Guía de Ejercicios y tarea 1. Cuerpos y Álgebras, segundo semestre 2018

Entregue resueltos los 2 ejercicios marcados con * el jueves 4 de octubre.

- 1. Encuentre el polinomio minimal de $\sqrt{2} + \sqrt[3]{2}$ en $\mathbb{Q}[x]$.
- 2. *Determine los elementos primitivos de \mathbb{F}_{19} .
- 3. Determine los elementos primitivos de $\mathbb{F}_{49} = \mathbb{F}_7[i]$ y sus polinomios minimales en $\mathbb{F}_7[x]$. (Acá i denota una raíz de $x^2 + 1 \in \mathbb{F}_7[x]$)
- 4. Suponga que $\operatorname{car}(F) = p \neq 0$. Demuestre que el morfismo de Frobenius $x \mapsto x^p$ es un automorfismo de cuerpos de F. Si pensamos en F como \mathbb{F}_p -espacio vectorial, ¿es \mathbb{F}_p -lineal este morfismo?
- 5. Si F es un cuerpo de característica p > 0 y $\alpha \in F$ ¿cuántas soluciones diferentes puede tener (en alguna extensión de F) la ecuación $x^p = \alpha$? ¿Y la ecuación $x^{p^k} = \alpha$ con $k \in \mathbb{N}$?
- 6. Si \mathbb{F} es un cuerpo finito de característica p y $\alpha \in \mathbb{F}$, ¿puede $X^p \alpha$ ser irreducible en $\mathbb{F}[X]$?
- 7. * Sea $n \in \mathbb{N}$, sea \mathbb{F}_p el cuerpo finito de p elementos con p primo, y sea L un cuerpo de descomposición del polinomio $G(X) := X^{p^n} X \in \mathbb{F}_p[X]$.
 - a) Demuestre que G(X) es un polinomio separable, pero NO irreducible en $\mathbb{F}_p[X]$.
 - b) Demuestre que el conjunto de las raíces de G es un subcuerpo de L.
 - c) Demuestre que L es igual al conjunto de raíces de G.
 - d) Demuestre que $[L:\mathbb{F}_p]=n$.
 - e) Demuestre que toda extensión de K/\mathbb{F}_p de grado n es isomorfa a L.
- 8. Sea \mathbb{F}_q el cuerpo finito de q elementos, de modo que $q=p^n$ para algún primo p y algún $n \in \mathbb{N}$. ¿Cuando se cumple que hay una inyección $\mathbb{F}_q \to \mathbb{F}_{q'}$?
- 9. Sea p primo y $a \neq 0 \in \mathbb{F}_p$. Demuestre que $g = x^p x + a$ es irreducible y separable sobre \mathbb{F}_p . Determine el cuerpo de descomposición de g sobre \mathbb{F}_p . Muestre explícitamente que su grupo de automorfismos es cíclico. ($\alpha \mapsto \alpha + 1$ define un automorfismo)
- 10. Calcule el grupo de automorfismos del cuerpo \mathbb{F}_q .

Guía de Ejercicios y tarea 2. Cuerpos y Álgebras, segundo semestre 2018

Entregar los 3 ejercicios marcados el jueves 18 de octubre.

- 1. Demuestre que $x^{p^n} x + 1$ es irreducible sobre \mathbb{F}_p solo si n = 1 o n = p = 2. Ayuda: Si α es una raíz, entonces $\alpha + a$ también es raíz para todo $a \in \mathbb{F}_{p^n}$. Muestre que esto implica que $\mathbb{F}_p(\alpha)$ contiene \mathbb{F}_{p^n} y $[\mathbb{F}_p(\alpha) : \mathbb{F}_{p^n}] = p$.
- 2. ¿Cuántos factores irreducibles sobre $\mathbb{F}_3[X]$ tiene el polinomio $X^{27} X$?
- 3. Un cuerpo de característica p se dice perfecto si la función $\alpha \mapsto \alpha^p$ es sobreyectiva.
 - a) Demuestre que todo cuerpo finito es perfecto.
 - b) Demuestre que Si F es un cuerpo cualquiera de característica p, entonces F(x) no es perfecto.
- 4. Sea $F = \mathbb{F}_p(T)$ el cuerpo de funciones racionales sobre un cuerpo primo finito y sea K/F el cuerpo de descomposición del polinomio $X^p T$. Demuestre que [K : F] = p y que hay un único F-automorfismo del cuerpo K.
- 5. Sea $f \in \mathbb{F}_q[x]$ un polinomio irreducible de grado k. Demuestre que f divide a $x^{q^n} x$ si y solo si k divide a n.
- 6. Demuestre que

