.026 0.0048 0.0038 0.0206 0.000 07 0.002 13 2000
3 401× 401 0.026 0.0048 0.0038 0.0206 0.000 01 0.000 43 104

Courant-Friedrichs-Lewy (CFL) numbers (Ncmin, Ncmax)
and Peclet numbers (Pemin, Pemax) lie within the region
where the non-dimensional numerical amplification factor
(|Gnum|/|Gphys|) is very close to unity for the NUC6-scheme.24

Here, Gphys is the physical amplification factor and Gnum is the
numerical amplification factor for the model 1D convection-
diffusion equation, as analyzed in the work of Suman
et al.38 Here, Ncmin =

∆t
hmax

, Ncmax = ∆t
hmin

, Pemin = 1
Re

∆t
h2

max
,

and Pemax =
1

Re
∆t

h2
min

, where hmax is the coarsest grid spacing

and hmin is the finest grid spacing in the entire domain. The
stretching parameter, βh = 1.5, is used for all the computations
reported here.

IV. RESULTS AND DISCUSSION

Figure 2 compares the numerical solution (solid lines)
with the analytical solution (dashed lines) for non-dimensional
times of t = 50 and 150, for case-1 listed in Table I. The numer-
ical solution matches with the exact solution at these times.
Also, the root mean square (RMS) error for ψ and ω is shown

FIG. 2. Comparison of the numerical results (solid line) with the analytical solution (dashed line) shown at t = 50 in frames (a) and (b) and at t = 150 in frames
(c) and (d). Contours of ψ are shown in frames (a) and (c), and ω-contours are in frames (b) and (d) for Re = 2000 (case-1 of Table I).
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FIG. 3. Comparison of the maximum error in ψ and ω obtained using the
CD2 scheme in the non-uniform grid and NUC6-scheme applied twice for the
diffusion terms in Eq. (2) for case-1.

in the figure. The expressions for these RMS quantities are
given below for the stream function, with ψA and ψN repre-
senting analytical and numerical values, respectively, and N is
the number of grid points in the x- and the y-directions,

ErrRMS =

√∑j=N
j=1

∑i=N
i=1 (ψN (i, j) − ψA(i, j))2

N ∗ N
. (8)

The RMS errors are of the order 10�5 for ψ and 10�6 for ω, as
indicated in Fig. 2. It is noted that the solution loses symmetry
above t =̃ 160.

Figure 3 shows the maximum error in ψ and ω, when the
diffusion terms in Eq. (2) are computed using the CD2 scheme
in the non-uniform grid,4 and using the NUC6-scheme24

applied twice. The difference in the maximum error for these
two schemes for discretizing the diffusion term is very small.
Therefore, we conclude that there is a very weak dependence
of the results on the methods used for discretizing the highest
order derivatives, i.e., the diffusion terms.

At around t = 220, the four vortices start convecting while
losing coherence, as shown in Fig. 4. These vortices eventually
fragment into small structures at later times.

The magnitude of the maximum error for ω, denoted as
(ωd)max = maximum(|ωA � ωN |), is plotted in a log scale as
a function of time for Re = 500 (case-2), 2000 (case-1), and
10 000 (case-3) in Fig. 5. The maximum amplitude of the error
remains nearly constant up to t = 160 for higher Re cases,
whereas for Re = 500 it remains nearly constant up to t = 310,
after which the error increases. For lower Re cases, the flow is
dominated by diffusion over convection, where stronger dif-
fusion suppresses disturbances. Thus, the flow remains stable
for a longer time for lower Re cases. The error during initial
transient stages is higher for Re = 500 because the opera-
tional Pe-range is highest for the lowest Re. From the results in
Fig. 5, it is observed that for all the cases, the numerical solu-
tion remains stable up to t = 160, and following which, the
solution becomes destabilized, evident from the breakdown of
symmetry of the original (2 × 2) cells of vortices. The tra-
jectory of dω

dt with respect to ω in phase space for the full
saddle point is plotted in Fig. 6. Different marked points in
the figure indicate the various stages of instability, as shown
by the vorticity at the full saddle point; break down of orig-
inal symmetry of the TGV and nonlinear saturation of the

FIG. 4. Vorticity (ω) contours at indi-
cated non-dimensional times for case-1.
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FIG. 5. Amplitude of (ωd )max plotted in a log scale as a function of time for
the cases in Table I, for Re = 500, 2000, and 10 000.

