Chapter 5

Plasma Kinetic Theory

5.1 Klimontovich Equation

5.1.1 Introduction

Start from first principles => exact plasma description

Single particle:

- location $\mathbf{X}_1(t)$, velocity $\mathbf{V}_1(t)$
 - => 6 degree of freedom
 - => six-dimensional space
- Density of the particle in this space: $N\left(\mathbf{x},\mathbf{v},t\right)=\delta\left(\mathbf{x}-\mathbf{X}_{1}(t)\right)\delta\left(\mathbf{v}-\mathbf{V}_{1}(t)\right)$

with:
$$\delta\left(\mathbf{x}-\mathbf{X}_{1}(t)\right)=\delta\left(x-X_{1}(t)\right)\delta\left(y-Y_{1}(t)\right)\delta\left(z-Z_{1}(t)\right)$$

 δ — Dirac delta function

Consider N_{0s} particles of species s:

Density of this distribution in phase space:

$$N_s(\mathbf{x}, \mathbf{v}, t) = \sum_{i=1}^{N_{0s}} \delta(\mathbf{x} - \mathbf{X}_i(t)) \delta(\mathbf{v} - \mathbf{V}_i(t))$$

and for all species:

$$N = \sum_{s} N_s \left(\mathbf{x}, \mathbf{v}, t \right)$$

Particle motion:

$$\dot{\mathbf{X}}_{i} = \mathbf{V}_{i}(t)$$

$$\dot{\mathbf{V}}_{i} = \frac{q_{s}}{m_{s}} \mathbf{E}^{m} \left(\mathbf{X}_{i}(t), t \right) + \frac{q_{s}}{m_{s}} \mathbf{V}_{i}(t) \times \mathbf{B}^{m} \left(\mathbf{X}_{i}(t), t \right)$$

To solve the equations of motion we need Maxwell's equations

$$\nabla \cdot \mathbf{E}^{m} (\mathbf{x}, t) = \frac{1}{\epsilon_{0}} \rho_{c} (\mathbf{x}, t)$$

$$\nabla \cdot \mathbf{B}^{m} (\mathbf{x}, t) = 0$$

$$\nabla \times \mathbf{E}^{m} (\mathbf{x}, t) + \frac{\partial \mathbf{B}^{m} (\mathbf{x}, t)}{\partial t} = 0$$

$$\nabla \times \mathbf{B}^{m} (\mathbf{x}, t) - \frac{1}{c^{2}} \frac{\partial \mathbf{E}^{m} (\mathbf{x}, t)}{\partial t} = \mu_{0} \mathbf{j}^{m} (\mathbf{x}, t)$$

(m stands for microscopic fields) with the charge and current densities (sources)

$$\rho_c^m(\mathbf{x},t) = \sum_s q_s \int_{-\infty}^{\infty} d^3 v N_s(\mathbf{x},\mathbf{v},t)$$
$$\mathbf{j}^m(\mathbf{x},t) = \sum_s q_s \int_{-\infty}^{\infty} d^3 v \mathbf{v} N_s(\mathbf{x},\mathbf{v},t)$$

The above equations fully determine the entire sytem of particles. Initial value problem:

$$N_s(\mathbf{x}, \mathbf{v}, t = 0) = \sum \mathbf{E}^m(\mathbf{x}, t = 0), \mathbf{B}^m(\mathbf{x}, t = 0)$$

=> Integrate equations in time.

5.1.2 Klimontovich Equation

Time evolution of the distribution function $N_s(\mathbf{x}, \mathbf{v}, t)$:

$$\begin{split} \frac{\partial N_{s}\left(\mathbf{x},\mathbf{v},t\right)}{\partial t} &= -\sum_{i=1}^{N_{0s}} \dot{\mathbf{X}}_{i} \cdot \nabla_{\mathbf{x}} \delta\left(\mathbf{x}-\mathbf{X}_{i}(t)\right) \delta\left(\mathbf{v}-\mathbf{V}_{i}(t)\right) \\ &-\sum_{i=1}^{N_{0s}} \dot{\mathbf{V}}_{i} \cdot \nabla_{\mathbf{v}} \delta\left(\mathbf{x}-\mathbf{X}_{i}(t)\right) \delta\left(\mathbf{v}-\mathbf{V}_{i}(t)\right) \end{split}$$

