Guía de Ejercicios y tarea 1. Álgebra II, segundo semestre 2018

Entregue resueltos los 4 ejercicios marcados con * el miércoles 8 de agosto.

- 1. Determine los elementos primitivos de \mathbb{F}_7 .
- 2. * Determine los elementos primitivos de $\mathbb{F}_{49} = \mathbb{F}_7[i]$ y sus polinomios minimales en $\mathbb{F}_7[x]$. (Acá i denota una raíz de $x^2 + 1 \in \mathbb{F}_7[x]$)
- 3. Suponga que $\operatorname{car}(F) = p \neq 0$. Demuestre que el morfismo de Frobenius $x \mapsto x^p$ es un automorfismo de cuerpos de F. Si pensamos en F como \mathbb{F}_p -espacio vectorial, ¿es \mathbb{F}_p -lineal este morfismo?
- 4. Si F es un cuerpo de característica p > 0 y $\alpha \in F$ ¿cuántas soluciones puede tener (en alguna extensión de F) la ecuación $x^p = \alpha$? ¿Y la ecuación $x^{p^k} = \alpha$ con $k \in \mathbb{N}$?
- 5. Si \mathbb{F} es un cuerpo finito de característica p y $\alpha \in \mathbb{F}$, ¿puede $X^p \alpha$ ser irreducible en $\mathbb{F}[X]$?
- 6. Sea $n \in \mathbb{N}$, sea \mathbb{F}_p el cuerpo finito de p elementos con p primo, y sea L un cuerpo de descomposición del polinomio $G(X) := X^{p^n} X \in \mathbb{F}_p[X]$.
 - a) Demuestre que G(X) es un polinomio separable, pero NO irreducible en $\mathbb{F}_p[X]$.
 - b) Demuestre que el conjunto de las raíces de G es un subcuerpo de L.
 - c) Demuestre que L es igual al conjunto de raíces de G.
 - d) Demuestre que $[L:\mathbb{F}_p]=n$.
 - e) Demuestre que toda extensión de K/\mathbb{F}_p de grado n es isomorfa a L.
- 7. Sea \mathbb{F}_q el cuerpo finito de q elementos, de modo que $q=p^n$ para algún primo p y algún $n \in \mathbb{N}$. ¿Cuando se cumple que hay una inyección $\mathbb{F}_q \to \mathbb{F}_{q'}$?
- 8. * Sea p primo y $a \neq 0 \in \mathbb{F}_p$. Demuestre que $g = x^p x + a$ es irreducible y separable sobre \mathbb{F}_p . Determine el cuerpo de descomposición de g sobre \mathbb{F}_p . Muestre explícitamente que su grupo de automorfismos es cíclico. ($\alpha \mapsto \alpha + 1$ define un automorfismo)
- 9. Calcule el grupo de automorfismos del cuerpo \mathbb{F}_q .
- 10. Demuestre que $x^{p^n} x + 1$ es irreducible sobre \mathbb{F}_p solo si n = 1 o n = p = 2. Ayuda: Si α es una raíz, entonces $\alpha + a$ también es raíz para todo $a \in \mathbb{F}_{p^n}$. Muestre que esto implica que $\mathbb{F}_p(\alpha)$ contiene \mathbb{F}_{p^n} y $[\mathbb{F}_p(\alpha) : \mathbb{F}_{p^n}] = p$.

- 11. ¿Cuántos factores irreducibles sobre $\mathbb{F}_3[X]$ tiene el polinomio $X^{27}-X$?
- 12. Un cuerpo de característica p se dice perfecto si la función $\alpha \mapsto \alpha^p$ es sobreyectiva.
 - a) Demuestre que todo cuerpo finito es perfecto.
 - b) Demuestre que Si F es un cuerpo cualquiera de característica p, entonces F(x) no es perfecto.
- 13. Sea $F = \mathbb{F}_p(T)$ el cuerpo de funciones racionales sobre un cuerpo primo finito y sea K/F el cuerpo de descomposición del polinomio $X^p T$. Demuestre que [K:F] = p y que hay un único F-automorfismo del cuerpo K.
- 14. Sea $f \in \mathbb{F}_q[x]$ un polinomio irreducible de grado k. Demuestre que f divide a $x^{q^n} x$ si y solo si k divide a n.
- 15. Demuestre que

$$\sum_{a \in F_q} a^t = \begin{cases} 0 & \text{si } 1 \le t \le q - 2\\ -1 & \text{si } t = q - 1 \end{cases}$$