disturbance vorticity at the saddle point with the correspond-
ing points are shown in Fig. 5. Point A indicates the onset
of instability with dω

dt of the order of 10�5, after which the
magnitude of dω

dt rapidly starts increasing. In Fig. 5 at around
t = 252.60, we have already noted that the point C shows a
small dip in the temporal growth rate. After which the mag-
nitude again increases, with fluctuations at points D–H. The
point I marks the nonlinear saturation of growth, after which
the magnitude of dω

dt remains constant. It is noted that, though
the instabilities arise physically here, these are triggered by
numerical errors. The reasons behind the appearance of insta-
bilities and the breakdown of vortices are explained by the
DME and the disturbance ETE, in the following sections.

FIG. 6. Phase space trajectory of dω
dt vs ω at the saddle point for case 2

(Re = 2000) of Table I.

V. EVOLUTION OF DME AND LOSS OF COHERENCE
OF THE TAYLOR-GREEN VORTICES

It is essential to study the roles of various parameters
responsible for the onset of asymmetry (by which we mean
the loss of coherence of the TGV) from the perfectly sym-
metric initial state. As emphasized by Landahl and Mollo-
Christensen,34 the total mechanical energy is a parameter
which can provide a clue to the onset of instability. The use
of the total mechanical energy to study nonlinear disturbance
growth in flows has been explained by Sengupta et al.31 Here,
we analyze the loss of symmetry, by computing the DME equa-
tion,31 as described next. The equation for the total mechanical

energy E = p
ρ +

~V ·~V
2 is obtained by taking divergence of the

rotational form of the Navier-Stokes equation and is given as
follows:

∇2E = ~ω · ~ω − ~V · (∇ × ~ω). (9)

The right-hand side of Eq. (9) shows how the vorticity
(~ω) and the velocity (~V ) vectors interact to create mechan-
ical energy. We split the instantaneous variables in Eq. (9)
into the equilibrium and the perturbation quantities as31

E = Em + εEd ; ~V = ~Vm + ε~Vd ; ~ω = ~ωm + ε ~ωd , where sub-
scripts m and d represent the time-dependent base flow and
disturbance components of the flow, respectively. We get the
equilibrium mechanical energy from

∇2Em = ~ωm · ~ωm − ~Vm · (∇ × ~ωm). (10)

Substituting the above expressions in Eq. (9), one gets

∇2Ed = 2~ωm · ~ωd + ε ~ωd · ~ωd − ~Vm · (∇ × ~ωd)

− ~Vd · (∇ × ~ωm) − ε~Vd · (∇ × ~ωd). (11)

Here, the analytical solution is used as the time-dependent
base flow, and the numerical solution is the instantaneous
quantity. Therefore,

~ωm = ωAk̂, ~ωd = (ωN k̂ − ωAk̂),

~Vm = uA î + vA ĵ, ~Vd = (uN − uA)î + (vN − vA)ĵ,

where subscript A corresponds to the analytical solution and
subscript N represents the numerical solution. Equation (11)
is a Poisson equation with non-zero right-hand side (RHS)
representing either a source or a sink of disturbance energy
in the domain. A positive RHS acts as a sink and a negative
RHS acts as a source of disturbance energy.31,39 The RHS of
the DME equation in Eq. (11) consists of the following five
terms:

T1 = 2~ωm · ~ωd , T2 = ~ωd · ~ωd ,

T3 = −~Vm · (∇ × ~ωd), T4 = −~Vd · (∇ × ~ωm),

and

T5 = −~Vd · (∇ × ~ωd).

Terms (T1) and (T2) on the RHS of the DME equation
are due to interactions of the equilibrium and disturbance vor-
ticity fields (~ωm · ~ωd) and the self-interacting non-linear term
(~ωd · ~ωd). Other terms (T3, T4, and T5) are due to interactions
of the velocity and vorticity dependent terms.
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FIG. 7. (a) Variation of terms
(T1 + T2), (T3 + T4 + T5) and the
total RHS of DME equation at the full
saddle point, plotted with respect to
time. (b) Comparison of the maximum
amplitude of error in ω (nabla symbol)
with (T1 + T2) on the RHS of the DME
equation (square); (c) comparison
of the maximum error amplitude of
ψ (circle) and the RHS of the DME
equation (delta), plotted vs. time for
Re = 2000 using ∆t = 10�4 (case-1).

