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 Sci. Progress
 Oxford (1992)
 76, 105-123

 Bioconvection

 T.J. Pedley and J.O. Kessler

 Bioconvection is the name given to
 pattern-forming motions set up as a
 result of hydrodynamic instabilities
 in suspensions of swimming micro-
 organisms. Examples of the
 patterns are shown for suspensions
 of motile algae and of bacteria; in
 all cases the cells swim upwards , on
 average , in still water and are
 slightly denser than the water. One
 mechanism of instability , dominant
 in a shallow chamber , is that the

 upswimming causes cells to
 accumulate in a thin layer near the
 upper surface , which therefore
 becomes denser than lower regions.
 This density distribution is unsta-
 ble, and convective motions are set

 up as in a shallow fluid heated from
 below. In the case of the algae
 there is another mechanism which

 can operate in a deep fluid,
 unaffected by horizontal surfaces,
 and is called gyrotaxis. It is a

 consequence of the fact that the
 cells are bottom heavy ( which
 causes them to swim upwards in the
 first place) so that their average
 swimming direction is determined
 by a balance between gravitational
 and viscous torques. The bacteria
 consume oxygen and swim up
 gradients of oxygen concentration,
 so that the bioconvective motions

 carry oxygen around with them,
 changing the concentration gradient
 up which the cells swim. This
 article describes the observed

 phenomena and the mechanisms
 which underlie them, and outlines

 the important features that a
 quantitative ( mathematical )
 description of them must possess. A
 recent contribution of interest has
 been the rational analysis of the
 manifestly random distribution of
 swimming directions in a population
 of motile cells.

 Introduction: observations

 Multitudes of micro-organisms exist in almost every conceivable
 aqueous environment on earth and have been estimated to form a
 major part (more than 50%) of the world's biomass. Most individuals
 live in the oceans, because that is where most of the water is. A large
 fraction of them constitute the phytoplankton, the light-converting
 bottom link of the food chain, but many similar species also live in
 large or small bodies of fresh water. These micro-organisms, mostly
 blue-green algae, green algae, dinoflagellates, diatoms, etc, are of

 T.J. Pedley is Professor of Applied Mathematics at the Department of Applied
 Mathematical Studies at the University of Leeds, LS2 9JT, England; and J.O.
 Kessler is Professor of Physics in the Department of Physics at the University of
 Arizona, Tucson, AZ 85721, USA.
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 considerable scientific interest for various reasons: they are thought to
 absorb more carbon dioxide, in toto , than terrestrial plants, so under-
 standing their biology and correctly estimating their numbers is vital to
 forecasts of the greenhouse effect; patchiness in their populations can
 have significant effects on populations of higher organisms, either bene-
 ficial (e.g. stimulating the schooling of krill, exploited as food by even
 larger animals such as whales or men) or deleterious (e.g. red tides,
 which poison coastal seafood industries); some of them are harvested
 for their food value or for the chemicals they produce ( Dunaliella
 salina , for example, is used as a source of beta-carotene, a popular red
 food colouring - it is more 'green' for food-colouring to be manufac-
 tured by algae than by chemists); others, which swim, are used as a
 means of bio-assay of water quality (if they stop swimming then the
 concentration of something harmful is too large - they can be thought
 of as small green canaries). The phenomena to be described in this
 article were observed during straightforward experiments to study pop-
 ulations of swimming micro-organisms, suspended in aqueous growth
 medium in the laboratory.

 A number of authors have observed that such suspensions, when
 sufficiently concentrated, spontaneously form patterns, and it is this
 pattern-formation process that is called bioconvection (Fig. 1.) An
 extremely detailed series of observations were recorded by Wager15 in
 1911, though he noted that there had been reports as early as 1848.
 Wager used several species, but the most detail was given for the flagel-
 lated alga Euglena viridis , about 50 |xm in length and 20 |xm across. He
 placed a well-stirred suspension in a chamber about 50 mm across and
 6 mm deep and, from above, observed that patterns with a horizontal
 length scale of a few mm formed within about 1 min. The pattern
 changed substantially with time, the pattern spacing falling from about
 7 mm to about 2 mm, before settling down after about 10 min to an
 apparently steady state. A similar sequence of observations in a shallow
 chamber, using the biflagellate alga Chlamydomonas nivalis (about 15
 'xm long), is reproduced in Fig 1 . In this figure, dark regions represent
 relatively large concentrations of organisms, forming vertical columns
 (dots) or sheets (lines). Note that both the length-scale and the nature
 of the patterns change with time; they also depend on the depth of the
 chamber and the average concentration of suspended organisms.6'8 It
 should be pointed out that the times for formation and modification of
 the patterns are much smaller than those required for reproductive
 population changes or consumption of dissolved nutrients, and that the
 patterns are formed in the dark, so the organisms' response to light
 cannot be the driving mechanism although the patterns are affected by
 light.6'15 Bioconvection is not restricted to suspensions of motile algae,

 Fig. 1. ( Opposite) A time sequence of
 bioconvection patterns viewed from
 above in a suspension of algae,
 Chlamydomonas nivalis. Chamber
 width 37 X 67 mm; fluid depth 4 mm;

 mean cell concentration 3 x 106 cmT3.
 Times between frames ; from well-
 stirred to first and first to second, 20 s,
 then 30-40 s; final frame, 10 minutes.