Note:

$$\frac{\partial f(a-b)}{\partial a} = -\frac{\partial f(a-b)}{\partial b}$$
$$\frac{df(g(t))}{dt} = \frac{df}{da}\frac{dg}{dt}$$

Substitute: $\dot{\mathbf{X}}_i$ and $\dot{\mathbf{V}}_i$

$$\frac{\partial N_{s}\left(\mathbf{x}, \mathbf{v}, t\right)}{\partial t} = -\sum_{i=1}^{N_{0s}} \mathbf{v} \cdot \nabla_{\mathbf{x}} \delta\left(\mathbf{x} - \mathbf{X}_{i}(t)\right) \delta\left(\mathbf{v} - \mathbf{V}_{i}(t)\right)
- \sum_{i=1}^{N_{0s}} \left\{ \frac{q_{s}}{m_{s}} \mathbf{E}^{m}\left(\mathbf{x}, t\right) + \frac{q_{s}}{m_{s}} \mathbf{v} \times \mathbf{B}^{m}\left(\mathbf{x}, t\right) \right\} \cdot \nabla_{\mathbf{v}} \delta\left(\mathbf{x} - \mathbf{X}_{i}(t)\right) \delta\left(\mathbf{v} - \mathbf{V}_{i}(t)\right)$$

where we used $f(a)\delta(a-b) = f(b)\delta(a-b)$.

Exercise: Prove that the last equation for $N_s(\mathbf{x}, \mathbf{v}, t)$ is correct and in particular that one can replace $\mathbf{V}_i(t) \times \mathbf{B}^m(\mathbf{X}_i(t), t)$ with $\mathbf{v} \times \mathbf{B}^m(\mathbf{x}, t)$ in this equation.

As the final step we can now take the $\mathbf{v} \cdot \nabla_{\mathbf{x}}$ and $\left\{ \frac{q_s}{m_s} \mathbf{E}^m \left(\mathbf{x}, t \right) + \frac{q_s}{m_s} \mathbf{v} \times \mathbf{B}^m \left(\mathbf{x}, t \right) \right\}$ in front of the summation which yields the **Klimontovich equation**

$$\frac{\partial N_s}{\partial t} + \mathbf{v} \cdot \nabla_{\mathbf{x}} N_s + \frac{q_s}{m_s} \left(\mathbf{E}^m + \mathbf{v} \times \mathbf{B}^m \right) \cdot \nabla_{\mathbf{v}} N_s = 0$$

Together with the Maxwell's equation and the definitions for charge and current densities this provides a full description of the plasma dynamics!

However, since the distribution is a distribution of delta functions it still requires basically to follow all individual particles which in typical application is not feasible even on modern supercomputers.

Properties of the Klimontovich equation

• Incompressibility in phase space: Hypothetical point particle at x, v total time derivative

$$\frac{D}{Dt} = \frac{\partial}{\partial t} + \frac{d\mathbf{x}}{dt} \cdot \nabla_{\mathbf{x}} + \frac{d\mathbf{v}}{dt} \cdot \nabla_{\mathbf{v}}$$

=> Klimontovich equation

$$\frac{DN_s\left(\mathbf{x},\mathbf{v},t\right)}{Dt} = 0$$

 \Rightarrow along each (hypothetical) path N_sis constant!

• Conservation of particles (continuity): $\partial f/\partial t + \nabla_{\mathbf{r}} \cdot (\mathbf{v}f) = 0$ In 6-dimensional phase space we can define $\nabla_{\mathbf{R}} = (\nabla_{\mathbf{x}}, \nabla_{\mathbf{v}})$ and $\mathbf{V} = (d\mathbf{x}/dt, d\mathbf{v}/dt) =>$

$$\frac{\partial N_s}{\partial t} + \nabla_{\mathbf{R}} \cdot (\mathbf{V} N_s) = 0$$

Klimontovich eq. must satisfy continuity!

5.1.3 Plasma Kinetic Equation

The Klimontovich distribution is a distribution of δ functions => need to reduce amount of information (we know that a plasma behave collectively so it is not necessary to follow each individual particle.).