In Fig. 7, the variation of various terms (T1 + T2),
(T3 + T4 + T5) in the RHS of DME and the total RHS of
DME Eq. (11), with respect to time is shown in frame (a). It is
observed that the contributions from terms T3, T4, and T5 are
small. as compared to that coming from T1 and T2. The terms
T3, T4, and T5 represent interactions between velocity and
palinstrophy (∇× ~ω) dependent terms, whereas terms T1 and
T2 represent the interactions of the equilibrium and distur-
bance vorticity fields or the disturbance enstrophy. The max-
imum positive value of (T1 + T2) and the amplitude of max-
imum disturbance vorticity |ωd | are plotted in frame (b). The
evolution of the maximum value of the RHS of the DME equa-
tion and the amplitude of the maximum disturbance stream
function |ψd | is shown in frame (c) for case-1. The stream func-
tion represents the global integrated flow field, and it follows
the (RHS)max of the DME equation. The value of (T1 + T2)
matches well with the maximum-|ωd | plot. We can see from
the figure that (T1 + T2) and the RHS of the DME equation
remain nearly constant up to t = 160. After this, the vortices
convect, break down, and lose complete coherence, resulting
in an increase of the maximum value of (T1 + T2) and the
RHS.

VI. ROLE OF THE ETE ON THE EVOLUTION
OF THE TAYLOR-GREEN VORTICES

The ETE is obtained by taking the inner product of the
VTE with ~ω and is given for 3D flows as32

∂Ω1

∂t
+ uj

∂Ω1

∂xj
− 2ωiωj

∂ui

∂xj
=

1
Re

∂2Ω1

∂xj∂xj
−

2
Re

(
∂ωi

∂xj

) (
∂ωi

∂xj

)
.

(12)

The ETE gives an estimate of the growth or decay of the
enstrophy (Ω1) with time for any arbitrary inhomogeneous
flow. The distinction between the diffusion and dissipation
for inhomogeneous flows was clarified with the help of the

ETE,32 where it was demonstrated that for inhomogeneous
flows, the diffusion term can be simplified into two sets of
terms. The second set of terms on the RHS of Eq. (12) is
strictly negative, and hence, it is dissipative in nature. The first
term in the RHS of the ETE can either be positive or negative.
The sign of the RHS of the ETE given by Eq. (12) depends

upon the diffusion terms ( ∂
2Ω1

∂xj∂xj
) and thus plays an important

role in creating or destroying rotationality.
As the vortex stretching term is completely absent for 2D

flows, the third term on the left-hand side of Eq. (12) disappears
and one gets

∂Ω1

∂t
+ uj

∂Ω1

∂xj
=

1
Re

∂2Ω1

∂xj∂xj
−

2
Re

(
∂ω

∂xj

) (
∂ω

∂xj

)
.

The simplified equation for 2D flows in the Cartesian frame is
given as

DΩ1

Dt
=

1
Re

[
∂2Ω1

∂x2
+
∂2Ω1

∂y2

]
−

2
Re



(
∂ω

∂x

)2

+

(
∂ω

∂y

)2
. (13)

In Eq. (13), Ω1 is a strictly positive term and a positive
RHS implies that diffusion causes numerical growth, whereas
a negative RHS would mean decay of Ω1. In Fig. 8, we show
the RHS of Eq. (13) for the ETE evaluated at t = 160 for
Re = 2000. According to Fig. 5, this is the time at which
the error increases exponentially. It has been stated in the
work of Doering and Gibbon35 that for the 2D periodic flow,
the enstrophy decreases monotonically in the whole domain.
However, in their analysis,35 the instability of the enstro-
phy has not been considered. In Fig. 8(a), the analytically
obtained RHS of the ETE [Eq. (13)] is observed to be negative
everywhere in the domain, which is expected for the global
integrated property without any instability.35 However, the
numerical solution shows the growth of disturbances, which
is estimated from the RHS of Eq. (13) and shown in Fig. 8(b).
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FIG. 8. Contours of the RHS of the
ETE for (a) the analytical solution and
(b) the computed solution at t = 160,
for a grid with βh = 1.5 and Re = 2000.
Positive value of the RHS of the ETE is
shown by the continuous lines, as shown
in frame (b).

