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PRIMER

What is flux balance analysis?

Jeffrey D Orth, Ines Thiele & Bernhard @ Palsson

Flux balance analysis is a mathematical approach for analyzing the flow of metabolites through a metabolic network.
This primer covers the theoretical basis of the approach, several practical examples and a software toolbox for

performing the calculations.

lux balance analysis (FBA) is a widely

used approach for studying biochemi-
cal networks, in particular the genome-scale
metabolic network reconstructions that
have been built in the past decade!". These
network reconstructions contain all of the
known metabolic reactions in an organism
and the genes that encode each enzyme. FBA
calculates the flow of metabolites through
this metabolic network, thereby making
it possible to predict the growth rate of an
organism or the rate of production of a bio-
technologically important metabolite. With
metabolic models for 35 organisms already
available (http://systemsbiology.ucsd.edu/
In_Silico_Organisms/Other_Organisms)
and high-throughput technologies enabling
the construction of many more each year®”7,
FBA is an important tool for harnessing the
knowledge encoded in these models.

In this primer, we illustrate the principles
behind FBA by applying it to predict the
maximum growth rate of Escherichia coli
in the presence and absence of oxygen. The
principles outlined can be applied in many
other contexts to analyze the phenotypes
and capabilities of organisms with different
environmental and genetic perturbations (a
Supplementary Tutorial provides ten addi-
tional worked examples with figures and
computer code).

Flux balance analysis is based on
constraints

The first step in FBA is to mathematically rep-
resent metabolic reactions (Box 1 and Fig. 1).
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The core feature of this representation is a
tabulation, in the form of a numerical matrix,
of the stoichiometric coefficients of each reac-
tion (Fig. 2a,b). These stoichiometries impose
constraints on the flow of metabolites through
the network. Constraints such as these lie at
the heart of FBA, differentiating the approach
from theory-based models dependent on bio-
physical equations that require many difficult-
to-measure kinetic parameters®?,

Constraints are represented in two ways,
as equations that balance reaction inputs
and outputs and as inequalities that impose
bounds on the system. The matrix of stoi-
chiometries imposes flux (that is, mass)
balance constraints on the system, ensur-
ing that the total amount of any compound
being produced must be equal to the total
amount being consumed at steady state
(Fig. 2¢). Every reaction can also be given
upper and lower bounds, which define the
maximum and minimum allowable fluxes
of the reactions. These balances and bounds
define the space of allowable flux distribu-
tions of a system—that is, the rates at which
every metabolite is consumed or produced
by each reaction. Other constraints can also
be added!?.

From constraints to optimizing a
phenotype

The next step in FBA is to define a pheno-
type in the form of a biological objective
that is relevant to the problem being studied
(Fig. 2d). In the case of predicting growth,
the objective is biomass production—that is,
the rate at which metabolic compounds are
converted into biomass constituents such as
nucleic acids, proteins and lipids. Biomass
production is mathematically represented
by adding an artificial ‘biomass reaction’—
that is, an extra column of coefficients in the
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matrix of stoichiometries—that consumes
precursor metabolites at stoichiometries that
simulate biomass production. The biomass
reaction is based on experimental measure-
ments of biomass components. This reac-
tion is scaled so that the flux through it is
equal to the exponential growth rate (1) of
the organism.

Now that biomass is represented in the
model, predicting the maximum growth
rate can be accomplished by calculating the
conditions that result in the maximum flux
through the biomass reaction. In other cases,
more than one reaction may contribute to
the phenotype of interest. Mathematically, an
‘objective function’ is used to quantitatively
define how much each reaction contributes
to the phenotype.

Taken together, the mathematical repre-
sentations of the metabolic reactions and
of the objective define a system of linear
equations. In flux balance analysis, these
equations are solved using linear program-
ming (Fig. 2e). Many computational linear
programming algorithms exist, and they
can very quickly identify optimal solutions
to large systems of equations. The COBRA
Toolbox!! is a freely available Matlab toolbox
for performing these calculations (Box 2).

Suppose we want to calculate the maxi-
mum aerobic growth of E. coli under the
assumption that uptake of glucose, and not
oxygen, is the limiting constraint on growth.
This calculation can be performed using a
published model of E. coli metabolism!2. In
addition to metabolic reactions and the bio-
mass reaction discussed above, this model
also includes reactions that represent glucose
and oxygen uptake into the cell. The assump-
tions are mathematically represented by set-
ting the maximum rate of glucose uptake to
a physiologically realistic level (18.5 mmol
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Box 1 Mathematical representation of metabolism

