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matrix of stoichiometries—that consumes 
precursor metabolites at stoichiometries that 
simulate biomass production. The biomass 
reaction is based on experimental measure-
ments of biomass components. This reac-
tion is scaled so that the flux through it is 
equal to the exponential growth rate (µ) of 
the organism.

Now that biomass is represented in the 
model, predicting the maximum growth 
rate can be accomplished by calculating the 
conditions that result in the maximum flux 
through the biomass reaction. In other cases, 
more than one reaction may contribute to 
the phenotype of interest. Mathematically, an 
‘objective function’ is used to quantitatively 
define how much each reaction contributes 
to the phenotype.

Taken together, the mathematical repre-
sentations of the metabolic reactions and 
of the objective define a system of linear 
equations. In flux balance analysis, these 
equations are solved using linear program-
ming (Fig. 2e). Many computational linear 
programming algorithms exist, and they 
can very quickly identify optimal solutions 
to large systems of equations. The COBRA 
Toolbox11 is a freely available Matlab toolbox 
for performing these calculations (Box 2).

Suppose we want to calculate the maxi-
mum aerobic growth of E. coli under the 
assumption that uptake of glucose, and not 
oxygen, is the limiting constraint on growth. 
This calculation can be performed using a 
published model of E. coli metabolism12. In 
addition to metabolic reactions and the bio-
mass reaction discussed above, this model 
also includes reactions that represent glucose 
and oxygen uptake into the cell. The assump-
tions are mathematically represented by set-
ting the maximum rate of glucose uptake to 
a physiologically realistic level (18.5 mmol 

The core feature of this representation is a 
tabulation, in the form of a numerical matrix, 
of the stoichiometric coefficients of each reac-
tion (Fig. 2a,b). These stoichiometries impose 
constraints on the flow of metabolites through 
the network. Constraints such as these lie at 
the heart of FBA, differentiating the approach 
from theory-based models dependent on bio-
physical equations that require many difficult-
to-measure kinetic parameters8,9.

Constraints are represented in two ways, 
as equations that balance reaction inputs 
and outputs and as inequalities that impose 
bounds on the system. The matrix of stoi-
chiometries imposes flux (that is, mass) 
balance constraints on the system, ensur-
ing that the total amount of any compound 
being produced must be equal to the total 
amount being consumed at steady state 
(Fig. 2c). Every reaction can also be given 
upper and lower bounds, which define the 
maximum and minimum allowable fluxes 
of the reactions. These balances and bounds 
define the space of allowable flux distribu-
tions of a system—that is, the rates at which 
every metabolite is consumed or produced 
by each reaction. Other constraints can also 
be added10.

From constraints to optimizing a 
phenotype
The next step in FBA is to define a pheno-
type in the form of a biological objective 
that is relevant to the problem being studied  
(Fig. 2d). In the case of predicting growth, 
the objective is biomass production—that is, 
the rate at which metabolic compounds are 
converted into biomass constituents such as 
nucleic acids, proteins and lipids. Biomass 
production is mathematically represented 
by adding an artificial ‘biomass reaction’—
that is, an extra column of coefficients in the 

Flux balance analysis (FBA) is a widely 
used approach for studying biochemi-

cal networks, in particular the genome-scale 
metabolic network reconstructions that 
have been built in the past decade1-4. These 
network reconstructions contain all of the 
known metabolic reactions in an organism 
and the genes that encode each enzyme. FBA 
calculates the flow of metabolites through 
this metabolic network, thereby making 
it possible to predict the growth rate of an 
organism or the rate of production of a bio-
technologically important metabolite. With 
metabolic models for 35 organisms already 
available (http://systemsbiology.ucsd.edu/
In_Silico_Organisms/Other_Organisms) 
and high-throughput technologies enabling 
the construction of many more each year5-7, 
FBA is an important tool for harnessing the 
knowledge encoded in these models.

In this primer, we illustrate the principles 
behind FBA by applying it to predict the 
maximum growth rate of Escherichia coli 
in the presence and absence of oxygen. The 
principles outlined can be applied in many 
other contexts to analyze the phenotypes 
and capabilities of organisms with different 
environmental and genetic perturbations (a 
Supplementary Tutorial provides ten addi-
tional worked examples with figures and 
computer code).

Flux balance analysis is based on 
constraints
The first step in FBA is to mathematically rep-
resent metabolic reactions (Box 1 and Fig. 1). 
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growth of deleting every pairwise combina-
tion of 136 E. coli genes to find double gene 
knockouts that are essential for survival of 
the bacteria.

FBA has limitations, however. Because it 
does not use kinetic parameters, it cannot 
predict metabolite concentrations. It is also 
only suitable for determining fluxes at steady 
state. Except in some modified forms, FBA 
does not account for regulatory effects such 
as activation of enzymes by protein kinases 
or regulation of gene expression. Therefore, 
its predictions may not always be accurate.