=> generate smooth distribution using an appropriate average

Rigorous way:

• Ensemble average over infinite number of realizations, e.g., with a temperature contact => statistical mechanics

Alternatively:

• Define boxes size Δx , Δv with $\Delta x \ll \lambda_{de}$ and count particles in range $[\mathbf{x}, \mathbf{v}]$ to $[\mathbf{x} + \Delta \mathbf{x}, \mathbf{v} + \Delta \mathbf{v}]$ => $f_s = \frac{n_s}{\Delta x^3 \Delta v^3}$

Define fluctuations

$$N_{s}(\mathbf{x}, \mathbf{v}, t) = f_{s}(\mathbf{x}, \mathbf{v}, t) + \delta N_{s}(\mathbf{x}, \mathbf{v}, t)$$

$$\mathbf{E}^{m}(\mathbf{x}, t) = \mathbf{E}(\mathbf{x}, t) + \delta \mathbf{E}(\mathbf{x}, t)$$

$$\mathbf{B}^{m}(\mathbf{x}, t) = \mathbf{B}(\mathbf{x}, t) + \delta \mathbf{B}(\mathbf{x}, t)$$

such that: $\langle \delta N_s \rangle$, $\langle \delta \mathbf{E} \rangle$, $\langle \delta \mathbf{B} \rangle = 0$

=>

$$\frac{\partial f_s}{\partial t} + \mathbf{v} \cdot \nabla_{\mathbf{x}} f_s + \frac{q_s}{m_s} \left(\mathbf{E} + \mathbf{v} \times \mathbf{B} \right) \cdot \nabla_{\mathbf{v}} f_s = \frac{q_s}{m_s} \left\langle \left(\delta \mathbf{E} + \mathbf{v} \times \delta \mathbf{B} \right) \cdot \nabla_{\mathbf{v}} \delta N_s \right\rangle$$

- Left side collective effects
- right side -collisional effects

Continuum limit: $N_0 \to \infty$

- right side: fluctuations $\delta N_s \sim N_0^{1/2}$ (statistical mechanics) $\delta {\bf E} \sim e \delta N_s \sim \frac{1}{N_0} N_0^{1/2} \sim N_0^{-1/2}$
- => right side \rightarrow const
- \Rightarrow left side $\sim N_0 \to \infty$

Which yields the collisionless **Boltzmann** equations:

$$\frac{\partial f_s}{\partial t} + \mathbf{v} \cdot \nabla_{\mathbf{x}} f_s + \frac{q_s}{m_s} (\mathbf{E} + \mathbf{v} \times \mathbf{B}) \cdot \nabla_{\mathbf{v}} f_s = 0$$

Complemented with Maxwells equations and with the definitions for charge and current density

$$\nabla \cdot \mathbf{E} (\mathbf{x}, t) = \frac{1}{\epsilon_0} \rho_c (\mathbf{x}, t)$$

$$\nabla \cdot \mathbf{B} (\mathbf{x}, t) = 0$$

$$\nabla \times \mathbf{E} (\mathbf{x}, t) = -\frac{\partial \mathbf{B} (\mathbf{x}, t)}{\partial t}$$

$$\nabla \times \mathbf{B} (\mathbf{x}, t) = \mu_0 \mathbf{j} (\mathbf{x}, t) + \frac{1}{c^2} \frac{\partial \mathbf{E} (\mathbf{x}, t)}{\partial t}$$

$$\rho_c (\mathbf{x}, t) = \sum_s q_s \int_{-\infty}^{\infty} d^3 v f_s (\mathbf{x}, \mathbf{v}, t)$$

$$\mathbf{j} (\mathbf{x}, t) = \sum_s q_s \int_{-\infty}^{\infty} d^3 v \mathbf{v} f_s (\mathbf{x}, \mathbf{v}, t)$$

yield the **Vlasov** equations.

