

Física de Plasmas

breve introducción. 2da parte y final

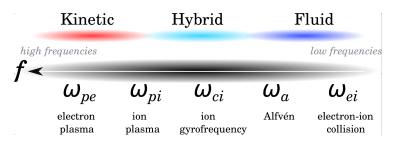
Pablo Moya^{1,2}

31 de julio de 2020

¹Departamento de Física, Facultad de Ciencias, Universidad de Chile, Santiago, Chile.

²Center for mathematical Plasma Astrophysics, KU Leuven, Leuven, Belgium.

Modelos de plasmas



Fuente: https://space.aalto.fi/

Independiente de las escalas: Ecuaciones de Maxwell

Fluidos: escalas grandes

Fuente: Pinterest

¿Cuántas plantas de pasto se ven? ¿Cuál es el largo del césped?

Modelos estadísticos: meso escalas

© Can Stock Photo - csp29402370

Fuente: Google Images

¿Cuál es el tamaño total del prado? ¿Cuál es el largo del césped?

Modelos cinéticos: escalas pequeñas

Fuente: Google Iamges

¿Cuál es el tamaño total del prado? ¿Cuál es el largo promedio del césped?

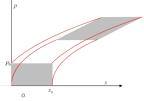
Ecuaciones de transporte (primeros principios)

Un plasma es una colección de *N* partículas interactuantes. Para cada partícula *i*:

$$\frac{d\mathbf{X}_{i}(t)}{dt} = \mathbf{V}_{i}(t), \qquad m_{i}\frac{d\mathbf{V}_{i}(t)}{dt} = \mathbf{F}_{i}(t)$$

6N ecuaciones!!!

En un sistema Hamiltoniano el teorema de Liouville es nuestro amigo:



Four phase space trajectories for falling objects

Fuente: www.virginia.edu

$$\frac{d\rho}{dt} = \frac{\partial\rho}{\partial t} + \sum_{i=1}^{n} = \frac{\partial\rho}{\partial q_{i}}\dot{q}_{i} + \frac{\partial\rho}{\partial p_{i}}\dot{p}_{i} = 0.$$

¿De qué tamaño es el espacio de fases?

Opción 1:

$$\rho = \rho(\mathbf{X}_1, \dots \mathbf{X}_N, \mathbf{P}_1, \dots \mathbf{P}_N, t)$$

Un modelo como este permite desarrollar la Ecuación de transporte de Boltzmann:

$$\frac{df(\mathbf{v}, \mathbf{x}, t)}{dt} = \frac{\partial f}{\partial t} + \mathbf{v} \cdot \frac{\partial f}{\partial \mathbf{x}} + \frac{\mathbf{F}}{m} \cdot \frac{\partial f}{\partial \mathbf{v}} = \left(\frac{df}{dt}\right)_{\text{out}}, \quad f = \int \rho \, d\mathbf{X}_2 ... d\mathbf{X}_N ... d\mathbf{P}_2 ... d\mathbf{P}_N.$$

Trabajos originales:

Landau (colisiones coulombianas, 1936), Vlasov (efectos colectivos, 1938).

Ecuaciones de transporte (primeros principios)

Opción 2: asumamos que las partículas son discretas.

$$\rho = N(\mathbf{v}, \mathbf{x}, t) = \sum_{i=1}^{N} \delta(\mathbf{x} - \mathbf{X}_{i}(t)) \, \delta(\mathbf{v} - \mathbf{V}_{i}(t)) \,,$$

¿De qué tamaño es el espacio de fases ahora?

Suponiendo sólo interacciones electromagnéticas, para cada partícula se cumple:

$$\frac{d\mathbf{X}_i(t)}{dt} = \mathbf{V}_i(t), \quad m_i \frac{d\mathbf{V}_i(t)}{dt} = \mathbf{F}_i^m(t) = q_i \left(\mathbf{E}^m + \frac{\mathbf{V}_i}{c} \times \mathbf{B}^m \right).$$

Así, es directo ver que para cada especie s se satisface:

$$\frac{\partial N_s}{\partial t} + \mathbf{v} \cdot \frac{\partial N_s}{\partial \mathbf{x}} + \frac{q_s}{m_s} \left(\mathbf{E}^m + \frac{\mathbf{v}}{c} \times \mathbf{B}^m \right) \cdot \frac{\partial N_s}{\partial \mathbf{v}} = 0,$$

que corresponde a la llamada Ecuación de Klimontovich (1967).