The many uses of flux balance analysis
Because the fundamentals of flux balance analy-
sis are simple, the method has found diverse 
uses in physiological studies, gap-filling efforts 
and genome-scale synthetic biology3. By alter-
ing the bounds on certain reactions, growth on 
different media (example 1 in Supplementary 
Tutorial) or of bacteria with multiple gene 

constrained to an uptake rate of 0 mmol 
gDW–1 h–1. Constraints can also be tailored 
to the organism being studied, with lower 
bounds of 0 mmol gDW–1 h–1 used to simu-
late reactions that are irreversible in some 
organisms. Nonzero lower bounds can also 
force a minimal flux through artificial reac-
tions (like the biomass reaction) such as the 
‘ATP maintenance reaction’, which is a bal-
anced ATP hydrolysis reaction used to sim-
ulate energy demands not associated with 
growth13. Constraints can even be used to 
simulate gene knockouts by limiting reac-
tions to zero flux.

FBA does not require kinetic parameters 
and can be computed very quickly even for 
large networks. This makes it well suited 
to studies that characterize many different 
perturbations such as different substrates or 
genetic manipulations. An example of such a 
case is given in example 6 in Supplementary 
Tutorial, which explores the effects on 

glucose gDW–1 h–1; DW, dry weight) and set-
ting the maximum rate of oxygen uptake to 
an arbitrarily high level, so that it does not 
limit growth. Then, linear programming is 
used to determine the maximum possible 
flux through the biomass reaction, result-
ing in a predicted exponential growth rate 
of 1.65 h–1. Anerobic growth of E. coli can be 
calculated by constraining the maximum rate 
of uptake of oxygen to zero and solving the 
system of equations, resulting in a predicted 
growth rate of 0.47 h–1 (see Supplementary 
Tutorial for computer code).

As these two examples show, FBA can be 
used to perform simulations under differ-
ent conditions by altering the constraints 
on a model. To change the environmental 
conditions (such as substrate availabil-
ity), we change the bounds on exchange 
reactions (that is, reactions representing 
metabolites flowing into and out of the sys-
tem). Substrates that are not available are 

Metabolic reactions are represented as a 
stoichiometric matrix (S) of size m × n. 
Every row of this matrix represents one 
unique compound (for a system with m 
compounds) and every column represents 
one reaction (n reactions). The entries 
in each column are the stoichiometric 
coefficients of the metabolites participating 
in a reaction. There is a negative coefficient 
for every metabolite consumed and a 
positive coefficient for every metabolite 
that is produced. A stoichiometric 
coefficient of zero is used for every 
metabolite that does not participate in a 
particular reaction. S is a sparse matrix 
because most biochemical reactions 
involve only a few different metabolites. 
The flux through all of the reactions in a 
network is represented by the vector v, 
which has a length of n. The concentrations 
of all metabolites are represented by the 
vector x, with length m. The system of mass 
balance equations at steady state (dx/dt = 
0) is given in Fig. 2c26:

Sv = 0
Any v that satisfies this equation is 
said to be in the null space of S. In any 
realistic large-scale metabolic model, 
there are more reactions than there are 
compounds (n > m). In other words, 
there are more unknown variables than 
equations, so there is no unique solution 
to this system of equations.

Although constraints define a range of 
solutions, it is still possible to identify and 

analyze single points within the solution 
space. For example, we may be interested 
in identifying which point corresponds to 
the maximum growth rate or to maximum 
ATP production of an organism, given its 
particular set of constraints. FBA is one 
method for identifying such optimal points 
within a constrained space (Fig. 1).

FBA seeks to maximize or minimize an 
objective function Z = cTv, which can be 
any linear combination of fluxes, where 
c is a vector of weights indicating how 
much each reaction (such as the biomass 
reaction when simulating maximum 
growth) contributes to the objective 

function. In practice, when only one 
reaction is desired for maximization or 
minimization, c is a vector of zeros with a 
value of 1 at the position of the reaction 
of interest (Fig. 2d).

Optimization of such a system is 
accomplished by linear programming 
(Fig. 2e). FBA can thus be defined as 
the use of linear programming to solve 
the equation Sv = 0, given a set of upper 
and lower bounds on v and a linear 
combination of fluxes as an objective 
function. The output of FBA is a particular 
flux distribution, v, which maximizes or 
minimizes the objective function.

Box 1  Mathematical representation of metabolism
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Figure 1  The conceptual basis of constraint-based modeling. With no constraints, the flux 
distribution of a biological network may lie at any point in a solution space. When mass balance 
constraints imposed by the stoichiometric matrix S (labeled 1) and capacity constraints imposed 
by the lower and upper bounds (ai and bi) (labeled 2) are applied to a network, it defines an 
allowable solution space. The network may acquire any flux distribution within this space, but 
points outside this space are denied by the constraints. Through optimization of an objective 
function, FBA can identify a single optimal flux distribution that lies on the edge of the 
allowable solution space. 
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that predict which reactions are missing by 
comparing in silico growth simulations to 
experimental results20-22. Constraint-based 
models can also be used for metabolic engi-
neering where FBA-based algorithms, such 
as OptKnock23, can predict gene knockouts 
that allow an organism to produce desirable 
compounds24,25.