Metabolic reactions are represented as a
stoichiometric matrix (S) of size m x n.
Every row of this matrix represents one
unigue compound (for a system with m
compounds) and every column represents
one reaction (n reactions). The entries
in each column are the stoichiometric
coefficients of the metabolites participating
in a reaction. There is a negative coefficient
for every metabolite consumed and a
positive coefficient for every metabolite
that is produced. A stoichiometric
coefficient of zero is used for every
metabolite that does not participate in a
particular reaction. S is a sparse matrix
because most biochemical reactions
involve only a few different metabolites.
The flux through all of the reactions in a
network is represented by the vector v,
which has a length of n. The concentrations
of all metabolites are represented by the
vector x, with length m. The system of mass
balance equations at steady state (dx/dt =
0) is given in Fig. 2¢26;

Sv=0
Any v that satisfies this equation is
said to be in the null space of S. In any
realistic large-scale metabolic model,
there are more reactions than there are
compounds (n > m). In other words,
there are more unknown variables than
equations, so there is no unique solution
to this system of equations.

Although constraints define a range of
solutions, it is still possible to identify and

glucose gDW~! h™1; DW, dry weight) and set-
ting the maximum rate of oxygen uptake to
an arbitrarily high level, so that it does not
limit growth. Then, linear programming is
used to determine the maximum possible
flux through the biomass reaction, result-
ing in a predicted exponential growth rate
of 1.65 h™!. Anerobic growth of E. coli can be
calculated by constraining the maximum rate
of uptake of oxygen to zero and solving the
system of equations, resulting in a predicted
growth rate of 0.47 h™! (see Supplementary
Tutorial for computer code).

As these two examples show, FBA can be
used to perform simulations under differ-
ent conditions by altering the constraints
on a model. To change the environmental
conditions (such as substrate availabil-
ity), we change the bounds on exchange
reactions (that is, reactions representing
metabolites flowing into and out of the sys-
tem). Substrates that are not available are
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Figure 1 The conceptual basis of constraint-based modeling. With no constraints, the flux
distribution of a biological network may lie at any point in a solution space. When mass balance
constraints imposed by the stoichiometric matrix S (labeled 1) and capacity constraints imposed
by the lower and upper bounds (a; and b)) (labeled 2) are applied to a network, it defines an
allowable solution space. The network may acquire any flux distribution within this space, but
points outside this space are denied by the constraints. Through optimization of an objective
function, FBA can identify a single optimal flux distribution that lies on the edge of the

allowable solution space.

analyze single points within the solution
space. For example, we may be interested
in identifying which point corresponds to
the maximum growth rate or to maximum
ATP production of an organism, given its
particular set of constraints. FBA is one
method for identifying such optimal points
within a constrained space (Fig. 1).

FBA seeks to maximize or minimize an
objective function Z = cv, which can be
any linear combination of fluxes, where
c is a vector of weights indicating how
much each reaction (such as the biomass
reaction when simulating maximum
growth) contributes to the objective

constrained to an uptake rate of 0 mmol
gDW~! h™!. Constraints can also be tailored
to the organism being studied, with lower
bounds of 0 mmol gDW~! h~! used to simu-
late reactions that are irreversible in some
organisms. Nonzero lower bounds can also
force a minimal flux through artificial reac-
tions (like the biomass reaction) such as the
‘ATP maintenance reaction’, which is a bal-
anced ATP hydrolysis reaction used to sim-
ulate energy demands not associated with
growth!3. Constraints can even be used to
simulate gene knockouts by limiting reac-
tions to zero flux.

FBA does not require kinetic parameters
and can be computed very quickly even for
large networks. This makes it well suited
to studies that characterize many different
perturbations such as different substrates or
genetic manipulations. An example of such a
case is given in example 6 in Supplementary
Tutorial, which explores the effects on

function. In practice, when only one
reaction is desired for maximization or
minimization, ¢ is a vector of zeros with a
value of 1 at the position of the reaction
of interest (Fig. 2d).

Optimization of such a system is
accomplished by linear programming
(Fig. 2e). FBA can thus be defined as
the use of linear programming to solve
the equation Sv = 0, given a set of upper
and lower bounds on v and a linear
combination of fluxes as an objective
function. The output of FBA is a particular
flux distribution, v, which maximizes or
minimizes the objective function.

growth of deleting every pairwise combina-
tion of 136 E. coli genes to find double gene
knockouts that are essential for survival of
the bacteria.

FBA has limitations, however. Because it
does not use kinetic parameters, it cannot
predict metabolite concentrations. It is also
only suitable for determining fluxes at steady
state. Except in some modified forms, FBA
does not account for regulatory effects such
as activation of enzymes by protein kinases
or regulation of gene expression. Therefore,
its predictions may not always be accurate.

