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Abstract 

We intend here to substantiate the claim that the intensive use of trees to tackle Bayesian 
problems may lead us to “miss the Bayesian wood”, particularly if we just focus on the 
static trees and ignore germane random walks on them. Our main point is that random 
walks on networks or grids instead, provide a more fruitful and insightful metaphor to 
address Bayesian problems and fathom the underlying “Bayesian flows”. Besides recalling 
the main tenets of our theoretical background, we discuss below the relation of our claims 
with related research in this field and give some illustrative classroom examples, arising 
mainly from our teaching stochastics to non-mathematically inclined first year university 
students and prospective mathematics teachers. 
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Resumen 

Nos proponemos aquí fundamentar nuestra afirmación que el uso intensivo de los árboles 
par abordar problemas Bayesianos nos puede llevar a “no ver el bosque Bayesiano”; 
particularmente si nos enfocamos solamente en árboles estáticos ignorando los paseos 
aleatorios relevantes sobre ellos. Nuestro punto principal es que por el contrario los paseos 
al azar en redes o rejillas, proveen una metáfora más fructífera y perspicaz para enfrentar 
problemas Bayesianos y discernir los “flujos Bayesianos” subyacentes. Además de recordar 
los principales principios de nuestro trasfondo teórico, discutimos más abajo la relación de 
nuestras afirmaciones con investigaciones relacionadas en este campo y damos ejemplos de 
aula ilustrativos, emergentes, principalmente de nuestra enseñanza de la estocástica a 
estudiantes universitarios de primer año sin inclinación matemática y futuros profesores de 
matemáticas. 
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1. Introduction 

This theoretical paper is built around two claims, which we have posited to some extent 
elsewhere and we intend to further substantiate here. Our first claim is that random 
walks constitute a royal road to stochastic thinking (Soto-Andrade, 2013, 2015; Soto-
Andrade, Díaz-Rojas, & Reyes-Santander, 2018). Our second claim, which is the main 
focus of this paper, is that we may “miss the Bayesian wood for the trees”, because 
Bayesian problems are better metaphorised as random walks on graphs ike network and 
grids than on trees (Soto-Andrade et al., 2018).  

This paper is structured as follows. In Section 1 below, we recall the main tenets of our 
theoretical framework, essentially a metaphoric and enactivistic approach to the 
didactics of mathematics (Lakoff & Núñez, 2000; Proulx & Maheux, 2017; Soto-
Andrade, 2018). In Section 2 we recall the role and use of metaphores in the didactics of 
mathematics, particularly the types of metaphors that most frequently arise in our work 
with students. In Section 3, we recall our argumentation in favour of our first claim. In 
Section 4, we apply our metaphorical approach to the study of random walks. In Section 
5, we discuss the role of trees in the teaching of stochastics (Batanero & Borovcnik, 
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2016; Parzysz, 2011) and relate them to our main concern, to wit Bayesian reasoning, a 
critical issue in this field indeed (Borovcnik, 2012; Böcherer-Linder et al., 2018; 
Hoffrage et al., 2015; Zhu & Gigerenzer, 2006). In Section 6 we describe a 
paradigmatic example of our approach (Rayen’s fall) and its experimental background. 
We end with a discussion, conclusions and open questions in Section 7. 

2. Theoretical background: metaphorical approach to didactics of mathematics 

Increasing awareness has emerged during the last decades among the mathematics 
education community that metaphors are not just rhetorical devices but powerful 
cognitive tools that help us in grasping as well as building new concepts, and also in 
solving problems in an efficient and friendly way (Diaz-Rojas & Soto-Andrade, 2015; 
English 1997; Knops et al., 2009; Lakoff & Núñez, 2000; Sfard, 2009; Soto-Andrade 
2014, 2018; and many others). In fact, metaphorising (looking at something and seeing 
something else, metaphorically defined) appears as the often unknowing foundation for 
human thought (Gibbs 2008). Indeed as suggested by Johnson and Lakoff (2003), our 
ordinary conceptual system, in terms of which we think and act, is fundamentally 
metaphorical in nature. Lakoff and Núñez (2000) highlight the intensive use we make of 
conceptual metaphors that appear—metaphorically—as inference-preserving mappings 
from a more concrete and transparent ‘source domain’ into a more abstract and opaque 
‘target domain’, enabling us to fathom the latter in terms of the former.  