A more advanced form of robustness analysis 
involves varying two fluxes simultaneously to 
form a phenotypic phase plane19 (example 5 
in Supplementary Tutorial).

All genome-scale metabolic recon-
structions are incomplete, as they contain 
‘knowledge gaps’ where reactions are miss-
ing. FBA is the basis for several algorithms 

knockouts (example 6 in Supplementary 
Tutorial) can be simulated14. FBA can then be 
used to predict the yields of important cofactors 
such as ATP, NADH, or NADPH15 (example 2 
in Supplementary Tutorial).

Whereas the example described here 
yielded a single optimal growth phenotype, 
in large metabolic networks, it is often pos-
sible for more than one solution to lead to 
the same desired optimal growth rate. For 
example, an organism may have two redun-
dant pathways that both generate the same 
amount of ATP, so either pathway could be 
used when maximum ATP production is the 
desired phenotype. Such alternate optimal 
solutions can be identified through flux vari-
ability analysis, a method that uses FBA to 
maximize and minimize every reaction in 
a network16 (example 3 in Supplementary 
Tutorial), or by using a mixed-integer lin-
ear programming–based algorithm17. More 
detailed phenotypic studies can be performed 
such as robustness analysis18, in which the 
effect on the objective function of varying 
a particular reaction flux can be analyzed 
(example 4 in Supplementary Tutorial).  

Figure 2  Formulation of an FBA problem. (a) A 
metabolic network reconstruction consists of a 
list of stoichiometrically balanced biochemical 
reactions. (b) This reconstruction is converted into a 
mathematical model by forming a matrix (labeled S), 
in which each row represents a metabolite and each 
column represents a reaction. Growth is incorporated 
into the reconstruction with a biomass reaction 
(yellow column), which simulates metabolites 
consumed during biomass production. Exchange 
reactions (green columns) are used to represent the 
flow of metabolites, such as glucose and oxygen, 
in and out of the cell. (c) At steady state, the flux 
through each reaction is given by Sv = 0, which 
defines a system of linear equations. As large 
models contain more reactions than metabolites, 
there is more than one possible solution to these 
equations. (d) Solving the equations to predict the 
maximum growth rate requires defining an objective 
function Z = cTv (c is a vector of weights indicating 
how much each reaction (v) contributes to the 
objective). In practice, when only one reaction, such 
as biomass production, is desired for maximization 
or minimization, c is a vector of zeros with a value 
of 1 at the position of the reaction of interest. In the 
growth example, the objective function is Z = vbiomass  
(that is, c has a value of 1 at the position of the 
biomass reaction). (e) Linear programming is used 
to identify a flux distribution that maximizes or 
minimizes the objective function within the space 
of allowable fluxes (blue region) defined by the 
constraints imposed by the mass balance equations 
and reaction bounds. The thick red arrow indicates 
the direction of increasing Z. As the optimal solution 
point lies as far in this direction as possible, the thin 
red arrows depict the process of linear programming, 
which identifies an optimal point at an edge or 
corner of the solution space. 
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Box 2  Tools for FBA

FBA computations, which fall into the category of constraint-based reconstruction and 
analysis (COBRA) methods, can be performed using several available tools27-29. The 
COBRA Toolbox11 is a freely available Matlab toolbox (http://systemsbiology.ucsd.edu/
Downloads/Cobra_Toolbox) that can be used to perform a variety of COBRA methods, 
including many FBA-based methods. Models for the COBRA Toolbox are saved in 
the Systems Biology Markup Language (SBML)30 format and can be loaded with the 
function ‘readCbModel’. The E. coli core model used in this Primer is available at  
http://systemsbiology.ucsd.edu/Downloads/E_coli_Core/.

In Matlab, the models are structures with fields, such as ‘rxns’ (a list of all reaction 
names), ‘mets’ (a list of all metabolite names) and ‘S’ (the stoichiometric matrix). 
The function ‘optimizeCbModel’ is used to perform FBA. To change the bounds on 
reactions, use the function ‘changeRxnBounds’. The Supplementary Tutorial contains 
examples of COBRA toolbox code for performing FBA, as well as several additional 
types of constraint-based analysis.
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Ultimately, FBA produces predictions that 
must be verified. Experimental studies are 
used as part of the model reconstruction 
process and to validate model predictions. 
Studies have shown that growth rates of E. 
coli on several different substrates predicted 
by FBA agree well with those obtained by 
experimental measurements14. Model-based 
predictions of gene essentiality have also 
been shown to be quite accurate2.

This primer and the accompanying tuto-
rials based on the COBRA toolbox (Box 2) 
should help those interested in harnessing 
the growing cadre of genome-scale metabolic 
reconstructions that are becoming available.
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