The numerical RHS shows regions of growth of the enstrophy,
as marked by continuous lines in the figure. Hence, despite the
equilibrium flow being 2D and periodic, the flow experiences
a loss of symmetry due to the growth of rotationality at dif-
ferent scales in the domain. The present simulations show the
creation of small-scale eddies associated with the loss of sym-
metry due to the physical instability. These small-scale eddies
are inhomogeneous and are formed in regions where strain
dominates vorticity.40 Figure 9 shows the evolution of the max-

imum values of the RHS of the ETE; E1 =
1

Re

[
∂2Ω1
∂x2 + ∂2Ω1

∂y2

]

and E2 =
2

Re

[(
∂ω
∂x

)2
+

(
∂ω
∂y

)2
]
, for case-1. It is observed

from the figure that max(RHS) of the ETE is positive and
increases with time due to a non-linear instability. The max-
imum value of RHS of the ETE is of O(10�17) for t < 100,
which is below the machine-zero and not shown by the
post-processor.

FIG. 9. Time evolution of the maximum value of the RHS of the ETE, max-

imum of terms E1 =
1

Re

[
∂2Ω1
∂x2 + ∂2Ω1

∂y2

]
and E2 =

2
Re

[(
∂ω
∂x

)2
+

(
∂ω
∂y

)2
]

plotted in a log scale for Re = 2000. Below t = 100, the maximum value of
the RHS is of the order of 10�17.

VII. INSTABILITY OF THE ENSTROPHY
TRANSPORT EQUATION

Doering and Gibbon35 have shown that for 2D periodic
flows the enstrophy integrated over the full domain decreases
monotonically, but the instability of the enstrophy was not
considered. Here, an instability analysis of the enstrophy is
presented, showing the linear and non-linear growth rates.41

As mentioned earlier, the analytical solution is considered as
the time-dependent base flow and numerical solution as the
instantaneous solution. Therefore, we split the instantaneous
variables in Eq. (13), into an equilibrium and a perturbation
quantity as Ω1 = Ωm + ε1Ωd ; u = um + ε2ud ; 3 = 3m + ε23d ;
ω = ωm + ε2ωd , where subscripts m and d represent the time-
dependent base flow and disturbance components, respec-
tively. The relation between ε1 and ε2 is given by ε1 = 2 ∗ ε2.
Substituting the above in Eq. (13) and collecting O(ε1) terms,
one gets

DΩd

Dt
=

1
Re

[
∂2Ωd

∂x2
+
∂2Ωd

∂y2

]

−
2

Re

[(
∂ωm

∂x

) (
∂ωd

∂x

)
+

(
∂ωm

∂y

) (
∂ωd

∂y

)]
. (14)

The above equation gives the linearized growth of the dis-
turbance enstrophy. Here, the contribution of the last term on
the RHS of the above equation can cause decay or growth
of Ωd , unlike what is observed for the total enstrophy. The
total enstrophy Ω1 is positive definite, whereas Ωd is given as
Ωd = ~ωd · ~ωm, i.e., it is due to the interaction between the equi-
librium and the disturbance vorticity fields, and hence it can be
either positive or negative. Figure 10 shows the time evolution
of the disturbance enstrophy Ωd and the mean enstrophy Ωm,
summed over the full domain, using ∆t = 10�4 for Re = 2000,
in frames (a) and (b), respectively. Frame (b) shows that the
integrated mean enstrophy decays with time, which is consis-
tent with the property of the equilibrium flow.35 Whereas the
variation of the integrated disturbance enstrophy with time in
frame (a) shows that initially the integrated Ωd remains close
to zero, and at t = 210 when vortices start breaking down, its
amplitude increases sharply and thereafter fluctuates about a
constant value.

The points in the domain where Ωd > 0 and DΩd /Dt > 0
are the locations for growth of disturbances. Similarly, if at
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FIG. 10. Comparison of the evolution
of (a) the disturbance enstrophy Ωd and
(b) enstrophy of the base flow, Ωm,
summed over the whole domain, as
shown for ∆t = 10�4 and Re = 2000.

a place where Ωd < 0, if DΩd /Dt is negative, then we have
instability locally, as the amplitude of Ωd increases with time
for both the cases. Therefore, the instability is indicated by the

signs of Ωd and the substantive derivative, DΩd /Dt. The non-
linear growth of the disturbance enstrophy can be obtained
by subtracting the ETE for the equilibrium flow from the