- 16. Demuestre que $X^3 2X 2$ es irreducible sobre \mathbb{Q} . Si θ es una raíz de este polinomio, calcule $(1 + \theta)(1 + \theta + \theta^2)$ y $\frac{1+\theta}{1+\theta+\theta^2}$ en $\mathbb{Q}(\theta)$.
- 17. * Encuentre los valores de $a \in \mathbb{Z}$ tales que $X^5 aX 1$ sea irreducible en $\mathbb{Z}[X]$.
- 18. Sea K/F una extensión de cuerpos. Si $u \in K$ es un elemento algebraico de grado impar sobre F, entonces u^2 también lo es y $F[u] = F[u^2]$.
- 19. En el cuerpo de funciones racionales F(X), sea $u = \frac{X^3}{X+1}$. Demuestre que F(X) es una extensión simple de F(u). Calcule [F(X):F(u)].
- 20. * Sea K/F una extensión de cuerpos, sean L/F y M/F subextensiones finitas de K/F (es decir, $F \subset L \subset K$, $F \subset M \subset K$, $[L:F] < \infty$, $[M:F] < \infty$). Sea LM el compósito de L y M dentro de K (es decir, el mínimo subcuerpo de K que contiene a L y a M).
 - a) Demuestre que $[LM:F] < \infty$, y que [L:F] | [LM:F].
 - b) Demuestre que [LM:F]=[L:F][M:F] implica $L\cap M=F$.
 - c) Demuestre que el recíproco se verifica cuando [L:F]=2 o [M:F]=2.
 - d) Dé un ejemplo de extensiones F, L, M, K tal que [L:F] = [M:F] = 3, [LM:F] < 9, $L \cap M = F$.
- 21. Sea $f(x) \in F[x]$ un polinomio irreducible de grado p y sea $E \supseteq F$ con |E|: $F| < \infty$. Si f(x) no es irreducible en E[x], demuestre que $p \mid |E|$: F|. Ayuda: Considere un cuerpo $L \supseteq E$ en el que f tenga una raíz.

Guía de Ejercicios y tarea 2. Álgebra II, segundo semestre 2018

Entregar los 4 ejercicios marcados el lunes 27 de agosto.

1. Determine el cuerpo de descomposición y su grado sobre $\mathbb Q$ para cada uno de los polinomios siguientes:

a) $x^4 - 2$

b) $x^4 + 2$

c) $x^4 + x^2 + 1$

- 2. * Sea K una extensión finita de F. Demuestre que K es un cuerpo de descomposición sobre F si y solo si todo polinomio irreducible en F[x] que tiene una raíz en K se descompone completamente en K[x].
- 3. * Sean K_1, K_2 extensiones finitas de F contenidas en K y suponga que ambas son cuerpos de descomposición sobre F. Demuestre que el composito K_1K_2 y la intersección $K_1 \cap K_2$ son cuerpos de descomposición sobre F.
- 4. Sea $\overline{\mathbb{Q}} \subset \mathbb{C}$ la clausura algebraica de \mathbb{Q} en \mathbb{C} .
 - a) Demuestre que $\overline{\mathbb{Q}}$ es denumerable.
 - b) Demuestre que $\overline{\mathbb{Q}}/\mathbb{Q}$ es una extensión algebraica infinita.
 - c) Sea $\alpha \in \overline{\mathbb{Q}} \cap \mathbb{R}$ y $n = [\mathbb{Q}(\alpha) : \mathbb{Q}]$. Demuestre que el conjunto de racionales p/q (con $p, q \in \mathbb{Z}$) tales que $|\alpha p/q| < 1/q^{n+1}$ es finito (o vacío). Concluya (como Liouville alrededor de 1829) que $\sum_{j=0}^{\infty} 10^{-j!}$ es un número real no algebraico.