 
3. Why random walks? 
To support our claim that random walks are a royal road to stochastic thinking, we point 
up first their transversality: they cross boundaries, arising both in the natural and 
cultural realm, besides providing models for sundry phenomena arising in both of them.  

In the first one we find the erratic movement of pollen micro particles discovered by the 
botanist Robert Brown in 1927 (Powles, 1978), called nowadays “Brownian motion”, 
also observed later in the case of nano-inclusions in metallic alloys, as foreseen by 
Einstein in 1905 (Preuss, 2002). Already in 60 BC however Lucretius observed dust 
particles “skirmishing” under sunlight and hypothesised this to be caused by “motions 
of matter latent and unseen at the bottom” (Powles, 1978). Other examples of random 
walks in the natural realm are mosquito flights (Pearson, 1905), foraging patterns in 
human hunter–gatherers (Raichlen et al., 2014) and erratic fluctuations of stock markets 
(Bachelier, 1900). In fact Pearson (1905) coined the term “random walk” in his query to 
the journal Nature about the probability distribution of the distance from the origin of a 
random flying mosquito (a vector of malaria) after a given lapse of time. 

In the cultural realm, we find the construction of random hexagrams when consulting Yi 
Jing, the ancient Chinese oracle (Wilhelm, 1956), that may be seen as a 6-step 
symmetric random walk on the binary tree, as drawn by Chinese mathematician Shao 
Yong (Marshall, 2015). Remarkably enough, this random walk, now on an infinite 
binary tree reappears one thousand years later in cosmology as a discrete stochastic 
model for eternal inflation, which allows for the construction of a multiverse (Harlow et 
al., 2012; Marcolli, 2017). Another classical example is provided by Saint Francis of 
Assisi’s friars walking across medieval Italy’s road network to preach the Gospel, trying 
to be just instruments of God’s will by choosing randomly at each crossroad with the 
help of the following clever method, devised by Saint Francis himself: At every road 
junction, he had a friar to whirl nonstop in spite of dizziness and nausea, until he 
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collapsed and fell. Then the whole company would choose the road closest to the 
direction shown by the friar’s head (Anonymous, 1600; Soto-Andrade, 2013).  
From a didactic viewpoint, it should be highlighted that random walks are a visual 
embodiment of randomness (we literally see randomness in a random walk), that can be 
easily enacted and simulated, from primary school all the way up to postgraduate 
school, didactically embodied in what we call “learning sprouts”. They can be 
approached and studied in manifold ways: statistically, metaphorically, 
probabilistically. They provide “universal models” and metaphors for sundry 
phenomena.  

For example, the classical ruin problem, involving two players (Chung, 1974) can be 
meaningfully metaphorised as the random walk of a frog on a row of stones whose end 
stones are crocodiles (absorbing barriers) (Soto-Andrade et al., 2018). 

Indeed, random walks facilitate the access of non-mathematically oriented learners to 
stochastic thinking, enabling them to construct probabilistic notions by themselves, 
while solving situated concrete problems. In our view they constitute a “learning 
sprout” for probability and statistics (Soto-Andrade, 2015; Soto-Andrade et al., 2018). 
Most interesting for us, Bayesian problems can be suitable metaphorized as random 
walks. See section 4 below for the case of the classical Monty Hall problem.  

4. Metaphors for random walks?  

Based on our metaphoric approach to the didactics of mathematics (Soto-Andrade, 
2018), we encourage students to metaphorise when addressing the study of random 
walks on graphs. We recall and exemplify below a few helpful metaphors, most 
frequently used by our learners to explore and figure these random walks, as well as 
constructing on the way the concept of probability, at various educational levels (Soto-
Andrade et al., 2018).  