Ecuaciones de transporte (primeros principios)

Opción 2: asumamos que las partículas son discretas.

$$\rho = N(\mathbf{v}, \mathbf{x}, t) = \sum_{i=1}^{N} \delta(\mathbf{x} - \mathbf{X}_{i}(t)) \, \delta(\mathbf{v} - \mathbf{V}_{i}(t)) \,,$$

¿De qué tamaño es el espacio de fases ahora?

Suponiendo sólo interacciones electromagnéticas, para cada partícula se cumple:

$$\frac{d\mathbf{X}_{i}(t)}{dt} = \mathbf{V}_{i}(t), \quad m_{i}\frac{d\mathbf{V}_{i}(t)}{dt} = \mathbf{F}_{i}^{m}(t) = q_{i}\left(\mathbf{E}^{m} + \frac{\mathbf{V}_{i}}{c} \times \mathbf{B}^{m}\right).$$

Así, es directo ver que para cada especie s se satisface:

$$\frac{\partial N_s}{\partial t} + \mathbf{v} \cdot \frac{\partial N_s}{\partial \mathbf{x}} + \frac{q_s}{m_s} \left(\mathbf{E}^m + \frac{\mathbf{v}}{c} \times \mathbf{B}^m \right) \cdot \frac{\partial N_s}{\partial \mathbf{v}} = 0,$$

que corresponde a la llamada Ecuación de Klimontovich (1967).

¿Podemos resolver esta ecuación?

Ecuación de Vlasov

Es más útil promediar en alguna escala espacial razonable. Además no es necesario conocer la dinámica individual. El plasma es un estado de interacción colectiva. Consideremos entonces:

$$N_s = f_s + \delta N_s$$
, $\mathbf{E}^m = \mathbf{E} + \delta \mathbf{E}$, $\mathbf{B}^m = \mathbf{B} + \delta \mathbf{B}$, tal que $\langle \delta N_s \rangle = \langle \delta \mathbf{E} \rangle = \langle \delta \mathbf{B} \rangle = 0$

Luego, promediando la Ecuación de Klimontovich se obtiene:

$$\frac{\partial f_s}{\partial t} + \mathbf{v} \cdot \frac{\partial f_s}{\partial \mathbf{x}} + \frac{q_s}{m_s} \left(\mathbf{E} + \frac{\mathbf{v}}{c} \times \mathbf{B} \right) \cdot \frac{\partial f_s}{\partial \mathbf{v}} = \frac{q_s}{m_s} \left\langle \left(\delta \mathbf{E} + \frac{\mathbf{v}}{c} \times \delta \mathbf{B} \right) \cdot \frac{\partial \delta N_s}{\partial \mathbf{v}} \right\rangle,$$

que corresponde a la llamada Ecuación cinética de plasmas.

Lado izquierdo: Efectos colectivos, escala de Debye. Lado derecho: Colisiones y correlaciones microscópicas.

Caso especial: Ausencia de colisiones (o bien mesoescalas)

$$\frac{\partial f_s}{\partial t} + \mathbf{v} \cdot \frac{\partial f_s}{\partial \mathbf{x}} + \frac{q_s}{m_s} \left(\mathbf{E} + \frac{\mathbf{v}}{c} \times \mathbf{B} \right) \cdot \frac{\partial f_s}{\partial \mathbf{v}} = 0,$$

conocida como Ecuación de Vlasov (1938).