SUGERENCIA. Sea $P(X) \in \mathbb{Z}(X)$ de grado n y tal que $P(\alpha) = 0$. Considere $|P(p/q)| = |P(p/q) - P(\alpha)|$ y piense en el teorema del valor medio.

- 5. Sea F, un cuerpo y $g(x) \in F[x]$. Demuestre D(g(x)) es el polinomio nulo ssi g(x) es constante, o F es de característica p y $g(x) = f(x^p)$, con $f(x) \in F[x]$.
- 6. Demuestre que el único automorfismo del cuerpo $\mathbb R$ es la identidad.
- 7. Demuestre que la clausura algebraica $\overline{\mathbb{Q}}$ tiene infinitos automorfismos. Más aún, demuestre que el grupo de automorfismos (de cuerpo) de $\overline{\mathbb{Q}}$ no es denumerable.
- 8. Sea f(x) un polinomio irreducible en F[x] de grado n y sea $g(x) \in F[x]$. Muestre que todo factor irreducible de f(g(x)) tiene grado divisible por n.
- 9. Sea $K \subset L$ cuerpos y $a \in L$. Pruebe que a es algebraico sobre K si y solamente si existe un K-espacio vectorial de dimensión finita $V \subset L$ tal que $aV \subset V$.
- 10. Sea w una raiz cúbica y no trivial de la unidad. Sea $L = \mathbb{Q}(w, \sqrt[3]{2})$ y $K = \mathbb{Q}(w\sqrt[3]{2})$. Pruebe que [L:K] = 2, pero $[L \cap \mathbb{R}: K \cap \mathbb{R}] = 3$.

- 11. Demuestre que el cuerpo de descomposicón de $x^4 + 2$ sobre \mathbb{F}_5 es una extensión de grado 2 de \mathbb{F}_5 .
- 12. * Suponga que K es un cuerpo de característica p que no es perfecto. Pruebe que existe un polinomio irreducible e inseparable sobre K. Concluya que existe una extensión inseparable de K.
- 13. Sea F un cuerpo de característica p y F/K una extensión finita tal que $p \nmid [F:K]$. Pruebe que F/K es una extensión separable.
- 14. Sea F un cuerpo de característica p y $\alpha \in \overline{F}$ un elemento separable. Muestre que $F(\alpha) = F(\alpha^{p^i})$, para todo $i \in \mathbb{N}$.
- 15. Sea K/F una extensión separable con la propiedad que existe $n \in \mathbb{N}$ tal que $[F(\alpha):F] \leq n$, para todo $\alpha \in K$. Muestre que K/F es finita y que $[K:F] \leq n$.
- 16. Sea K el cuerpo de descomposión del polinomio $p(x)=(x^2-2)(x^4+x^2+2)$ en \mathbb{F}_5 . Encuentre un elemento primitivo para la extensión K/\mathbb{F}_5 .
- 17. Encuentre todos los polinomios irreducibles de grado 1, 2 y 4 sobre $\mathbb{F}_2[x]$ y pruebe que su producto es $x^{16} x$.
- 18. Sea $\mathbb{F}_{p^n} = \{\alpha_1, \dots, \alpha_{p^n}\}$ la extensión de grado n de \mathbb{F}_p . Pruebe que $x^{p^n} x = (x \alpha_1) \cdots (x \alpha_{p^n})$.
- 19. Sea \mathbb{F}_{p^n} la extensión de grado n de \mathbb{F}_p . Pruebe que en \mathbb{F}_{p^n} hay $\frac{p^n+1}{2}$ cuadrados.
- 20. * Demuestre que en un cuerpo finito todo elemento es suma de dos cuadrados.
- 21. Sea $\phi : \mathbb{F}_{p^n} \to \mathbb{F}_{p^n}$ el homomorfismo de Frobenius. Pruebe que $\phi^n = \mathrm{id}$ y que $\phi^s \neq \mathrm{id}$, para 0 < s < n.
- 22. Sea L/F una extensión algebraica y sea $\theta:L\to L$ un F-homomorfismo de cuerpos. Demuestre que θ es sobreyectivo. Ayuda: Un polinomio $f\in F[x]$ debe tener tantas raíces en $\theta(L)$ como tiene en L.