Solomonic (or splitting) metaphor. This metaphor sees the random walker 
deterministically splitting into pieces instead of walking randomly according to the 
given transition probabilities, as King Solomon threatened to do with the disputed baby. 
For instance, when looking at a frog jumping equally likely right or left on a row of 
stones in a pond, the Solomonic metaphor sees the frog splitting into two halves that go 
simultaneously right and left, and so on. This ‘metaphoric sleight of hand’ turns the 
random walk into a deterministic fission process, thus allowing us to reduce 
probabilistic calculations to deterministic ones, where we just need to keep track of the 
walker’s splitting into pieces: The probability of finding the walker at a given location 
after n jumps is just the portion of the walker landing there after n splittings. This 
enables in fact the learners to construct the notion of probability!  

Hydraulic metaphor. This metaphor is a variant of the previous one, where we develop 
the random walk in space-time and so that the walker appears as a fluid draining down 
through a tree, or more generally a network, of ducts bifurcating according to the given 
transition probabilities (Soto-Andrade et al., 2018). This metaphor suggests constructing 
analogical models made out of a network of ducts and stopcocks to enact jumping frogs 
or other types of random walks.  

Pedestrian metaphor. Learners who dislike calculating with fractions or halving frogs, 
(in the case of a symmetric random walk) may have the idea of unleashing an army of 
frogs instead, from the starting stone, and have them split into halves at each stage. 
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Fittingly, 2n frogs for a n-step symmetric walk. With the help of this metaphor, students 
just need to count how many frogs are crouching at each stone after the given number of 
steps and divide by the total number of frogs, to quantify likelihood. More generally this 
metaphor looks at a random walk on a graph and sees a company of pedestrians splitting 
into smaller groups as they progress along a road network. Notice that this provides a 
natural pedestrian approach to Pascal’s triangle. 

Borgian (parallel universes) metaphor). This is a variant of the previous ones, where we 
would see now the frog become double (like acquiring a Doppelgänger), so that we 
have now two frogs, one jumping right and the other jumping left. Or equivalently, at 
each jump our Universe splits into two parallel universes, in one of which the frog 
jumps right and in the other left. After n jumps we will see then an army of 2n frogs, and 
we can just count how many frogs are squatting on each stone and divide by the total 
number of frogs, to quantify likelihood.  

The Monty Hall Problem: A metaphoric random walk approach. The main prize – a car 
– is hidden behind one of 3 doors, while behind the other 2 doors there is a goat. All 
doors are closed at the beginning. The candidate chooses one. The moderator opens 
another door and reveals a goat; she then offers to the candidate the option to change his 
initial choice. Should he change or not? (Borovcnik, 2012).  
One friendly way to figure out this problem is to metaphorise it as a simple random 
walk, as in Figure 1. We leave room for this sort of metaphorisation to emerge among 
the students. Most of the time it does. To figure out this random walk, a Borgian (or 
pedestrian) metaphor may arise, which sees 3 walkers choosing a target door (node), of 
which only one (the red one) hides the prize. When they reach the blue node, halfway to 
their target, a (Poe-ian) raven points out to each of them that the prize is not hidden at 
one of the two other nodes and allows them to change their target node if they want. 
Then the blue arrows indicate the path of the walkers who did not change their target 
choice and the red arrows indicate the path of their Doppelgängers who did change their 
minds. We see that only 1 out of the 3 stubborn walkers won the prize, against 2 out of 
the 3 flexible ones who changed their strategy! 

  

 

 

 

Figure 1. The Monty Hall problem as a random walk. 

Random walks occur in some universe, typically a graph in our context, which is often a 
tree. In the next section we turn to trees and their relation with Bayesian problems.  

5. Are we missing the Bayesian wood for the trees? 

Trees are ubiquitous nowadays in the teaching of probability (Batanero & Borovcnik, 
2016; Batanero & Chernoff, 2018; Dupuis & Rousset-Bert, 1996; Parzysz, 2011). They 
even appear explicitly in the curricula of several countries, before the introduction of 
probability, as a way to solve combinatorics problems, as possibility trees or decision 
trees. As probability trees, they are quite helpful in visualizing and calculating, when 
tackling problems involving randomness. They have been used to describe and to solve 
Bayesian problems and their usefulness has been compared with other resources, like 
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contingency tables, nested sets or unit square representations, besides iconic 
representations (Böcherer-Linder et al., 2018; Borovcnik, 2012; Brasse, 2009; Dupuis & 
Rousset-Bert, 1996; Parzysz, 2011).  