Momentos y ecuaciones de fluido

La ecuación de Vlasov puede trasladarse al espacio real al promediarla en todas las velocidades posibles (espacio de fases \Rightarrow espacio real, ecuaciones de fluido). Por ejemplo, el momento de orden \mathbf{v}^0 (momento de orden 0) se define a partir de:

$$\int \left(\frac{\partial f_s}{\partial t} + \mathbf{v} \cdot \frac{\partial f_s}{\partial \mathbf{x}} + \frac{q_s}{m_s} \left(\mathbf{E} + \frac{\mathbf{v}}{c} \times \mathbf{B} \right) \cdot \frac{\partial f_s}{\partial \mathbf{v}} \right) d\mathbf{v} = 0.$$

Luego:

$$\frac{\partial}{\partial t} \int f_s \, d\mathbf{v} + \frac{\partial}{\partial \mathbf{x}} \cdot \int \mathbf{v} f_s \, d\mathbf{v} = 0.$$

Finalmente, definiendo la densidad n_s y la velocidad promedio \mathbf{U}_s

$$n_s(\mathbf{x},t) = \int f_s(\mathbf{v},\mathbf{x},t) d\mathbf{v}, \quad n_s(\mathbf{x},t) \mathbf{U}_s(\mathbf{x},t) = \int \mathbf{v} f_s(\mathbf{v},\mathbf{x},t) d\mathbf{v},$$

obtenemos la ecuación de continuidad:

Una ecuación de fluido para cada momento \mathbf{v}^n .

$$\frac{\partial n_s}{\partial t} + \nabla \cdot (n_s \mathbf{U}_s) = 0.$$

Análogamente, los momentos de orden ${\bf v}^1={\bf v}$ y ${\bf v}^2={\bf v}{\bf v}$, permiten encontrar ecuaciones de momentum y flujo de energía, respectivamente.

Sistema Vlasov-Maxwell

Ecuación de Vlasov para cada especie s:

$$\frac{\partial f_s}{\partial t} + \mathbf{v} \cdot \frac{\partial f_s}{\partial \mathbf{x}} + \frac{q_s}{m_s} \left(\mathbf{E} + \frac{\mathbf{v}}{c} \times \mathbf{B} \right) \cdot \frac{\partial f_s}{\partial \mathbf{v}} = 0.$$

Ecuaciones de Maxwell

$$\nabla \cdot \mathbf{E} = 4 \, \pi \rho \,, \qquad \nabla \times \mathbf{E} = -\frac{1}{c} \frac{\partial \mathbf{B}}{\partial t},$$

$$\nabla \cdot \mathbf{B} = 0$$
, $\nabla \times \mathbf{B} = \frac{4\pi}{c} \mathbf{J} + \frac{1}{c} \frac{\partial \mathbf{E}}{\partial t}$.

Densidad de carga y corriente

$$\rho = \sum_{s} q_{s} n_{s} = \sum_{s} q_{s} \int f_{s} d\mathbf{v}, \quad \mathbf{J} = \sum_{s} q_{s} n_{s} \mathbf{U}_{s} = \sum_{s} q_{s} \int \mathbf{v} f_{s} d\mathbf{v}.$$

Menos ecuaciones que antes, pero ahora un sistema integro-diferencial.

La misma información que un número infinito de ecuaciones de fluido.

Ondas de Langmuir

Revisitemos el problema de ondas electrostáticas con el modelo de Vlasov-Maxwell. Iones inmóviles densidad n_0 , electrones con temperatura T_e . Aproximación lineal:

$$f_e(\mathbf{v}, \mathbf{x}, t) = f_0(\mathbf{v}) + f_1(\mathbf{v}, \mathbf{x}, t), \quad \text{con} \quad f_0(\mathbf{v}) = Ae^{-\frac{m_e v^2}{2k_B T_e}} \quad \Rightarrow \quad n_0 = \int f(\mathbf{v}) \, d\mathbf{v} \,.$$

$$\mathbf{E} = \mathbf{E}_1 = \int \mathbf{E}_{\mathbf{k}} \, e^{i(\mathbf{k} \cdot \mathbf{x} - \omega t)} \, d\omega \, d\mathbf{k} \,, \quad f_1 = \int f_{\mathbf{k}} \, e^{i(\mathbf{k} \cdot \mathbf{x} - \omega t)} \, d\omega \, d\mathbf{k}$$