$$\sum_{a \in F_q} a^t = \begin{cases} 0 & \text{si } 1 \le t \le q - 2 \\ -1 & \text{si } t = q - 1 \end{cases}$$

- 7. Demuestre que $X^3 2X 2$ es irreducible sobre \mathbb{Q} . Si θ es una raíz de este polinomio, calcule $(1 + \theta)(1 + \theta + \theta^2)$ y $\frac{1+\theta}{1+\theta+\theta^2}$ en $\mathbb{Q}(\theta)$.
- 8. Sea K/F una extensión de cuerpos. Si $u \in K$ es un elemento algebraico de grado impar sobre F, entonces u^2 también lo es y $F[u] = F[u^2]$.
- 9. * En el cuerpo de funciones racionales F(X), sea $u = \frac{X^3}{X+1}$. Demuestre que F(X) es una extensión simple de F(u). Calcule [F(X):F(u)].
- 10. Determine el cuerpo de descomposición y su grado sobre Q para cada uno de los polinomios siguientes:

a)
$$x^4 - 2$$
 b) $x^4 + 2$ c) $x^4 + x^2 + 1$

11. Sea $f(x) \in F[x]$ un polinomio irreducible de grado p y sea $E \supseteq F$ con |E|: $F| < \infty$. Si f(x) no es irreducible en E[x], demuestre que $p \mid |E|$: F|. Ayuda: Considere un cuerpo $L \supseteq E$ en el que f tenga una raíz.

- 12. Sea K una extensión finita de F. Demuestre que K es un cuerpo de descomposición sobre F si y solo si todo polinomio irreducible en F[x] que tiene una raíz en K se descompone completamente en K[x].
- 13. * Sean K_1, K_2 extensiones finitas de F contenidas en K y suponga que ambas son cuerpos de descomposición sobre F. Demuestre que el composito K_1K_2 y la intersección $K_1 \cap K_2$ son cuerpos de descomposición sobre F.
- 14. * Sea $\overline{\mathbb{Q}} \subset \mathbb{C}$ la clausura algebraica de \mathbb{Q} en \mathbb{C} .
 - a) Demuestre que $\overline{\mathbb{Q}}$ es denumerable.
 - b) Demuestre que $\overline{\mathbb{Q}}/\mathbb{Q}$ es una extensión algebraica infinita.
 - c) Sea $\alpha \in \overline{\mathbb{Q}} \cap \mathbb{R}$ y $n = [\mathbb{Q}(\alpha) : \mathbb{Q}]$. Demuestre que el conjunto de racionales p/q (con $p,q \in \mathbb{Z}$) tales que $|\alpha p/q| < 1/q^{n+1}$ es finito (o vacío). Concluya (como Liouville alrededor de 1829) que $\sum_{j=0}^{\infty} 10^{-j!}$ es un número real no algebraico.
 - SUGERENCIA. Sea $P(X) \in \mathbb{Z}(X)$ de grado n y tal que $P(\alpha) = 0$. Considere $|P(p/q)| = |P(p/q) P(\alpha)|$ y piense en el teorema del valor medio.
- 15. Sea F, un cuerpo y $g(x) \in F[x]$. Demuestre D(g(x)) es el polinomio nulo ssi g(x) es constante, o F es de característica p y $g(x) = f(x^p)$, con $f(x) \in F[x]$.
- 16. Demuestre que el único automorfismo del cuerpo \mathbb{R} es la identidad.
- 17. Demuestre que la clausura algebraica $\overline{\mathbb{Q}}$ tiene infinitos automorfismos. Más aún, demuestre que el grupo de automorfismos (de cuerpo) de $\overline{\mathbb{Q}}$ no es denumerable.
- 18. Sea f(x) un polinomio irreducible en F[x] de grado n y sea $g(x) \in F[x]$. Muestre que todo factor irreducible de f(g(x)) tiene grado divisible por n.
- 19. Sea $K \subset L$ cuerpos y $a \in L$. Pruebe que a es algebraico sobre K si y solamente si existe un K-espacio vectorial de dimensión finita $V \subset L$ tal que $aV \subset V$.
- 20. Sea w una raiz cúbica y no trivial de la unidad. Sea $L = \mathbb{Q}(w, \sqrt[3]{2})$ y $K = \mathbb{Q}(w\sqrt[3]{2})$. Pruebe que [L:K] = 2, pero $[L \cap \mathbb{R}:K \cap \mathbb{R}] = 3$.
- 21. Demuestre que el cuerpo de descomposición de $x^4 + 2$ sobre \mathbb{F}_5 es una extensión de grado 4 de \mathbb{F}_5 .
- 22. Demuestre que el cuerpo de descomposición de $x^4 + 2$ sobre \mathbb{F}_7 es una extensión de grado 2 de \mathbb{F}_7 .
- 23. Suponga que K es un cuerpo de característica p que no es perfecto. Pruebe que existe un polinomio irreducible e inseparable sobre K. Concluya que existe una extensión inseparable de K.