5.2 Liouville Equation

5.2.1 Concept of a system

Motivation:

Use Liouville equation => derivation of a kinetic equation (right hande side of the Boltzmann equation)

Note: Klimontovich equation - Behaviour of individual particles

One particle:

- spatial coordinate of the system $\mathbf{x}_1 = (x_1, y_1, z_1)$
- velocity coordinate of the system $\mathbf{v}_1 = (v_{x1}, v_{y1}, v_{z1})$
- Particle orbit (as before) by $\mathbf{X}_1(t)$ and $\mathbf{V}_1(t)$
- System coordinates: $(\mathbf{x}_1, \mathbf{v}_1) = (x_1, y_1, z_1, v_{x1}, v_{y1}, v_{z1})$ (6 coord)
- Density of systems: $N\left(\mathbf{x}, \mathbf{v}, t\right) = \delta\left(\mathbf{x}_1 \mathbf{X}_1(t)\right) \delta\left(\mathbf{v}_1 \mathbf{V}_1(t)\right)$ One system consisting of one particle

2 particles:

- 12 coordinates for our system
- Phase space: $(\mathbf{x}_1, \mathbf{v}_1, \mathbf{x}_2, \mathbf{v}_2) = (x_1, y_1, z_1, v_{x1}, v_{y1}, v_{z1}, x_2, y_2, z_2, v_{x2}, v_{y2}, v_{z2})$

• Density:

$$N\left(\mathbf{x}, \mathbf{v}, t\right) = \delta\left(\mathbf{x}_1 - \mathbf{X}_1(t)\right) \delta\left(\mathbf{v}_1 - \mathbf{V}_1(t)\right) \delta\left(\mathbf{x}_2 - \mathbf{X}_2(t)\right) \delta\left(\mathbf{v}_2 - \mathbf{V}_2(t)\right)$$
 1 system consiting of 2 particles

Generalisation to N_0 **particles** => Phase space has 6N coordinates

Density:

$$N\left(\mathbf{x}_{1}, \mathbf{v}_{1}, \mathbf{x}_{2}, \mathbf{v}_{2}, ... \mathbf{x}_{N_{0}}, \mathbf{v}_{N_{0}}, t\right) = \prod_{i=0}^{N_{0}} \delta\left(\mathbf{x}_{i} - \mathbf{X}_{i}(t)\right) \delta\left(\mathbf{v}_{i} - \mathbf{V}_{i}(t)\right)$$

5.2.2 Liouville equation

Interested in the time evolution of N and with

$$\frac{\partial \delta\left(\mathbf{x}_{i}-\mathbf{X}_{i}(t)\right)}{\partial t}=-\frac{d\mathbf{X}_{i}(t)}{dt}\cdot\nabla_{\mathbf{x}_{i}}\delta\left(\mathbf{x}_{i}-\mathbf{X}_{i}(t)\right)$$

=>

$$\frac{\partial N\left(\mathbf{x}, \mathbf{v}, t\right)}{\partial t} = -\sum_{i=1}^{N_0} \dot{\mathbf{X}}_i \cdot \nabla_{\mathbf{x}_i} \prod_{i=0}^{N_0} \delta\left(\mathbf{x}_i - \mathbf{X}_i(t)\right) \delta\left(\mathbf{v}_i - \mathbf{V}_i(t)\right)
- \sum_{i=1}^{N_0} \dot{\mathbf{V}}_i \cdot \nabla_{\mathbf{v}_i} \prod_{i=0}^{N_0} \delta\left(\mathbf{x}_i - \mathbf{X}_i(t)\right) \delta\left(\mathbf{v}_i - \mathbf{V}_i(t)\right)$$

As before we can substitute (note \mathbf{x}_i instead of $\mathbf{X}_i(t)$ and \mathbf{v}_i instead of $\mathbf{V}_i(t)$ in the Lorentz force!):

$$\begin{array}{lcl} \dot{\mathbf{X}}_{i} & = & \mathbf{V}_{i}(t) \\ \dot{\mathbf{V}}_{i} & = & \frac{q_{s}}{m_{s}} \left[\mathbf{E}^{m} \left(\mathbf{x}_{i}, t \right) + \mathbf{v}_{i} \times \mathbf{E}^{m} \left(\mathbf{x}_{i}, t \right) \right] \end{array}$$

Such that

$$\frac{\partial N}{\partial t} + \sum_{i=1}^{N_0} \mathbf{v}_i \cdot \nabla_{\mathbf{x}_i} N + \sum_{i=1}^{N_0} \dot{\mathbf{V}}_i \cdot \nabla_{\mathbf{v}_i} N = 0$$

which is Liouville's equation.

