Surface Solitons
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Surface Solitons
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Fig. 1. (Color online) Examples of surface localized modes Fig. 2.
at =3 in an array of focusing waveguides (y=+1) centered
at distances d of (a) 0, (b) 1, (¢) 2, (d) 3 from the array edge.

(Color online) Examples of localized surface modes
at B=-3 in an array of defocusing waveguides (y=-1) lo-
cated at distances d of (a) 0, (b) 1, (c) 2, (d) 3 from the array
edge.
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Fig. 3. (Color online) Normalized power versus propaga-
tion constant B for the surface modes shown in Fig. 1 lo-
cated at distances d=0,1,2,3 from the surface. The dark-
est curve corresponds to the discrete soliton in an infinite
array.

Fig. 5. (Color online) Examples of stable flat-topped local-
ized surface modes at B=-4 in the array of defocusing

waveguides (y=-1) centered between various sites near
the edge.



Surface Solitons

Existence and stability: The constraint method

H=— Z(E B}y + EiEni1) — (1/2) Z!En\4

E #2
) Compute an odd mode centered at n. Obtain all {E, } and power P

(1
(2) Fix amplitude at n+1 to be E, 11 + €

(3) Solve all NR equations for E,, (m # n+1) keeping power fixed at P, arriving
to intermediate state centered between n and n + 1.

(4) Obtain X and H for intermediate state.

(5) increase € and repeat procedure until amplitudes at sites n and n+1 coincide
(even mode).

U= H(X)

dH/dX:() Stationary solutions
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Surface solitons
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Fig.2: Theoretical prediction (a, b) and experimental observation (c, d) of nonlinear Tamm states in a truncated photonic lattice.
(a) Schematic of the waveguide array geometry; (b) theoretical profile of a nonlinear Tamm statea surface gap soliton. (c) three-
dimensional representation of the nonlinear surface state observed above the localization threshold. (x,y) are the horizontal and
vertical sample coordinates, respectively. (d) Experimental plane—wave interferogram demonstrating the staggered phase

structure of the nonlinear Tamm state (from M. |. Molina and Y. S. Kivshar, ref [14]). PRL 97, 083901 (2006)
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