On our side, we claim that trees may lead you to miss the wood, especially the 
“Bayesian wood”. Indeed, trees as such have no loops, there is just one road leading to 
Rome (a given node of interest to us) in a tree. On the contrary, a characteristic trait of 
Bayesian problems, suitably metaphorised, is that we have two or more roads leading to 
Rome. Then the famous Bayesian question on the “probabilities of the causes” boils 
down to asking: among all random travelers getting to Rome, how many came through 
this road or that one?  

So trees may turn out to be rather awkward as a model for a Bayesian “phase space”: in 
fact students end up attaching the same label to different nodes, so that they are in fact 
working on a quotient space (a “shadow space”) of the tree, obtained by identifying or 
merging some nodes. From this viewpoint, more general graphs containing closed 
circuits, i. e. allowing several paths to connect nodes, typically grids, lattices or 
networks, constitute a more natural phase space for Bayesian systems than trees. In this 
sense, relying just on trees, especially probability trees, but also natural frequency trees 
(Gigerenzer et al., 2007; Hoffrage et al. 2015), tends to hide the Bayesian character of 
the situation, so that we may “miss the Bayesian wood for the trees”. We illustrate this 
point through a paradigmatic example (Rayen’s fall) below.  

Moreover, in our view, a neglected aspect in this respect is that what is usually most 
important is not the graphs themselves (either trees or grids), but random walks on them 
(Diaz-Rojas & Soto Andrade, 2015; Soto-Andrade et al., 2018), which provide a crucial 
dynamical aspect to the visualisation of Bayesian problems.  

This meets some of the criticisms in Böcherer-Linder et al. (2018) on the visualisation 
in terms of trees, who point out as a drawback, that in false positive problems “due to 
the hierarchical structure of the tree diagram the set of all people tested positive is 
separated into two distinct parts”. Indeed, if we focus on the corresponding random 
walk on the associated grid (see Fig. 2 below, for the analogous case of Rayen’s fall) we 
see two groups of walkers, coming through different gates (“carrier” and “non-carrier”) 
but converging to Rome (“positive test”). Also, the dynamics of the random walk shows 
clearly why the probability of finding a carrier among those patients with a positive test 
may be surprisingly low. Böcherer-Linder et al. (2018) also point out that the branching 
tree visualisation cannot represent discrete and countable objects in a Bayesian context. 
The pedestrian metaphor for the corresponding random walk on the associated grid 
however does represent those objects, as the pedestrians enacting the random walk! 

Indeed, Bayesian thinking seems to be a difficult endeavour for most learners and users 
of probability (Brighton & Gigerenzer, 2008; Gigerenzer, 2011, Gigerenzer & Hoffrage, 
2007). Kahneman and Tversky (1972, p. 450) even arrived at the conclusion that “man 
is apparently not a conservative Bayesian: he is not Bayesian at all” and Gould (1992, p. 
469) added “our minds are not built (for whatever reason) to work by the rules of 
probability".  

Our theoretical perspective however, suggests that learners may handle probabilistic – 
particularly Bayesian - situations first by metaphorising them as random walks, on some 
suitable graph, no necessarily a tree, and then, to figure out the random walk, with a 
metaphorical sleight of hand, turning the random process into a deterministic one, 
typically with the help of a hydraulic or a pedestrian metaphor.  
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In the case of a simple Bayesian problem, involving two contradictory hypotheses (such 
as being or not a virus carrier) and a single cue (such as a screening test) with two cue 
values (a positive or negative result), in the terminology of Hoffrage et al. (2015 ), our 
approach leads to a 2-step random walk (see example 6.2 below), which in turn may be 
metaphorised in various way, to be dealt with as a deterministic process.  