Guía de Ejercicios y tarea 3. Cuerpos y Álgebras, segundo semestre 2018

Entregue 3 de los ejercicios marcados el jueves 15 de noviembre y los otros 3 el jueves 22 de noviembre. Se espera que sepa resolver todos los ejercicios y cualquiera de ellos podrá ser preguntado en una prueba.

- 1. Sea K/F una extensión algebraica separable con la propiedad que existe $n \in \mathbb{N}$ tal que $[F(\alpha):F] \leq n$, para todo $\alpha \in K$. Muestre que K/F es finita y que $[K:F] \leq n$.
- 2. Sea K el cuerpo de descomposión del polinomio $p(x) = (x^2 2)(x^4 + x^2 + 2)$ en \mathbb{F}_5 . Encuentre un elemento $\alpha \in K$ tal que $K = \mathbb{F}_5(\alpha)$.
- 3. Encuentre todos los polinomios irreducibles de grado 1, 2 y 4 sobre $\mathbb{F}_2[x]$ y verifique que su producto es $x^{16} x$.
- 4. * Sea $\phi : \mathbb{F}_{p^n} \to \mathbb{F}_{p^n}$ el homomorfismo de Frobenius. Pruebe que $\phi^n = \mathrm{id}$ y que $\phi^s \neq \mathrm{id}$, para 0 < s < n.
- 5. Considere $L = \mathbb{Q}[\zeta]$ con ζ una raíz séptima primitiva de 1. Encuentre el polinomio minimal p(x) de $\alpha = \zeta + \zeta^6$ en $\mathbb{Q}[x]$. Determine las otras raíces de p(x). ¿Es $\mathbb{Q}[\alpha]/\mathbb{Q}$ una extensión galoisiana?
- 6. Determine el polinomio minimal sobre \mathbb{Q} para el elemento $1 + \sqrt[3]{2} + \sqrt[3]{4}$.
- 7. * Determine todos los subcuerpos del cuerpo de descomposición de x^8-2 que son Galois sobre \mathbb{Q} .
- 8. * Muestre que $\mathbb{Q}(\sqrt{2+\sqrt{2}})$ es una extensión de grado 4 de \mathbb{Q} con grupo de Galois cíclico.
- 9. * Demuestre que el cuerpo de descomposición de x^4-2x^2-2 sobre $\mathbb Q$ es de grado 8 con grupo de Galois dihedral.
- 10. Sea $F = \mathbb{Q}(\sqrt[3]{2}, \sqrt{-3})$. Encuentre todos los cuerpos L tales que $\mathbb{Q} \subseteq L \subseteq F$.
- 11. Sea $F = \mathbb{Q}(\zeta_p)$, para $p \neq 2$ primo. Pruebe que existe una única extensión $L = \mathbb{Q}(\sqrt{D_p})$ de \mathbb{Q} tal que $L \subseteq F$ y $D_p \in \mathbb{Z} \mathbb{Z}^2$. Determine D_p para p = 3 y p = 5.
- 12. Sea $F = \mathbb{Q}(\zeta_7)$. Encuentre todos los cuerpos L tales que $\mathbb{Q} \subseteq L \subseteq F$.
- 13. Sea K/F una extensión separable. Demuestre que existe una extensión galoisiana L/F que contiene a K y que posee la propiedad siguiente: para toda extensión galoisiana M/F que contiene a K, L está contenido en M.