 106 T.J. Pedley & J.O. Kessler
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 Fig. 2 . A fully developed bioconvection
 pattern in a suspension of bacteria,
 Bacillus subtilis near end of exponential
 growth phase. Chamber diameter 7 cm;

 chamber depth 2.5 mm; mean cell
 concentration 5 x 10s cells/cm3
 (approx.).

 but has also been found with ciliated protozoa8'13 and bacteria12,15 (Fig.
 2, taken using dark-field photography so that large cell concentrations
 are whiter then their surroundings).

 In these shallow chambers, observation from the side would reveal a
 high concentration of cells at the top surface, with tapered columns or
 plumes of cells extending over the whole depth. However, when a much
 deeper suspension is viewed from the side, more or less vertical streaks
 are observed to form in the body of the chamber, but as time passes
 they become more regularly spaced and migrate towards the bottom of
 the chamber where once more an approximately steady state pattern is
 formed (Fig. 3). Such 'bottom-standing plumes'12 were also observed by
 Wager.15

 Mechanisms

 Organisms exhibiting bioconvection share two common characteristics:
 (1) they are slightly denser than water and (2) isolated individuals on
 average swim upwards (exhibiting negative 'geotaxis' or 'gravitaxis'). In
 a shallow chamber and in the absence of any bulk fluid motion, there-
 fore, greater cell concentration will develop towards the top of the
 chamber than the bottom and in consequence the average density (of
 cells plus fluid) will be greater at the top. Such a stratification, with
 denser fluid above less dense fluid, is well-known to be unstable if the
 density gradient is large enough, and to lead to the recirculating bulk

 108 T.J. Pedley & J.O. Kessler
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 Fig. 3. ' Bottom-standing plumes' in a
 suspension of algae, C. nivalis.
 Chamber width: 1 cm; depth (front to
 back) 3 mm. (a) Two minutes after
 stirring. Note the plume descending

 from the dense, upper cell-laden fluid
 through the middle region from which
 the cells have already formed the
 plumes standing in the lower part of the
 cuvette, (b) Two minutes later.

 motions called convection (Fig. 4). This is what happens in a layer of
 fluid heated from below, when the motion is called thermal convection
 or Rayleigh-Bénard convection. Piatt13 was the first to recognise that
 density stratification was the (or at least a) mechanism for pattern-
 formation in suspensions of swimming micro-organisms, and he coined
 the term bioconvection. An additional mechanism for the initiation of

 bioconvection is discussed below.

 Let us go back to ask what is the mechanism by which a cell is
 enabled to respond to gravity and swim upwards? One possibility is a
 response to light ('phototaxis'). However, upswimming and hence bio-
 convection can take place in the dark. Another possibility is Chemo-
 taxis, or the tendency to swim along concentration gradients of some
 chemical: we believe that it is the tendency of the bacteria to swim up
 an oxygen gradient towards the free surface that is responsible for the
 bacterial bioconvection depicted in Fig. 2. However, Chemotaxis has
 been eliminated as the upswimming mechanism for algal species which
 have been studied in the laboratory.

 The simplest mechanism for orienting cells so that they swim upwards
 is entirely passive, not requiring any sophisticated sensors: it is that the
 cells are bottom-heavy.5'6 Consider for example a biflagellate algal cell
 such as C. nivalis or D. tertiolecta , in a fluid without bulk motion. It
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 Fig. 4. Upswimming in an initially
 uniform , shallow suspension causes cells
 to accumulate at the top. The top layer
 therefore becomes denser than the
 regions below, and a connective

 instability ensues, in which bulk
 motions throughout the fluid redistrib-
 ute the cells into bioconvection

 patterns.

 has a roughly spheroidal body and swims by means of a sort of breast-
 stroke of the flagella, towards the 'front' where the flagella are
 mounted. Suppose that the denser of the cell contents are displaced
 towards the rear (Fig. 5), for which there is some direct observational
 evidence, so that the centre of mass is behind the centre of buoyancy.
 Then suppose that the cell's axis is disturbed from the vertical: gravity
 now exerts a torque on the cell, tending to restore the axis to the
 vertical whether the cell is swimming or not.

