Curso: Ecuaciones Diferenciales Profesor: Marius Mantoiu

Ayudantes: Fabián Hidalgo, Sebastián Rivera

Universidad de Chile Facultad de Ciencias Departamento de Matemáticas

Ayudantía 12

Martes 11 de Diciembre del 2018

- 1. Sea $T:A\subseteq\mathbb{R}\to\mathbb{R}$ una función contractiva. ¿Será cierto que 2T también es contractiva?, ¿y Lipschitziana?.
- 2. Pruebe que la función $f: \mathbb{R}^3 \to \mathbb{R}^3$ definida por

$$f(x, y, z) = \begin{bmatrix} -2y + z + 2 \\ -x - z + 6 \\ -x + y - z + 5 \end{bmatrix}$$

tiene un único punto fijo, y determínelo.

3. Considere el problema de valores iniciales

$$y_1' = y_2^2 + 1,$$
 $y_2' = y_1^2,$ $y_1(0) = 0,$ $y_2(0) = 0.$

- (a) Reescriba este problema como un sistema $\vec{y}' = \vec{f}(t, \vec{y}), \quad \vec{y}(0) = \vec{y}_0$.
- (b) Muestre que la función \vec{f} encontrada satisface las hipótesis del teorema de existencia local. Calcule una cota M y una constante de Lipschitz K para \vec{f} , y un radio de convergencia α para las aproximaciones sucesivas de \vec{f} .
- (c) Calcule las primeras tres aproximaciones sucesivas $\vec{\varphi}_0, \vec{\varphi}_1, \vec{\varphi}_2$
- 4. Considere el sistema

$$y'_1 = 3y_1 + ty_3,$$
 $y'_2 = y_2 + t^3y_3$ $y'_3 = 2ty_1 - y_2 + e^ty_3$

Muestre que todo problema de valor inicial para este sistema tiene una solución única que existe para todo $t \in \mathbb{R}$.

5. Use el método de las aproximaciones sucesivas para resolver la ecuación diferencial

$$y'' - 2y' + y = 0$$

1

con
$$y(0) = 0$$
 e $y'(0) = 1$

Problemas Propuestos 12

1. Sean $A, B, C, D \in \mathbb{R}$ y sea $f : \mathbb{R} \setminus \{-D/C\} \to \mathbb{R}$ definida por

$$f(x) = \frac{Ax + B}{Cx + D}$$

Determine (si existen) condiciones sobre las constantes A, B, C y D para que

- a) f no tenga puntos fijos.
- b) f tenga un único punto fijo.
- c) f tenga dos puntos fijos.
- d) f tenga más de dos puntos fijos.
- 2. Encuentre los puntos fijos del problema anterior (para cada caso).
- 3. Encuentre los puntos fijos de la función $f: \mathbb{R}^3 \to \mathbb{R}^3$ definida por

$$f(x, y, z) = \begin{bmatrix} 2x + 3y - 4z \\ 6x - 3y - 2z \\ -x + 3y - z \end{bmatrix}$$

- 4. Sea $f_n:[0,1]\to\mathbb{R}$ una sucesión de funciones que converge puntualmente a una función $f:[0,1]\to\mathbb{R}$. Si para todo $n\in\mathbb{N}$ se tiene que f_n es Lipschitziana de constante L_n , ¿será cierto que f es Lipschitziana?
- 5. Encuentre una sucesión de funciones contractivas $f_n:[0,1]\to\mathbb{R}$ que converja puntualmente a una función $f:[0,1]\to\mathbb{R}$ no contractiva.
- 6. Considere los sistemas

$$y'_1 = y_1 + \epsilon y_2,$$
 $y'_2 = \epsilon y_1 + y_2$
 $y'_1 = y_1,$ $y'_2 = y_2$

donde ϵ es una constante positiva.

- (a) Muestre que todo problema de valor inicial para estas ecuaciones tiene soluciones definidas en todo $t \in \mathbb{R}$.
- (b) Encuentre las soluciones $\vec{\varphi}$ y $\vec{\psi}$ del primer y segundo sistema respectivamente, con las condiciones iniciales $\vec{\varphi}(0) = \vec{\psi}(0) = (1, -1)$

2

(c) Pruebe que

$$||\vec{\varphi}(t) - \vec{\psi}(t)|| \to 0, \qquad (\epsilon \to 0)$$