- 14. Sea K una extensión de Galois sobre F y sea F' una extensión cualquiera de F. Pruebe que KF' es una extensión de Galois sobre F' con grupo de Galois isomorfo a un subgrupo de Gal(K/F).
- 15. * Sean K/F y F' los cuerpos del ejercicio anterior. Pruebe que existe un isomorfismo $\operatorname{Gal}(KF'/F') \stackrel{\sim}{\to} \operatorname{Gal}(K/K \cap F')$. Hint: considere el cuerpo fijo por la imagen del isomorfismo y su composito con F'. Concluya que, si F'/F es finita, entonces $[KF':F] = \frac{[K:F][F':F]}{[K \cap F':F]}$.
- 16. Dé ejemplos de extensiones no triviales K/F y cuerpos $F' \not\subset K$ tales que $\operatorname{Gal}(KF'/F')$ es isomorfo a:
 - el grupo Gal(K/F);
 - el grupo trivial;
 - un subgrupo propio y no trivial de Gal(K/F).
- 17. Sean K_1, K_2 dos extensiones de Galois sobre F tales que $K_1 \cap K_2 = F$. Pruebe que $\operatorname{Gal}(K_1K_2/F) \simeq \operatorname{Gal}(K_1/F) \times \operatorname{Gal}(K_2/F)$. Recíprocamente pruebe que, si K es galoisiana sobre F y $G = \operatorname{Gal}(K/F) = G_1 \times G_2$ con G_1, G_2 subgrupos de G, entonces $K = K_1K_2$ con K_1, K_2 galoisianas sobre F tales que $K_1 \cap K_2 = F$.
- 18. Sea $K = \mathbb{F}_{p^n}$ y $F = \mathbb{F}_p$. Determine $N_{K/F}(\alpha)$, para $\alpha \in K$ elemento arbitrario.
- 19. Sean $\alpha_1, \alpha_2, \alpha_3$, las soluciones de la ecuación $x^3 + ax + b = 0$. Sea $\delta = (\alpha_1 \alpha_2)(\alpha_1 \alpha_3)(\alpha_2 \alpha_3)$. Probar que $\delta^2 = -27b^2 4a^3$. Sea ahora $F(\alpha)/F$ una extension cúbica y $x^3 + ax + b = m_{\alpha,F}(x)$. Probar que $F(\alpha)/F$ es galoisiana si y solamente si $-27b^2 4a^3$ es un cuadrado en F.
- 20. Demuestre que $\sqrt{13} \in \mathbb{Q}(\zeta_{13})$
- 21. Demuestre que al menos uno de 2, 3, 6 es un cuadrado módulo p para cualquier primo p. Concluya que el polinomio $(x^2 2)(x^2 3)(x^2 6)$ tiene una raíz módulo p para cualquier p, pero que no tiene raíz en \mathbb{Z} .
- 22. Suponga que $f(x) \in \mathbb{Z}[x]$ es un polinomio irreducible. ¿Se puede concluir que su imagen en $\mathbb{F}_p[x]$ por el homomorfismo canónico es irreducible para algún primo p? Demuestre o encuentre un contraejemplo.
- 23. Determine la clausura de Galois del cuerpo $\mathbb{Q}(\sqrt{1+\sqrt{2}})$ sobre \mathbb{Q} .
- 24. * Sea F un cuerpo contenido en el anillo de matrices de $n \times n$ sobre \mathbb{Q} . Demuestre que $[F:\mathbb{Q}] \leq n$. Para cada n, muestre un cuerpo F que cumpla la igualdad.
- 25. Sea $\alpha \in K$ tal que $\alpha^n = 1$ para algún $n \in \mathbb{N}$. Demuestre que $F(\alpha)/F$ es normal. ¿Cuando es separable?