 Now consider what happens when the cell is in a fluid which is in
 motion, in particular a vertical shear flow such as that set up in a
 vertical pipe by gravity or a pressure difference between the ends. The
 fluid velocity increases from the walls (where it is zero) to the centre of
 the pipe (Fig. 6). This shearing motion causes every fluid element to
 rotate; thus a viscous torque is exerted on any small body, suspended in
 the fluid, that is not rotating at the same angular velocity. A bottom-
 heavy cell will thus experience competing torques, viscous and gravita-
 tional, and the angle, 0, that its axis makes with the vertical will be
 determined by a balance between the two. Since a cell swims in the
 direction of its axis (approximately), it follows that when the pipe flow
 is directed vertically downwards the cells will all tend to swim in
 towards the centreline (towards the wall when the flow is upwards), as
 well as upwards relative to the fluid. Such radial focussing of cells is

 1 10 T.J. Pedley & J . O. Kessler
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 Fig. S. A bottom-heavy cell displaced from the vertical orientation experiences a
 gravitational torque which tends to restore it to the vertical

 Fig. 6. Gyrotaxis. A bottom-heavy cell
 in a vertical shear flow experiences a
 viscous torque as well as a gravitational
 one. Its orientation (i.e. swimming
 direction) p is therefore inclined to the

 vertical k (on average) by an angle 6;
 <f> is the angle the vertical plane
 containing the axis p makes with a
 fixed vertical plane.

 indeed observed,5 and constitutes an experimental verification of the
 hypothesis of bottom-heaviness - no other mechanism has been pro-
 posed which can account for the focussing phenomenon.

 The swimming of cells oriented by such a balance between viscous
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 and gravitational torques is termed gyrotaxis ;5'6 the swimming of head-
 heavy spermatozoa provides another example of it, though in that
 context the phenomenon is termed rheotaxis.14 Not all micro-organisms
 that exhibit bioconvection are oriented by gyrotaxis, as can be inferred
 from the fact that they do not become focussed in downwards pipe
 flow. The mechanism which drives bioconvection of chemotactic

 bacteria has already been mentioned. The ciliated protozoan, Tetra -
 hymena pyr if or mis, appears not to be gyrotactic since it has so far not
 been possible to focus it, yet it is one of the most popular organisms
 for demonstrating bioconvection.2'8'13 Its behaviour must include
 gravitaxis and may result from active sensing of the gravitational force.

 The presence of gyrotaxis provides a separate mechanism for the
 initiation of bioconvection which is independent of the generation of an
 unstable density stratification and can take place in an unbounded
 suspension (i.e. the top and bottom are so far away that their effect will
 not be felt in the middle for a very long time) which is initially uniform
 and at rest. Consider a blob of fluid in which, as a result of a natural
 small fluctuation, the cell concentration is slightly greater than in its
 surroundings. Since the effective density of the fluid increases with cell
 concentration, this blob will be somewhat denser than the surroundings
 and will tend to sink. In sinking, the blob will drag down the fluid
 around it, by the action of viscous forces, thereby setting up a sheared,
 downwards velocity distribution as shown in Fig. 7. The cells experienc-
 ing this shear will then be oriented by gyrotaxis so that they tend to
 swim in towards the blob and its wake, thus reinforcing the initial fluc-
 tuation in cell concentration which will become more and more marked.

 This is a positive feedback process, the concentrated region falling more
 and more rapidly and focussing more and more cells into itself. We thus
 have a mechanism for the spontaneous generation of falling plumes in
 the interior of the suspension, as observed in a deep chamber (Fig. 3a).

 Gyrotaxis also provides an explanation for the development of
 bottom-standing plumes (Fig. 3b and Fig. 8). The tendency of cells to
 end up near the bottom of a chamber once they are mostly (self-)

 Fig. 7. The mechanism for gyrotactic
 instability of a uniform suspension: a
 blob with a high cell concentration

 falls, generating a sheared velocity
 profile which causes other cells to be
 focussed into its wake .
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 Fig. 8. The mechanism for the
 persistence of 'bottom-standing
 plumes: ' cells in the dense falling plume
 are carried round at the bottom into

 the upflow, but they swim across, by
 gyrotaxis, and enter the plume again
 higher up. Cell trajectories:

 flow streamlines:

 concentrated into plumes, although they swim upwards relative to the
 fluid, follows from the fact that the gravity-driven sinking velocity, which
 can reach the order of millimetres per second (measured by watching the
 motion of individual cells), greatly exceeds a typical cell swimming speed
 relative to the fluid (70 'im s1 for C.nivalis). (Incidentally the sedimenta-
 tion speed of a dead cell relative to the fluid is at least ten times smaller.)
 Near the bottom of the chamber, then, there will be a strong downflow
 driven by the plumes, compensated for by an upflow in the fluid between
 the plumes. Cells will be swept round with the flow, near the bottom
 boundary, from a downflow zone to an upflow zone. In the upflow zone
 the cells continue to swim upwards relative to the fluid, but gyrotaxis
 means that they also have a horizontal component of velocity, Vu, in
 towards the plume. After a time, T , roughly equal to half the plume-
 spacing divided by Vh , all the cells will have been guided back into the
 downflow plume, and none will be able to rise higher. This gives an
 estimate of the height of the bottom-standing plumes equal to T multi-
 plied by the maximum upflow velocity (Fig. 8).