FIG. 11. Contours of the RHS of the
disturbance enstrophy transport equa-

tion, Eq. (14), ( DΩd
Dt > 0) and (Ωd > 0)

for the linearized growth rate, shown at
the indicated times, for ∆t = 10�4 and
Re = 2000.
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instantaneous ETE. Writing the instantaneous ETE as

DΩ1

Dt
=

1
Re

[
∂2Ω1

∂x2
+
∂2Ω1

∂y2

]
−

2
Re



(
∂ω

∂x

)2

+

(
∂ω

∂y

)2
. (15)

The ETE for the equilibrium flow is

DΩm

Dt
=

1
Re

[
∂2Ωm

∂x2
+
∂2Ωm

∂y2

]
−

2
Re



(
∂ωm

∂x

)2

+

(
∂ωm

∂x

)2
.

(16)
Subtracting Eq. (16) from Eq. (15), one gets the nonlinear

growth rate for Ωd as

DΩd

Dt
= R1 − Rm, (17)

where R1 and Rm represent the RHS of Eqs. (15) and (16),
respectively.

In Figs. 11 and 12, the linear growth rate contours of the
disturbance enstrophy given by Eq. (14) are shown at the indi-
cated times of t = 160, 180, 210, 250, 275, and 290. Figure 11
shows the region where Ωd along with its time rate are posi-
tive. Similarly, Fig. 12 shows the region where Ωd along with
its time rate are negative. Both these conditions are indicative
of instability for the disturbance enstrophy, i.e., the positive
value increases, while the negative value becomes more and
more negative. The start-up time in these figures is understood,
by looking at Fig. 5, which shows that up to t = 160, the dis-
turbance quantity virtually remains zero, as it is also seen in
Fig. 10 for Ωd , for even a longer duration.

It is observed that at the onset of growth (t = 160 and 180),
the RHS of Eq. (14) indicating the growth rate has a global
maximum at the core of the vortices, at the full saddle point,
and along the dividing lines of the vortical cells. The growth
rate ofΩd grows by orders of magnitude in the frame at t = 210,

FIG. 12. Contours of the RHS of the
disturbance enstrophy transport equa-

tion, Eq. (14), ( DΩd
Dt < 0) and (Ωd < 0)

for the linearized growth rate, shown at
the indicated times, for ∆t = 10�4 and
Re = 2000.
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as compared to the frames at t = 160 and 180 in Figs. 11 and
12, and which again increases by another order of magnitude
by t = 250. During these times, the maximum growth rate for
positiveΩd is along the horizontal streaks from the cores to the
edge of the cells (toward the right in the top cells and toward
the left for the bottom cells). For negative Ωd , these streaks of
maximum growth rate are in complimentary directions, i.e., on
the top cells the streaks are from the core to the left and from
the core to the right for the bottom cells. Subsequent frames at
later times also show continuing growth, with the maximum
growth rates noted near the cell boundaries, and not near the
core for Ωd > 0. For negative Ωd , the maximum growth rates
at later time frames are along the horizontal streaks passing
through the vortex core for the linearized growth rates.

The corresponding non-linear growth of Ωd is shown in
Figs. 13 and 14, at the indicated times of t = 160, 180, 210,
250, 275, and 290. As in Figs. 11 and 12 for the linearized
growth rate, here also we have two possibilities, depending
upon the sign of Ωd . The (DΩd /Dt > 0)-contours plotted in

Fig. 13 show regions of instability, for the case of Ωd > 0.
Similarly, the instability ofΩd < 0 is shown in Fig. 14. For the
positive Ωd , the onset is noted at the cores (seen for t = 160
and 180), which at t = 210 shows the site of maximum growth
to be near the dividing lines of the vortical cells. From the
bottom two frames (at t = 275 and 290), one notices periodic
symmetry in alternate cells in both the horizontal and vertical
directions, about the full saddle point. It is also remarkable to
note that the non-linear growth rates are orders of magnitude
lower at later times, as compared to the linear growth rates
shown in Fig. 11. For the negative Ωd case also, the nonlinear
growth rates are significantly lower by orders of magnitude
at later times, as compared to the linear growth rate shown in
Fig. 12.