Properties:

(a)
$$\frac{D}{Dt}N\left(\mathbf{x}_{1},\mathbf{v}_{1},\mathbf{x}_{2},\mathbf{v}_{2},...\mathbf{x}_{N_{0}},\mathbf{v}_{N_{0}},t\right)=0$$

with

$$\frac{D}{Dt} = \frac{\partial}{\partial t} + \sum_{i=1}^{N_0} \mathbf{v}_i \cdot \nabla_{\mathbf{x}_i} + \sum_{i=1}^{N_0} \dot{\mathbf{V}}_i \cdot \nabla_{\mathbf{v}_i}$$

=> incompressibility

(b) Continuity

$$\begin{array}{rcl} \mathbf{v}_i \cdot \nabla_{\mathbf{x}_i} N & = & \nabla_{\mathbf{x}_i} \cdot (\mathbf{v}_i N) \\ \dot{\mathbf{V}}_i \cdot \nabla_{\mathbf{v}_i} & = & \nabla_{\mathbf{v}_i} \cdot (\dot{\mathbf{V}}_i N) \end{array}$$

because

$$\nabla_{\mathbf{v}_{i}} \cdot \dot{\mathbf{V}}_{i} = \nabla \cdot \left\{ \frac{q_{s}}{m_{s}} \left[\mathbf{E}^{m} \left(\mathbf{x}_{i}, t \right) + \mathbf{v}_{i} \times \mathbf{E}^{m} \left(\mathbf{x}_{i}, t \right) \right] \right\} = 0$$

=>

$$\frac{\partial N}{\partial t} + \sum_{i=1}^{N_0} \nabla_{\mathbf{x}_i} \cdot (\mathbf{v}_i N) + \sum_{i=1}^{N_0} \nabla_{\mathbf{v}_i} \cdot (\dot{\mathbf{V}}_i N) = 0$$

Probability density:

Ensemble of systems N:

Def.:

$$f_{N_0}\left(\mathbf{x}_1, \mathbf{v}_1, \mathbf{x}_2, \mathbf{v}_2, ... \mathbf{x}_{N_0}, \mathbf{v}_{N_0}, t\right) d\mathbf{x}_1 d\mathbf{v}_1 d\mathbf{x}_2 d\mathbf{v}_2 ... d\mathbf{x}_{N_0} d\mathbf{v}_{N_0}$$

is the proability that

 $\mathbf{X}_{1}\left(t\right)$ is in the interval $\left[\mathbf{x}_{1},\mathbf{x}_{1}+d\mathbf{x}_{1}\right]$, $\mathbf{X}_{2}\left(t\right)$ is in the interval $\left[\mathbf{x}_{2},\mathbf{x}_{2}+d\mathbf{x}_{2}\right]$, ...

$$\mathbf{V}_{1}\left(t\right)$$
 is in the interval $\left[\mathbf{v}_{1},\mathbf{v}_{1}+d\mathbf{v}_{1}\right]$, $\mathbf{V}_{2}\left(t\right)$ is in the interval $\left[\mathbf{v}_{2},\mathbf{v}_{2}+d\mathbf{v}_{2}\right]$, ...

Probability is conserved along trajectory:

each fluid element moves along the trajectory as a probability

With
$$\nabla_{\mathbf{x}_i} \cdot \mathbf{v}_i = 0$$
 and $\nabla_{\mathbf{v}_i} \cdot \dot{\mathbf{V}}_i = 0$

$$\frac{\partial f_{N_0}}{\partial t} + \sum_{i=1}^{N_0} \mathbf{v}_i \cdot \nabla_{\mathbf{x}_i} f_{N_0} + \sum_{i=1}^{N_0} \dot{\mathbf{V}}_i \cdot \nabla_{\mathbf{v}_i} f_{N_0} = 0$$

or

$$\frac{D}{Dt}f_{N_0}\left(\mathbf{x}_1, \mathbf{v}_1, \mathbf{x}_2, \mathbf{v}_2, ... \mathbf{x}_{N_0}, \mathbf{v}_{N_0}, t\right) = 0$$

We have now a probability distribution function which determines the kinetic evolution exactly, however, this distribution is in a $6N_0$ dimensional space. Thus there is now reduction in complexity compared to Klimotovich equation!