 Quantitative analysis
 If the phenomena described above are to be more than a curiosity we
 must be able to use them to learn something about the ecology or
 biology of the organisms concerned. Some useful things have already
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 been learnt. In the context of algal ponds it might have been thought
 that upswimming meant that it would be easy to harvest the algae from
 the top surface of the pond; however, bioconvection means that the
 pond is constantly stirred up, so harvesting is more difficult. Gyrotactic
 guidance provides a mechanism for the selective withdrawal of the best
 swimmers from the axis of a vertical pipe, and hence a means for
 manipulation of algal populations.5'6 However, in the open ocean
 bioconvection patterns are likely to be destroyed by the much more
 vigorous, turbulent stirring generated by wind and waves, at least in the
 upper levels.

 In order to learn more from the laboratory experiments we must be
 able to relate easily measurable quantities, like the size and shape of the
 bioconvection patterns, to average properties of the individual cells,
 which are much harder to measure. To do that we need quantitative
 models of the phenomena of interest.

 Let us consider the torque balance on an individual, bottom-heavy
 cell in a given fluid flow (Fig. 6). If we ignore the presence of the
 flagella, it is quite a good approximation to treat the cell as a prolate
 spheroid, with its axis parallel to the swimming direction and the centre
 of mass displaced along the axis a distance h back from the centre. If
 the swimming direction is represented by the unit vector p, and if k is a
 unit vector directed vertically upwards, then the gravitational torque on
 the cell is represented by the vector product mgh¡>Ak, where m is the
 cell's mass and g is the gravitational acceleration. This has magnitude
 mghsind, where 6 is the angle the axis makes with the vertical.
 Calculation of the viscous torque on the spheroid is simplified by the
 fact that intertial forces are negligible compared with viscous forces for
 bodies as small as a cell, swimming at biologically reasonable velocities:
 a typical ratio of inertial to viscous forces (the Reynolds number) for C.
 nivalis is 0.002. The viscous torque depends on the velocity gradient in
 the fluid around the cell, represented by the vorticity (equal to twice the
 local angular velocity of the fluid) and the strain-rate (the tendency of
 the fluid to deform without rotation). A straining flow can exert a
 torque on a spheroidal body, though not on a spherical one, while if
 the angular velocity of the fluid is different from that of the body, a
 torque is exerted whatever the shape. Using formulae first derived by
 Jeffery4 in 1922, the torque balance reduces to the following equation
 for the rate of change of the axial direction p:*

 P = Tb [k - (k.p)p] + 2" w a p + «o p.E. (I-pp) , (1)
 where co is the vorticity vector, E is the strain-rate tensor, I is the
 identity tensor, and ao is the measure of the eccentricity of the spheroid

 * This equation is introduced for the sake of precision, and because it briefly
 encapsulates the torque balance in all circumstances. Readers unfamiliar with
 vector notation should skip to equation (2) and the discussion of the reorienta-
 tion time, B. Those familiar with vectors but not tensors can avoid the latter by
 restricting attention to spherical cells for which ao = 0.
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 («o - 0 for a sphere; ao - 1 for a rod).12 The quantity B has the di-
 mensions of time, and is given by

 = uva i
 2 mgh (2)

 where jli is the fluid viscosity, v is the cell volume, and a' is another
 dimensionless constant that depends on cell shape (ao). B represents a
 time-scale for the return of the cell axis to the vertical after being dis-
 placed from it in a fluid otherwise at rest; its value has been estimated
 to be about 3 sec for algal cells like C. nivalis.
 Equation (1) can be used to calculate the orientation of a cell, and
 hence its trajectory, in an arbitrary flow field, as long as random in-
 fluences on its orientation can be neglected. If it is assumed that the
 flow field is steady and that the cell's swimming speed is sufficiently
 small for the variation in the ambient flow as the cell swims to be

 negligible, and if equation (1) admits of a stable steady-state solution
 (i.e. one with p = 0), then a deterministic swimming direction can be
 computed. For example, in the case of downward flow in a pipe of
 radius R (in which the shear is maximum at the wall and zero on the
 axis), and for spherical cells (with c*o = 0), the angle 0 that the swim-
 ming direction makes with the vertical (Fig. 6) is given by

 sin 0 = 2B Wo r/R2 (3)

 where Wo is the maximum downwards fluid velocity (on the axis), r is
 the distance of the cell from the pipe axis and co = 2 Wor/R2 in this case.
 By adding the swimming velocity vector to the fluid velocity vector, the
 cell's velocity relative to the pipe can be computed at all points on its
 trajectory. Equation (3), of course, does not yield a solution for 0 if the
 right hand side exceeds 1; in other words, if the flow is too vigorous, a
 stable, steady orientation does not exist. In that case, the cell will tumble
 over and over, its swimming direction varying with time according to
 equation (1) (with p ^ 0). There will still be a tendency to swim towards
 the axis on average , but individual cell trajectories will depend on their
 initial orientations.