Luego

$$n_1 = \int f_1 d\mathbf{v} \quad \Rightarrow \quad n_1 = \int f_{\mathbf{k}} e^{i(\mathbf{k} \cdot \mathbf{x} - \omega t)} d\omega d\mathbf{k} d\mathbf{v}$$

Ecuaciones lineales en el espacio de Fourier

$$-i\omega f_k + i\mathbf{k}\cdot\mathbf{v}f_k - \frac{e}{m_e}\mathbf{E}_{\mathbf{k}}\cdot\frac{\partial f_0}{\partial\mathbf{v}} = 0, \quad i\mathbf{k}\cdot\mathbf{E}_{\mathbf{k}} = -4\pi e \int f_k \,d\mathbf{v}.$$

Por lo tanto:

$$\left(\mathbf{k} + \frac{4\pi e^2}{m_e} \int d\mathbf{v} \frac{\partial f_0/\partial \mathbf{v}}{\omega - \mathbf{k} \cdot \mathbf{v}}\right) \cdot \mathbf{E}_{\mathbf{k}} = 0 \quad \Rightarrow \quad |\mathbf{k}|^2 + \frac{4\pi e^2}{m_e} \int \frac{d\mathbf{v}}{\omega - \mathbf{k} \cdot \mathbf{v}} \, \mathbf{k} \cdot \frac{\partial f_0}{\partial \mathbf{v}} = 0$$

Relación de dispersión.

Ondas de Langmuir

Relación de dispersión ($\mathbf{k} = k \hat{x}$)

$$1 - \frac{\omega_{pe}^2}{k^2} \int \frac{d\mathbf{v}}{v_x - \omega/k} \frac{\partial \bar{f_0}}{\partial v_x} = 0, \quad \text{con} \quad f_0 = n_0 \bar{f_0} \,.$$

$$\mathbf{i} \cdot \mathbf{Qu\'e} \text{ pasa si } v_x = \omega/k?$$

¿Es esto posible?

¿Cómo resolver el problema?

Ondas de Langmuir

Relación de dispersión ($\mathbf{k} = k \hat{x}$)

$$1 - \frac{\omega_{pe}^2}{k^2} \int \frac{d\mathbf{v}}{v_x - \omega/k} \frac{\partial \bar{f_0}}{\partial v_x} = 0, \quad \text{con} \quad f_0 = n_0 \bar{f_0}.$$
¿Qué pasa si $v_x = \omega/k$?

¿Es esto posible?

¿Cómo resolver el problema?

Frecuencia compleja!! $\omega = \omega_r + i\omega_i \Rightarrow$ ondas pueden cambiar su amplitud.

Amortiguamiento de Landau

Veamos si las ondas crecen exponencialmente ($\omega_i > 0$) o se amortiguan ($\omega_i < 0$). Dado que $d\mathbf{v} = dv_x dv_y dv_z$, la relación de dispersión se reduce a:

$$1 - \frac{\omega_{pe}^2}{k^2} A_{yz} \int_{-\infty}^{\infty} \frac{dv_x}{v_x - \omega/k} \left. \frac{\partial \bar{f_0}}{\partial v_x} = 1 - \frac{\omega_{pe}^2}{k^2} A_{yz} \left(\oint \frac{dv_x}{v_x - \omega/k} \left. \frac{\partial \bar{f_0}}{\partial v_x} + i\pi \left. \frac{\partial \bar{f_0}}{\partial v_x} \right|_{v_x = \frac{\omega_r}{k}} \right) = 0.$$