The many uses of flux balance analysis

Because the fundamentals of flux balance analy-
sis are simple, the method has found diverse
uses in physiological studies, gap-filling efforts
and genome-scale synthetic biology>. By alter-
ing the bounds on certain reactions, growth on
different media (example 1 in Supplementary
Tutorial) or of bacteria with multiple gene
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Figure 2 Formulation of an FBA problem. (a) A
metabolic network reconstruction consists of a

list of stoichiometrically balanced biochemical
reactions. (b) This reconstruction is converted into a
mathematical model by forming a matrix (labeled S),
in which each row represents a metabolite and each
column represents a reaction. Growth is incorporated
into the reconstruction with a biomass reaction
(yellow column), which simulates metabolites
consumed during biomass production. Exchange
reactions (green columns) are used to represent the
flow of metabolites, such as glucose and oxygen,

in and out of the cell. (c) At steady state, the flux
through each reaction is given by Sv = 0, which
defines a system of linear equations. As large
models contain more reactions than metabolites,
there is more than one possible solution to these
equations. (d) Solving the equations to predict the
maximum growth rate requires defining an objective
function Z=c'v (c is a vector of weights indicating
how much each reaction (v) contributes to the
objective). In practice, when only one reaction, such
as biomass production, is desired for maximization
or minimization, c is a vector of zeros with a value

of 1 at the position of the reaction of interest. In the
growth example, the objective function is Z = Vy;gmass
(that is, ¢ has a value of 1 at the position of the
biomass reaction). (e) Linear programming is used
to identify a flux distribution that maximizes or
minimizes the objective function within the space

of allowable fluxes (blue region) defined by the
constraints imposed by the mass balance equations
and reaction bounds. The thick red arrow indicates
the direction of increasing Z. As the optimal solution
point lies as far in this direction as possible, the thin
red arrows depict the process of linear programming,
which identifies an optimal point at an edge or
corner of the solution space.
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knockouts (example 6 in Supplementary
Tutorial) can be simulated!. FBA can then be
used to predict the yields of important cofactors
such as ATP, NADH, or NADPH!” (example 2
in Supplementary Tutorial).

Whereas the example described here
yielded a single optimal growth phenotype,
in large metabolic networks, it is often pos-
sible for more than one solution to lead to
the same desired optimal growth rate. For
example, an organism may have two redun-
dant pathways that both generate the same
amount of ATP, so either pathway could be
used when maximum ATP production is the
desired phenotype. Such alternate optimal
solutions can be identified through flux vari-
ability analysis, a method that uses FBA to
maximize and minimize every reaction in
a network!® (example 3 in Supplementary
Tutorial), or by using a mixed-integer lin-
ear programming—based algorithm!”. More
detailed phenotypic studies can be performed
such as robustness analysisls, in which the
effect on the objective function of varying
a particular reaction flux can be analyzed
(example 4 in Supplementary Tutorial).

A more advanced form of robustness analysis
involves varying two fluxes simultaneously to
form a phenotypic phase plane!'® (example 5
in Supplementary Tutorial).

All genome-scale metabolic
structions are incomplete, as they contain
‘knowledge gaps’ where reactions are miss-
ing. FBA is the basis for several algorithms

recon-

Box 2 Tools for FBA

that predict which reactions are missing by
comparing in silico growth simulations to
experimental results?0-22, Constraint-based
models can also be used for metabolic engi-
neering where FBA-based algorithms, such
as OptKnock?3, can predict gene knockouts
that allow an organism to produce desirable
compounds?23,

FBA computations, which fall into the category of constraint-based reconstruction and
analysis (COBRA) methods, can be performed using several available tools27-29. The
COBRA Toolbox!! is a freely available Matlab toolbox (http://systemsbiology.ucsd.edu/
Downloads/Cobra_Toolbox) that can be used to perform a variety of COBRA methods,
including many FBA-based methods. Models for the COBRA Toolbox are saved in

the Systems Biology Markup Language (SBML)30 format and can be loaded with the
function ‘readCbModel’. The E. coli core model used in this Primer is available at
http://systemsbiology.ucsd.edu/Downloads/E_coli_Core/.

In Matlab, the models are structures with fields, such as ‘rxns’ (a list of all reaction
names), ‘mets’ (a list of all metabolite names) and ‘S’ (the stoichiometric matrix).
The function ‘optimizeCbModel’ is used to perform FBA. To change the bounds on
reactions, use the function ‘changeRxnBounds’. The Supplementary Tutorial contains
examples of COBRA toolbox code for performing FBA, as well as several additional

types of constraint-based analysis.
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Ultimately, FBA produces predictions that
must be verified. Experimental studies are
used as part of the model reconstruction
process and to validate model predictions.
Studies have shown that growth rates of E.
coli on several different substrates predicted
by FBA agree well with those obtained by
experimental measurements'4. Model-based
predictions of gene essentiality have also
been shown to be quite accurate?.

This primer and the accompanying tuto-
rials based on the COBRA toolbox (Box 2)
should help those interested in harnessing
the growing cadre of genome-scale metabolic
reconstructions that are becoming available.
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