 Suppose that at some initial instant the suspension is well-stirred, so
 that the cell concentration is uniform everywhere in the pipe, and then
 the downward flow is switched on. The calculated trajectories can be
 used to compute the concentration distribution at later times.6 One
 predicts that there will be no cells outside a cylinder of radius rc(t )
 which decreases exponentially to zero; experimental evidence suggests
 that the focussed plume radius tends instead to a non-zero constant.
 One also predicts that within that cylinder the maximum concentration
 occurs at the outer edge, and there is a marked dip on the axis; this too
 is not observed experimentally. The deficiencies in the predictions are
 associated with the neglect of random effects (see below).

 Pipe flows are not the only ones for which cell trajectories have been
 predicted or observed. An interesting new experiment by one of us
 (JOK, unpublished) concerns a planar, uniform shear flow which is
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 confined to a vertical plane but can be oriented at an arbitrary angle to
 the vertical (see Fig. 9). For this flow, the gyrotaxis angle 0 is given by
 sin $ = BS, where S is the shear rate in the flow, and it is predicted
 that there is a particular flow angle at which the experiment can be set
 (i/i in Fig. 9 equal to ttH - 0), for which the cells swim along, not
 across, the streamlines of the flow.12 Measurement of the cell trajecto-
 ries will provide useful information about the average values of B for
 particular species, and about random effects in the suspension.

 Fig. 9 . A shear flow with velocity u
 equal to S times the transverse distance
 y is inclined at an angle iļs to the

 horizontal The deterministic swimming
 direction (p) makes an angle 6 with
 the vertical fk).

 Random behaviour

 The swimming direction, p, of a cell is observed to be a random
 quantity: the direction at a given time is independent of the direction a
 sufficiently long time earlier. It follows that the instantaneous swim-
 ming directions of the cells in a suspension are randomly distributed.
 This does not mean that they are isotropically distributed: all directions
 are not equally likely, because of sensory or physical biases. For ex-
 ample, the gyrotactic torque balance is a physical bias which ensures
 that, whatever the present direction, there will be a tendency to return
 towards a particular direction, as given by equation (1). The distribu-
 tion of swimming directions [which can be represented by a probability
 density function /(p)] results from a dynamic balance between whatever
 it is that causes the cells to change their orientation randomly, and the
 deterministic mechanisms represented by equation (1). The process is
 somewhat similar to a biassed random walk, and can be thought of as
 analogous to rotary Brownian motion of bottom-heavy spheroids,
 which determines the orientation distribution in a suspension of colloid
 particles.3 An analysis of the process should result in a prediction of the
 mean swimming direction and the variance about it.

 The principal assumption of our own recent theoretical models of
 micro-organism suspensions11,12 is that the analogy with rotary Brownian
 motion is exact. The theory of Brownian motion can then be used to
 show that the distribution /(p) satisfies a Fokker-Planck equation , as
 follows:

 1 16 T.J. Pedley & J. O. Kessler
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 V(p/) = DrVp2/, W
 where Z)r is a rotational diffusivity, with dimensions of inverse time, p

 is given in terms of p by equation (1), and Vp is the two-dimensional
 gradient operator in p - space.* In the case of thermal rotary Brownian
 motion, in which the random reorientations of the particles result from
 molecular collisions, the rotational diffusivity is proportional to kT
 (Boltzmann's constant times temperature) divided by the fluid viscosity.
 We do not know the cause of the random reorientations in micro-

 organism suspensions: algal cells, in particular, are certainly too large
 to be much affected by conventional Brownian motion. Maybe there is
 something like Brownian motion acting on the locomotory apparatus
 within the cells, giving an 'effective kT'.

 There are two further assumptions that have gone into the model.
 First, the probability distribution is assumed to depend on the local
 torque balance as it would if the flow were steady. This is justified if
 the time required for the flow to change significantly is large compared
 with Dr 1 (if this were not justified, a df/dt term would appear on the left
 hand side of equation (4)). Second, the suspension is taken to be suf-
 ficiently dilute that dynamic cell-cell interactions are unimportant; if
 this were not true, equation (1) would be modified. Both of these as-
 sumptions are reasonably well satisfied in many of the laboratory experi-
 ments, but neither of them is accurate in all circumstances. They will
 have to be examined carefully in future updates of the model.