Así, considerando $\omega_r \approx \omega_{pe}$ y $|\omega_i|/\omega_r \ll 1$, con un poco de álgebra se obtiene:

$$1 - \frac{\omega_r^2}{k^2} A_{\rm yz} \oint \frac{dv_x}{v_x - \omega/k} \; \frac{\partial \bar{f}_0}{\partial v_x} + i \left(2\omega_i \frac{\omega_r^2}{k^2} A_{\rm yz} \oint \frac{dv_x}{v_x - \omega/k} \; \frac{\partial \bar{f}_0}{\partial v_x} - \pi \frac{\omega_{pe}^2}{k^2} \; \frac{\partial \bar{f}_0}{\partial v_x} \bigg|_{\omega_r/k} \right) = 0,$$

y por lo tanto, la parte imaginaria es

$$\omega_i = \frac{\pi}{2} \frac{\omega_{pe}^2}{k^2} \left. \frac{\partial \bar{f}_0}{\partial v_x} \right|_{\omega_r/k} \quad \Rightarrow \quad \operatorname{sgn}(\omega_i) = \operatorname{sgn}\left(\left. \frac{\partial \bar{f}_0}{\partial v_x} \right|_{\omega_r/k} \right).$$

Amortiguamiento de Landau (plasma en equilibrio).

En el equilibrio

$$ar{f_0}(\mathbf{v}) = \pi^{-3/2} v_{th}^3 \, \exp\left(-rac{v_x^2 + v_y^2 + v_z^2}{v_{th}^2}
ight), \quad ext{con} \quad v_{th}^2 = rac{2k_B T_e}{m_e} \, .$$

Luego, se tiene



Fuente: Wikipedia Fuente: Wikiwand

Amortiguamiento de Landau (más detalles).

En este caso Maxwelliano, la relación de dispersión es

$$1 = \frac{2}{\pi^{1/2}} \frac{\omega_{pe}^2}{k^2 v_{th}^2} \frac{k v_{th}}{\omega} \int_{-\infty}^{\infty} \frac{x e^{-x^2}}{1 - \frac{\omega x}{k v_{th}}} dx.$$

Y entonces, cuando $\omega \gg kv_{th}$, se puede expandir

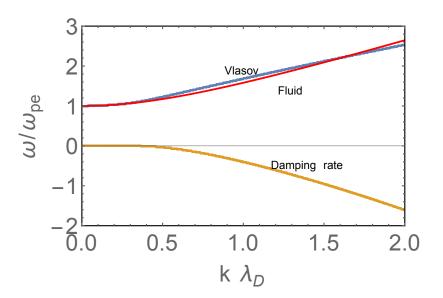
$$1 = \frac{2}{\pi^{1/2}} \frac{\omega_{pe}^2}{k^2 v_{th}^2} \frac{k v_{th}}{\omega} \int_{-\infty}^{\infty} \left(1 + \frac{k v_{th}}{\omega} x + \frac{k^2 v_{th}^2}{\omega^2} x^2 + \frac{k^3 v_{th}^3}{\omega^3} x^3 + \cdots \right) x e^{-x^2} dx + i\pi \left. \frac{\partial \bar{f_0}}{\partial v_x} \right|_{\omega_r/k}.$$

Finalmente, notando que $\lambda_D = v_{th}/\omega_{pe}$, la relación de dispersión cinética es:

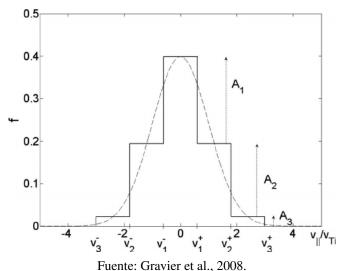
$$\omega^2 \simeq \omega_{pe}^2 + rac{3}{2} \left(rac{\omega_{pe}}{\omega}
ight)^2 k^2 v_{th}^2 + i \pi^{1/2} rac{\omega_{pe}}{(k \lambda_D)^3} e^{-(k \lambda_D)^{-2}}$$

Caso fluido

$$\omega^2 = \omega_{pe}^2 + \frac{3}{2}k^2v_{th}^2.$$



Tarea: resuelva, a orden 3, el caso de la distribución "water bag"



ruente: Gravier et al., 2008.

Aplicaciones