Guía de Ejercicios y tarea 1. Cuerpos y Álgebras, segundo semestre 2018

Entregue resueltos los 2 ejercicios marcados con * el jueves 4 de octubre.

- 1. Encuentre el polinomio minimal de $\sqrt{2} + \sqrt[3]{2}$ en $\mathbb{Q}[x]$.
- 2. *Determine los elementos primitivos de \mathbb{F}_{19} .
- 3. Determine los elementos primitivos de $\mathbb{F}_{49} = \mathbb{F}_7[i]$ y sus polinomios minimales en $\mathbb{F}_7[x]$. (Acá i denota una raíz de $x^2 + 1 \in \mathbb{F}_7[x]$)
- 4. Suponga que $\operatorname{car}(F) = p \neq 0$. Demuestre que el morfismo de Frobenius $x \mapsto x^p$ es un automorfismo de cuerpos de F. Si pensamos en F como \mathbb{F}_p -espacio vectorial, ¿es \mathbb{F}_p -lineal este morfismo?
- 5. Si F es un cuerpo de característica p > 0 y $\alpha \in F$ ¿cuántas soluciones diferentes puede tener (en alguna extensión de F) la ecuación $x^p = \alpha$? ¿Y la ecuación $x^{p^k} = \alpha$ con $k \in \mathbb{N}$?
- 6. Si \mathbb{F} es un cuerpo finito de característica p y $\alpha \in \mathbb{F}$, ¿puede $X^p \alpha$ ser irreducible en $\mathbb{F}[X]$?
- 7. * Sea $n \in \mathbb{N}$, sea \mathbb{F}_p el cuerpo finito de p elementos con p primo, y sea L un cuerpo de descomposición del polinomio $G(X) := X^{p^n} X \in \mathbb{F}_p[X]$.
 - a) Demuestre que G(X) es un polinomio separable, pero NO irreducible en $\mathbb{F}_p[X]$.
 - b) Demuestre que el conjunto de las raíces de G es un subcuerpo de L.
 - c) Demuestre que L es igual al conjunto de raíces de G.
 - d) Demuestre que $[L:\mathbb{F}_p]=n$.
 - e) Demuestre que toda extensión de K/\mathbb{F}_p de grado n es isomorfa a L.
- 8. Sea \mathbb{F}_q el cuerpo finito de q elementos, de modo que $q=p^n$ para algún primo p y algún $n \in \mathbb{N}$. ¿Cuando se cumple que hay una inyección $\mathbb{F}_q \to \mathbb{F}_{q'}$?
- 9. Sea p primo y $a \neq 0 \in \mathbb{F}_p$. Demuestre que $g = x^p x + a$ es irreducible y separable sobre \mathbb{F}_p . Determine el cuerpo de descomposición de g sobre \mathbb{F}_p . Muestre explícitamente que su grupo de automorfismos es cíclico. ($\alpha \mapsto \alpha + 1$ define un automorfismo)
- 10. Calcule el grupo de automorfismos del cuerpo \mathbb{F}_q .