 For a general flow field numerical methods are required to solve the
 Fokker-Planck equation (4), with p given by equation (1), but analyti-
 cal solutions can be found in special cases. The simplest special case is
 that of a suspension in which there is no bulk motion, so that cu and E
 are zero in equation (1) and the only deterministic torque acting on a
 cell is gravitational. The solution, normalised so that the integral over
 all possible orientations is unity, is given by the so-called Fisher distri-
 bution:9

 ' Acos 0

 f- M > (5)
 where cos0 = k.p and À = (2 BDT)~l9 a dimensionless constant represen-
 tative of the micro-organism suspension under investigation. If À is
 small, random reorientation is dominant and the distribution isotropic
 (/ = 1/477-); if À is large, gyrotaxis wins over randomness, and /is non-
 zero only in a narrow zone around 0 = 0, representing vertical upswim-
 ming. The distribution function given by Eq. (5) has a long history in
 physics. It was first derived in 1905 by Langevin, for magnetic dipoles,
 |x, subject to a field //, which exerts an aligning torque ļiH cos 0, and to
 thermal agitation kT. For that case, À = ļiH/kT. In 1912 P. Debye

 *In other words, if p is represented by polar angles 6 , </>, relative to a fixed
 direction such as the upwards vertical k (Fig. 6), then Vp has components

 - , - - in the 6 , ó- directions respectively.
 d 6 sind
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 extended the theory to electric dipoles; more recent applications include
 thermally agitated freely jointed segments of polymers.

 A solution of the Fokker-Planck equation has also been found for the
 case of a very weak flow in which gravity dominates and the parameter

 € = Bo) (6)

 is small (where (o is a scale for the local vorticity). The distribution is
 then still close to the Fisher distribution. The equation for spherical
 cells (ao - 0) has, moreover, been solved for strong flows (e large), a
 case for which there is no deterministic swimming direction because the
 cells tumble.12

 Equation (5) is a prediction of the model that can be tested experi-
 mentally, by measuring large numbers of cell trajectories in a very
 dilute suspension in which there are no bulk motions, not even biocon-
 vection. Such measurements have been made, using the alga Chlamy -
 domonas nivalis , by Professor D.-P. Häder of Erlangen, and have been
 analysed by Dr N. A. Hill of Leeds. The results have not yet been
 published, but we can report that the actual distribution is indeed
 reasonably well modelled by equation (5), with A « 0.7 (earlier, more
 preliminary results, suggested A « 2.2). 11

 Cell conservation and the continuum model

 Armed with the probability density function /( p), or at least the equa-
 tions from which it can be calculated, we can begin systematically to
 analyse the suspension as a whole. We treat it as a continuum rather
 than as a collection of individual cells, which is valid as long as the size
 and spacing of the cells (of the order of 10 and 100 /xm respectively)
 are very much smaller than the length-scales of the phenomena of
 interest (e.g. bioconvection patterns, around 1 mm and above). The
 concentration or number density of cells, n, must be large (although the
 volume fraction, nv, where v is the cell volume, must be small for the
 suspension to be dilute), and in the bioconvection experiments n is
 around 106 per cm3 and above and v ^ 10~9 cm3.

 Perhaps the most important equation of the continuum model is that
 which represents conservation of cells. This says that the rate of increase
 of cell number in a given volume of space is equal to the net flow of
 cells into the volume as a result (a) of being carried along by the bulk
 flow, and (b) of cell swimming. We neglect sedimentation, because the
 sedimentation speed is much less than the swimming speed (see above).
 The cell swimming contribution can be further subdivided into a contri-
 bution determined by the mean cell swimming velocity Vc and another
 contribution due to the random motion of the cells relative to that

 mean, which is naturally modelled as a diffusion process. Converted to
 a differential equation, this says that the rate of change of « at a point
 is equal to the negative of the divergence of cell flux, or

 =-V. |n(u + Vc)-Z).VnJ (7)
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 where u is the bulk fluid velocity and D is the cell swimming diffusivity
 tensor (the latter is a tensor because, for example, the horizontal and
 vertical diffusivities in a gravitational field are different). The mean cell
 swimming velocity vector is equal to the mean cell swimming speed , Vs
 say, multiplied by the mean of the cell swimming direction, (p), which
 is the integral over all of p - space (the surface of the unit sphere) of
 p, weighted by the probability density function^ p):

 vc = vs <p> = Fs // p/(p)J2p. (8)

 We thus see how the orientational probability density function comes
 into the cell conservation equation. (In their pioneering continuum
 model Childress et al2 took Vc to be vertically upwards at all times.)
 The diffusivity tensor D can also be represented as an integral in p-
 space, and in fact is proportional to the variance of the p - distribution,
 ((P - (p))(p - (p))).12 The development presented here assumes that A
 has a fixed value, i.e. that the population consists of cells which are
 identical in shape and behaviour. Actually A values are also distributed
 statistically. A complete, practically applicable theory will have to
 include a further averaging of the results, over the A distribution.

