Curso: Cálculo en Varias Variables (Pedagogía)

Profesor: Gonzalo Robledo Ayudante: Fabián Hidalgo Universidad de Chile Facultad de Ciencias Departamento de Matemáticas

Ayudantía 17

Miércoles 08 de Agosto del 2018

1. Sea $A = \{(x,y) \in \mathbb{R}^2 : x \neq 0\}$. Estudie los puntos críticos de la función $f: A \to \mathbb{R}$ definida por

$$f(x,y) = 2x - 3y + \frac{1}{2}\ln(x^2 + y^2) + 5\arctan\left(\frac{y}{x}\right)$$

2. Estudie los puntos críticos de la función $f(x,y)=(x^2+y^2)e^{x^2-y^2}$.

Problemas propuestos

1. Estudie los puntos críticos de la función

$$f(x,y) = \ln(x^2 + y^2 + 1)$$

2. Encuentre tres números positivos cuya suma sea 9 y cuyo producto sea lo más grande posible. ¿Existen tres números positivos cuya suma sea 9 y cuyo producto sea lo menor posible?

1

3. Sea $f: \mathbb{R}^2 \to \mathbb{R}$ una función de clase C^2 tal que $\Delta f(x,y) = 0$ para todo $(x,y) \in \mathbb{R}^2$. Demuestre que f no puede tener máximos ni mínimos.

Recuerdo:
$$\Delta f(a,b) = \frac{\partial^2 f}{\partial x^2}(a,b) + \frac{\partial^2 f}{\partial y^2}(a,b).$$