6. An illustrative example 

6.1. Experimental background.  

We have tested our metaphoric approach to Bayesian problems with first year 
humanistically oriented university students at the University of Chile, who intend to 
major in psychology, sociology, anthropology or law. They have an average total score 
of 700 points and a maths score of 650 points approximately in our national 
standardised test (whose national mean is 500 points, with a standard deviation of 110), 
while a minimum score of 600 points is required to be admitted to the University of 
Chile. They come mostly from above average schools, where they have however been 
systematically “taught to the test” in maths: intensive multiple-choice questions drill 
with no understanding. A small minority of these students is good at learning formulas 
by heart and applying them following typical routines.  

6.2. Example: Rayen’s fall 

We have posed the following Bayesian problem to several cohorts of our humanistically 
oriented students:  

Rayen lives in the south of Chile and rides her bike along a windy and steep downhill road to 
school every weekday in winter, when it rains estimatedly 2 days out of 5. On wet road she 
falls from her bike 1 out of 4 times, on dry road, only 1 out of 9, on the average. If you 
learned that Rayen fell from her bike today, how likely is that this was a rainy day?  

When our students first addressed this Bayesian problem in a test, most of them drew 
the usual 2-step binary tree to visualise it and their most common error (approx. 2/3 of 
the class) was to mistake the probability of rain given that Rayen fell, with the 
probability that it rains and Rayen falls. So, they got an absurd answer: 1/4 of 2/5 = 1/10 
as the estimated probability of rain in case you know that Rayen fell, which is smaller 
than the probability of rain with no information whatsoever on Rayen’s biking! 
Curiously enough they made the same mistake in a false positive problem (obtaining 
that the requested probability is far smaller than the prevalence of the virus!), more 
often than the typical error reported by Gigerenzer and collaborators (Gigerenzer, 2011; 
Gigerenzer & Hoffrage, 2007; Hoffrage et al., 2015; Zhu & Gigerenzer, 2006), which is 
to mix up forward and backward conditional probabilities.  

At the next test, after some sessions of significant group work on random walks and 
Bayesian problems, where some students proposed spontaneously to merge the Fall 
nodes of the tree, roughly 85 % of students got the right answer, and the remaining 15 
% still made the previous mistake. Roughly half of the students who answered correctly 
drew in fact a grid as in Figure 2 below, most of them as a hydraulic grid rather than as 
a pedestrian grid, which we had thought to be friendlier for them.  

We see that that representing Bayesian problems by probability trees, or better, by 
natural frequency trees, in the sense of Gigerenzer (Gigerenzer & Hoffrage, 2007; 
Hoffrage et al., 2015), does not prevent students to make the described mistakes and 
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that Bayesian reasoning (or thinking) becomes more natural and transparent when they 
explicitly metaphorize the Bayesian “backward question” as a question on concurring 
paths on a network or grid, metaphorizing the involved random walks in a pedestrian 
way, and so converging with the friendly natural frequencies approach of Gigerenzer 
and collaborators (Gigerenzer & Hoffrage, 2007; Hoffrage et al., 2015; Zhu & 
Gigerenzer, 2006). In this way simple Bayesian problems can be solved even mentally, 
and more complex ones with just the help of some graph drawing (Hoffrage et al., 
2015). 

Figure 2 shows renderings of a hydraulic solution and a pedestrian resolution of this 
Bayesian problem by the students. In fact, students might refer indifferently to 30 days 
or to 30 pedestrians in this case, noticing that the problem boils down to count how 
many of the five walkers arriving at destination “Fall” came through the “Rain” gate! 

 

 

 

 

 

 

Figure 2. Rayen’s fall: hydraulic and pedestrian grid approach. 

From our viewpoint, we foresee that non-mathematically inclined students could be at 
least as efficient in solving this type of Bayesian problems as mathematically trained 
students, if they take advantage of such a friendly and intuitive metaphoric random walk 
on grids approach.  

Moreover, our example also opens up the way to realise that a “Bayesian flow” 
naturally arises in this context, which we obtain when we look at all involved 
conditional probabilities in the Bayesian situation. See Figure 3 below, drawn by 
students when trying to visualise the merging of the Fall nodes and the Not Fall nodes 
of the initial possibility tree. A flow appears here, which is stationary: notice for 
instance that 1/4 of 2/5 = 3/5 of 1/6 = 1/10 = probability that it rains and Rayen falls = 
probability that Rayen falls and it rains. And so on. So cancelling flows between two 
adjacent nodes are just the intersection probabilities of those nodes!  

