Curso: Cálculo en Varias Variables (Pedagogía)

Profesor: Gonzalo Robledo Ayudante: Fabián Hidalgo Universidad de Chile Facultad de Ciencias Departamento de Matemáticas

Ayudantía 12

Miércoles 02 de Mayo del 2018

- 1. Sea $f: \mathbb{R}^3 \to \mathbb{R}$ la función definida por $f(x,y,z) = x^2 + y^2 + z^2$. Use la definición de derivada direccional para calcular $D_{\vec{v}}f(1,1,1)$ para $\vec{v} = (2,1,3)$ y $\vec{v} = (1,1,1)$. Verifique que $D_{\vec{v}}f(1,1,1) = Df(1,1,1)\vec{v}$.
- 2. Sea $f: \mathbb{R}^3 \to \mathbb{R}$ la función definida por f(x, y, z) = 5x + 8y 7z. Calcule la derivada direccional de esta función en el punto (-1, 7, 4) con respecto al vector $\vec{v} = (-2, 3, 1)$.
- 3. Sea $f: \mathbb{R}^2 \to \mathbb{R}$ la función definida por $f(x,y) = x^2y + xy^2$. Determine condiciones sobre $a, b \in \mathbb{R}$ para que la derivada direccional de la función f en el punto (a, b) con respecto al vector $\vec{v} = (b, a)$ sea igual a $(a + b)^3$.
- 4. Supongamos que un valle está modelado por la función $f(x,y) = \frac{1}{2}xy + \cos(x)$. Un excursionista, que se ubica en el punto (π,π) , está bajando a un pueblo que se ubica en los alrededores del punto (0,0). Encuentre la dirección por la cual el caminante tiene el descenso más pronunciado y calcule la tasa de cambio en esa dirección.
- 5. Sean $f, g: \mathbb{R}^n \to \mathbb{R}$ funciones tales que todas sus derivadas parciales existen. Pruebe que

$$\nabla(fg) = f\nabla(g) + g\nabla(f)$$

6. Sean $a,b,c \in \mathbb{R}$ y sea $f: \mathbb{R}^3 \to \mathbb{R}$ la función definida por $f(x,y,z) = ax^2y + bxy^2 + cxz^2$. Encuentre valores de a,b,c tales que $\nabla f(1,1,1)$ sea paralelo al vector $\vec{e} = \frac{1}{\sqrt{26}}(1,5,0)$ y la derivada direccional de f en el punto (1,1,1) en la dirección de \vec{e} sea igual a 13.

Propuestos:

- 7. Sea $f: \mathbb{R}^2 \to \mathbb{R}^2$ definida por $f(x,y) = (x^2y, xy^2)$. Calcule la matriz jacobiana de f y determine si f es diferenciable. Sea f_n la composición de f consigo misma n veces $(n \ge 1)$. Pruebe que la matriz jacobiana de f_n en (1,1) es $\begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}^n$
- 8. Sean $A \in M_{n \times n}(\mathbb{R}), b \in \mathbb{R}^n$ y $c \in \mathbb{R}$. Calcule ∇f para la función $f : \mathbb{R}^n \to \mathbb{R}$ definida por

$$f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^T A \mathbf{x} - b^T \mathbf{x} + c$$