From Figs. 10–14, it is apparent that the error evolution
studied here is due to cumulative background disturbances,
which is not due to any imposed excitations. From Fig. 10,
it is evidently clear that the disturbance enstrophy remains at
machine zero up to t ≈ 210, which thereafter grows rapidly,

FIG. 13. Contours of the RHS of the
non-linear growth rate of the distur-
bance enstrophy transport equation,

Eq. (17), ( DΩd
Dt > 0) and (Ωd > 0),

shown at the indicated times, for
∆t = 10�4 and Re = 2000.
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FIG. 14. Contours of the RHS of the
non-linear growth rate of the distur-
bance enstrophy transport equation,

Eq. (17), ( DΩd
Dt < 0) and (Ωd < 0),

shown at the indicated times, for
∆t = 10�4 and Re = 2000.

and that can be traced by the present linear/non-linear theory
based on DNS results. Thus, the instabilities are triggered by
numerical noises and not by any deterministic excitation. In
existing linear theory,3 the TGV problem itself is changed,
where the circular vortices have been made to elliptic vortices
so that the developed theory of elliptic instability can be used.
Second, the boundary conditions employed in this linear theory
impose conditions on the edge of the vortical cells, to study
the so-called symmetry of disturbances, while not employing
the periodic boundary conditions. Thus, in a true sense, there
is no linear theory to study the TGV problem.

VIII. SUMMARY AND CONCLUSION

In the present research, we have analyzed the instability
of the 2D TGV flow by performing DNS of the Navier-Stokes

equation, using (ψ, ω)-formulation, with a non-uniform grid,
for three different Reynolds numbers. The 2D TGV double-
periodic problem has an analytical solution, which can be
treated as the time-dependent base flow solution. However,
the numerical solution of the Navier-Stokes equation with the
periodic initial condition is noted to suffer deviations from
this analytical solution after a moderate span of time, and
this has remained unexplained so far. For this time-dependent
base flow solution, these deviations are explained via the
study of the instability using the tools of the total mechanical
energy and the enstrophy transport equation.31,32 Both these
tools have been developed from the Navier-Stokes equation
without any assumption and are thus capable of explaining
such deviations for an inhomogeneous, incompressible flow.
This analysis should also be valid for general incompressible
flows.
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One of the events noted here in a domain consisting of
four TGVs is, when the four initial vortices start moving and
fragmenting, breaking down the symmetry, as shown in frames
(c) and (d) of Fig. 4. In Sec. V, the nonlinear evolution of dis-
turbances is explained in terms of the DME equation given
by Eq. (11), by identifying regions, classified as sources and
sinks of the DME.31 The other identification tool for tracking
the evolution of disturbances is through the ETE, as given in
Eq. (12), which is derived to explain the creation of rotation-
ality in 2D and 3D inhomogeneous flows following the efforts
of Sengupta et al.32

In the absence of stretching, the time derivative of the
total enstrophy for 2D flow is determined by the sign of the
RHS of Eq. (13). A positive RHS corresponds to the creation
of rotationality, while negative RHS is related to the decay
of enstrophy in time. In general for 2D periodic flows, the
total enstrophy in the domain should be a decaying func-
tion of time,35 only in the absence of physical instabilities.
However, the numerical error in the present work drives the
time-dependent base flow in isolated regions, where the RHS
is positive instantaneously, i.e., where small scale vortices are
created due to diffusion, represented by the first term in the
RHS of Eq. (13). In Fig. 8, regions of computed RHS of
the ETE (frame b) are compared with the analytical values
obtained from the equilibrium solution (frame a). It is evi-
dent that the analytical RHS is negative everywhere, while
one notices regions of positive RHS for the computed solu-
tion, which are first located at and around the line of sym-
metry of the four vortices. The instability of the disturbance
enstrophy is analyzed using the theory based on the enstro-
phy transport equation introduced earlier.41 The linear and
the non-linear growth rates of the disturbance enstrophy are
evaluated, which show that the disturbance enstrophy can be
either positive or negative, as it is given as Ωd = ~ωd · ~ωm.
The regions of instability are indicated by the two possibili-
ties. The first is when DΩd /Dt > 0 for Ωd > 0 and that shows
instability. Second, when DΩd /Dt < 0 for Ωd < 0, this also
implies that the magnitude of Ωd increases with time. The
present investigation also shows the non-linear instability of
the Navier-Stokes equation for the time-dependent base flow
solution. While this study is novel, we intend to extend it to
the full 3D Navier-Stokes equation, with the stretching term
providing additional sources of disturbances as a trigger for
instability.
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