 If the flow field u is known, as for example in the experiments using
 steady, downwardly directed pipe flow, equation (7) can be used to
 calculate the cell concentration everywhere. Doing this for pipe flow
 yields a steady concentration distribution with a maximum on the pipe
 axis, and exponential drop-off with distance away from the axis, which
 is qualitatively much closer to the observed focussed plume of cells than
 the distribution computed from deterministic trajectories.

 If the flow field is not known in advance, as for example in biocon-
 vection experiments, it has to be found by the solution of further equa-
 tions. These are the standard equations of fluid dynamics, the equation
 of conservation of mass (V.u = 0 for an incompressible fluid) and the
 Navier-Stokes equation representing momentum conservation.* The
 cells drive the flow through the gravitational body force, or negative
 buoyancy force, -nv Apgk per unit volume, where A p is the density
 difference between the cells and the surrounding fluid. Dynamic pres-
 sure gradients are generated by the flow, or can be set up by the experi-
 menter so as to drive it (as in a pipe). The motion is resisted by viscous
 stresses. In a simple, Newtonian fluid these are proportional to the
 strain-rate tensor ( 2 = 2 fx E), but in a suspension there are additional
 contributions in general.1 In our case the most important additional
 contribution comes from the swimming motion of the cells themselves:
 although the total force on a cell is zero, the combination of the thrust

 * In vector form the Navier-Stokes equation for a fluid of density p is

 P ^ + (w-VJu^ = - V/?e - nvàpgk + V.2 (9)
 where, on the right hand side, the three terms are the effective pressure gradient,
 the gravitational body force, and the divergence of the viscous part of the stress
 tensor, respectively.
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 produced by the flagella and the drag on the body is equivalent to a
 force-dipole or 'stressleť, and the aggregate of many stresslets influences
 the bulk stress. Fortunately, perhaps, it appears that when the suspen-
 sion is dilute enough for the other assumptions of the model to be
 valid, all the additional contributions to the stress are relatively small
 and the Newtonian approximation is reasonable.

 Instability analysis
 The full continuum model just outlined can in principle be used to
 analyse any bioconvective flow of a suspension of gyrotactic micro-
 organisms. Hitherto, however, it has been used only for analysing the
 instability of a uniform suspension, unstable because of gyrotaxis as
 discussed above.11 Stability analyses are based on the assumption that
 the values of all variables are close to those that obtain in the undis-

 turbed basic state, and that the small departures from the basic state
 are scaled by some suitable small parameter. The quantity e defined by
 equation (6) is a suitable small parameter here, since the basic state is
 taken as one with no fluid motion, and hence zero vorticity. The vorticity
 o>, which appears in e, is a small perturbation away from the basic
 state. All perturbations, including the fluid velocity, are therefore pro-
 portional to e: the cell concentration n differs from its undisturbed
 value no by an amount proportional to e, and the orientation distribu-
 tion function y(p) differs from the Fisher distribution of equation (5) by
 a similar amount. The linearised equations that result when all terms
 involving e2 or higher powers are eliminated can be further simplified
 by Fourier analysis. It is assumed that the variables have sinusoidal
 variation with space coordinates and exponential dependence on time,
 so, for example, we might have

 n - no = en' cos kx cos mz é Tt, (10)

 where n' is a constant, k and m are the horizontal and vertical wave
 numbers, and cr is the temporal growth rate. Solution of the problem
 results in an algebraic expression from which cr can be calculated for
 any k and m. If a disturbance, i.e. a set of particular values of k and m,
 can be found for which cr (or its real part if it is complex) is positive,
 then that disturbance would grow. Assuming that infinitesimal amounts
 of all possible disturbances are present initially, it follows that the basic
 state is unstable. If no growing disturbance can be found, the basic
 state is stable.

 In the present example, it turns out that for any value of k the cor-
 responding real part of cr is largest when m = 0, so vertically uniform
 disturbances will grow more rapidly than others and will therefore be
 more likely to be observed. Furthermore, if k exceeds a critical value,
 kc , the real part of cr is negative, which means that sufficiently short
 wavelength disturbances die out (because viscous action damps out
 motions with too rapid a spatial variation). Finally, there is a value of
 k9 km, between 0 and kc, for which the real part of or is greatest: this
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 corresponds to the most rapidly growing disturbance which will in
 principle dominate and be observed in an experiment.