 

 

 

 

  

 

Figure 3. Bayesian flows for Rayen 

We claim here that often a network or a grid is a friendlier graph than a tree. Indeed, 
trying to draw a more symmetrical graph, students realise that the big picture in a 
Bayesian question is a Bayesian flow on a graph, which can be read and interpreted in 
sundry ways.  
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7. Discussion and open questions 

We have discussed the intertwining of three main ideas. First, Bayesian problems can be 
metaphorised in a friendly way as random walks. This allows learners to dispense of 
Bayes’ awesome formula (that many learn by rote in the traditional teaching of 
probability) and solve concrete Bayesian problems just looking at the germane graph, 
even mentally. Second, we have seen that the natural stage for Bayesian problems (seen 
as random walks) is given by networks and grids rather than trees, because of the “ 
several roads leading to the same node” character of those problems. Third, the 
aforementioned random walks can be studied and solved with the help or hydraulic or 
pedestrian metaphors, the latter being friendlier for most learners. Here we converge 
with the natural frequencies rendering of Bayesian problems promoted by Gigegerenzer 
and collaborators these last decades (Gigerenzer, 2011; Gigerenzer & Hoffrage, 2007; 
Hoffrage et al., 2015; Weber et al., 2018; Zhu & Gigerenzer, 2006). 

Nevertheless, we have observed than among our humanistically-oriented students at the 
university, there is an unexpected majority which declares to prefer hydraulic metaphors 
to pedestrian ones, because they find them “conceptually more orderly and transparent”, 
especially when infinite processes are involved. This in spite of the fact that they are not 
so skilled in manipulating fractions. 

We noticed that if - with a more systemic approach - we figure out all involved 
conditional probabilities in our Bayesian problem, we see a stationary “Bayesian flow” 
emerge, which could also be fathomed as two cancelling flows going in opposite 
directions. This could be a sensible metaphor for correlational cases in which a causal 
relationship is unclear, contrary to the case of Rayen´s fall where we tend to say that 
Rayen falls because of the rain, but not that it rains because Rayen falls, although each 
event “increases” the estimate probability of the other (from 2/5 to 3/5 and from 1/6 to 
1/4).  

On the other hand, with respect to cognitive rigidity related to Bayesian problems, as 
reported by Weber et al. (2018), who noticed that a majority of students, when tackling 
a Bayesian problem couched in natural frequencies, still preferred to switch back to 
(mostly decimal) probabilities, we observed the following. Our humanistically oriented 
students, although most of them developed stiff cognitive joints at secondary school, 
after a few sessions of metaphorising, became more flexible, and were able to 
seamlessly move from hydraulic to pedestrian metaphors, and backwards. Particularly, 
they were able to choose autonomously the number of pedestrians they should unleash, 
when given the relevant data in fraction or decimal form (cf. Engel, 1975). This needs 
some exercising though, to overcome the weight of the prevailing didactical contract 
(Brousseau, 1998) at the secondary school, or their previous structural coupling with 
mathematics (Proulx &. Maheux, 2017; Varela et al., 1991) which does not allow for 
metaphorizing or the like.  

As an open end, we could point out that in a more enactivistic approach (Proulx & 
Maheux, 2017; Reid & Mgomgelo, 2015; Soto-Andrade, 2018; Varela, 1987; Varela et 
al., 1991), Bayesian problems, like Rayen’s Fall or false positive problems, could be 
posed just as “situational seeds”, with no questions being asked by the teacher, so as to 
leave room for them to emerge from the learners, who would in fact co-construct the 
problem (loc. cit.). We may expect that in this case the question about the likelihood of 
a rainy day each time Rayen falls would not spark as quickly as the urgent question of a 
patient who got a positive reading in a screening test. This suggests that the context of 
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(mathematically equivalent) Bayesian problems (or flows) plays a determining role in 
the way that learners may interact or couple with them, although students may easily 
recognise the equivalence of different Bayesian problems which can be metaphorised by 
the “same” random walk. These didactic phenomena would deserve further (theoretical 
and experimental) research. 
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