ESTRUCTURAS ALGEBRAICAS, TAREA 4.

PROF: LUIS ARENAS

- (1) Sea K un cuerpo de característica distinta de 2 y sea $L \supseteq K$ una extensión tal que [L:K]=2. Probar que existe un elemento $\alpha \in K$ tal que $L=K(\sqrt{\alpha})$.
- (2) Sea $K = \mathbb{Q}(\beta)$, donde β es una raiz de $x^2 3x + 1$.
 - (a) Encuentre números racionales a y b tales que $a + b\beta$ es el inverso multiplicativo de $3 + 5\beta$.
 - (b) Encuentre el polinomio minimal sobre \mathbb{Q} de $3+5\beta$.
- (3) Sea $K = \mathbb{Q}\left(\sqrt{1+\sqrt{2}}\right)$ y $F = \mathbb{Q}\left(\sqrt{3+2\sqrt{2}}\right)$. Calcule los grados $[K:\mathbb{Q}]$ y $[F:\mathbb{Q}]$.
- (4) Calcule cuantos polinomios irreducibles de grado 30 hay en $\mathbb{F}_2[x]$.
- (5) Encuentre los grados de los factores irreducibles de $x^{30} 1$ en $\mathbb{F}_2[x]$.
- (6) Encuentre los grados de los factores irreducibles de $x^{91} 1$ en $\mathbb{F}_2[x]$ (Sugerencia: Encuentre n tal que \mathbb{F}_{2^n} contiene a todas las raices).

Date: Fecha de entrega:3 de Diciembre de 2018.