 From the best available data for all the parameters of the model, the
 value of km for a uniform suspension of C. nivalis was calculated to be
 0.7 mm-1, corresponding to a pattern wavelength (27r/kw) of 9.0 mm.11
 This spacing is considerably greater than the approximately 2 mm
 observed between bottom-standing plumes (the ultimate bioconvection
 pattern in a deep chamber). The patterns of plumes and sheets seen
 early in the experiment, when linear theory is most likely to be relevant,
 are more widely spaced, in deep or in shallow chambers (Figs 1 and 3).
 However, because the early observations may be strongly influenced by
 the remnants of the stirring used to make the suspension initially uni-
 form (Fig. 1), and because by the time it is observable a disturbance is
 unlikely to be small enough for linear theory to be accurate, no reliance
 should be placed on agreement or otherwise between that theory and
 the observations. An approximate theory7 of adjacent tall plumes does
 yield the appropriate final steady state plume spacing. However, a
 quantitative comparison of theory and experiment must await a more
 rigorous non-linear analysis of steady state bioconvection patterns and
 their evolution.

 Future developments
 We hope it has become clear that the fluid dynamical study of biocon-
 vection is a fascinating enterprise which has as yet barely been started.
 There are many things still to be done for suspensions of gyrotactic
 algae, using the continuum model outlined above: linear stability analysis
 of a shallow layer; nonlinear analysis of bioconvection, using both large
 numerical computations and sophisticated modern non-linear theory
 (used to investigate pattern-selection in other convection problems);
 modification of equation (1) to incorporate the effect of the moving
 flagella themselves on the viscous torque; investigation of (a) hydrody-
 namic and (b) biological or chemical interactions between cells, likely to
 be important in regions of high cell concentration (such as falling
 plumes); investigation of non-quasi-steady orientation distribution
 functions. Then there is the whole question of how to incorporate a
 second, independent orienting influence such as phototaxis into the
 quantitative model. It is known that many algal species swim towards
 the light if it is weak, but they shun it if it is too strong; this behaviour
 combines with bioconvection to modify the pattern geometry. There is
 also the analysis of bioconvection in chemotactic bacteria (Fig. 2),
 complicated by fluid transport of oxygen, which the cells consume and
 up gradients of which they swim.12

 All these developments will be fun to do and comparison between
 theory and experiment will not only test the theory but will yield
 quantitative data on parameters intrinsic to the cells' behaviour which
 would be extremely difficult to measure otherwise. Examples from the
 gyrotactic algae include the centre of mass offset, h , and the rotational
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 diffusivity Dr. But can we use our understanding of these bioconvective
 systems to discover anything of deeper scientific significance? Any such
 possibilities are likely to be rather speculative, but speculation is essential
 to the development of new science. For example, one exciting prospect
 is the development of a new statistical mechanics of active particles,
 automata that drive their collective motions without the constraints of

 energy conservation (at least over short time scales). Biotechnological
 exploitation of gyrotactic focussing has also already been proposed.6
 We expect too that the insight reported here will guide fundamental
 biological research concerning when and how active sensing of environ-
 mental stimuli combines with physical orienting mechanisms to yield
 complex behaviour in the real world.

 Are bioconvection patterns widespread in nature and, if so, what is
 their significance? There are virtually no formal, as opposed to anecdo-
 tal, reports of bioconvection in natural settings (one exception occurs in
 dinoflagellate blooms in the sea of Galilee).6 However, we have seen
 that the phenomenon arises in concentrated populations of upswimming
 micro-organisms, as a direct consequence of fluid dynamics and good
 growth conditions. Since almost all algae swim upwards, green or brown
 plumes and bioconvection patterns, covering substantial areas, ought to
 occur commonly. The fact that they are not generally observed presum-
 ably reflects the difficulty in observing them: high cell concentrations,
 good optical contrast and relatively still water are required. One of us
 (JOK) has, on numerous occasions, found green puddles whose con-
 tents, when scooped into containers, exhibit easily visible bioconvection.

 Some likely natural consequences of bioconvection in algal suspen-
 sions are (i) a greatly increased rate of descent of cells in concentrated
 plumes; (ii) the control of light intensity by self-shading; (iii) the modi-
 fication of chemotactic swarms which accompany sexual reproduction;
 and (iv) the formation and exploitation of focussed regions of cells by
 planktivores.10 In bacterial suspensions we have seen that bioconvection
 causes the oxygen on which the cells depend to be mixed more deeply
 into the bulk of the suspension than could be achieved by pure diffu-
 sion, thereby keeping more of the cells oxygenated and active. Collective
 patterns thus provide a mechanism for the ventilation of a multi-celled
 community.

 Bioconvective plumes or patterns modify the local ecosystems which
 support a given population of micro-organisms. The self-organization
 produces new sub-environments, in effect niches, of light and shade,
 oxygenated and depleted fluid. A corresponding diversity of physiologi-
 cal states among the occupants might then be expected to arise. We
 hope that this article will create awareness of such possibilities, and
 provoke new directions of investigation, in nature and in the laboratory.
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